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Abstract—Acoustic multichannel equalization techniques for
speech dereverberation are known to be highly sensitive to esti-
mation errors of the room impulse responses. In order to increase
robustness, it has been proposed to incorporate regularization.
However, the optimal regularization parameter which yields the
highest perceptual speech quality has generally been determined
intrusively, limiting the practical applicability.

In this paper, we propose an automatic non-intrusive proce-
dure for determining the regularization parameter based on the
L-curve. Experimental results show that using such an automatic
non-intrusive regularization parameter in a recently proposed
partial multichannel equalization technique (P-MINT) leads to
a very similar performance as using the intrusively determined
optimal regularization parameter. Furthermore, it is shown that
the automatically regularized P-MINT technique outperforms
state-of-the-art multichannel equalization techniques such as
channel shortening and relaxed multichannel least-squares, both
in terms of reverberant tail suppression and perceptual speech
quality.

I. INTRODUCTION

In many hands-free communication applications the
recorded microphone signals are often corrupted by rever-
beration, typically leading to decreased speech intelligibility
and performance deterioration in automatic speech recognition
systems. In order to mitigate these detrimental effects of
reverberation, several dereverberation approaches have been
investigated in the past [1]. One particular class of speech
dereverberation approaches is acoustic multichannel equaliza-
tion [2], [5], which aims to reshape the estimated room impulse
responses (RIRs) between the source and the microphone
array.

A widely known multichannel equalization technique that
aims at complete equalization is the multiple input/output
inverse theorem (MINT) [2], which however suffers from sev-
eral drawbacks in practice. Since the estimated RIRs typically
differ from the true RIRs (e.g., due to the sensitivity of blind
system identification methods to interfering noise [6]), MINT
fails to equalize the true RIRs, possibly leading to severe
distortions in the output signal. In an attempt to increase the
robustness to estimation errors by relaxing the constraints on
the filter design, partial multichannel equalization techniques
such as channel shortening (CS) [3] and relaxed multichannel
least-squares (RMCLS) [4] have been proposed. Since early
reflections tend to improve speech intelligibility and late
reverberation is the main cause of speech quality degradation,
the objective of such techniques is to shorten the RIR by

suppressing only the reverberant tail. However, by not im-
posing any constraints on the remaining early reflections of
the shortened RIR, CS and RMCLS may lead to undesired
perceptual effects.

In order to directly control the perceptual speech qual-
ity, a partial multichannel equalization technique based on
MINT (P-MINT) has recently been proposed [5]. To further
increase its robustness, regularization has been incorporated.
However, in order to determine the optimal regularization
parameter which yields the highest perceptual speech quality,
an intrusive procedure requiring knowledge of the true RIRs
has been typically used, limiting the practical applicability of
the regularized P-MINT technique.

In this paper, we propose and extensively investigate an
automatic non-intrusive procedure for determining the regular-
ization parameter based on the L-curve [7]. Using simulations
with a realistic acoustic system for several RIR estimation
errors, it is shown that the non-intrusively determined regular-
ization parameter yields a nearly optimal perceptual speech
quality, making regularized P-MINT a robust, perceptually
advantageous, and practically applicable multichannel equal-
ization technique for speech dereverberation.

II. ACOUSTIC MULTICHANNEL EQUALIZATION

Fig. 1 depicts an acoustic system with a single source and
M microphones. The m-th microphone signal at time index
n is given by xm(n) = hm(n) ∗ s(n), m = 1, . . . , M ,
where ∗ denotes convolution, s(n) is the clean speech signal,
and hm(n) denotes the RIR between the source and the m-th
microphone, which can be described in vector notation as

hm = [hm(0) hm(1) . . . hm(Lh − 1)]
T
, (1)

with Lh being the RIR length and [·]T denoting the transpose
operation. Given reshaping filters gm(n) of length Lg , i.e.

gm = [gm(0) gm(1) . . . gm(Lg − 1)]
T
, (2)
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Fig. 1. Multichannel equalization system
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the output signal ŝ(n) of the multichannel equalization system
is given by the sum of the filtered microphone signals, i.e.

ŝ(n) =

M∑
m=1

xm(n) ∗ gm(n) = s(n) ∗
M∑

m=1

hm(n) ∗ gm(n)

︸ ︷︷ ︸
c(n)

, (3)

where c(n) is the equalized impulse response (EIR) between
the source and the output of the system, which can be de-
scribed in vector notation as c = [c(0) c(1) . . . c(Lc − 1)]

T ,
with Lc = Lh + Lg − 1 being its length. Using the MLg–
dimensional stacked filter vector g and the Lc × MLg–
dimensional multichannel convolution matrix H, i.e.

g =
[
gT
1 gT

2 . . . gT
M

]T
(4)

H = [H1 H2 . . . HM ] , (5)

with Hm the Lc×Lg–dimensional convolution matrix of hm,
the EIR can be expressed as

c = Hg (6)

The reshaping filter g can then be constructed based on
different design objectives for the EIR c. Since the true RIRs
are however typically not available in practice, acoustic mul-
tichannel equalization techniques described in the following,
design the reshaping filter g using the estimated multichannel
convolution matrix Ĥ constructed from the estimated RIRs
ĥm(n).
MINT. The multiple-input/output inverse theorem [2] aims to
exactly invert the acoustic system up to a delay τ by designing
the filter g such that Ĥg = d, where d is the desired EIR
defined as a delayed impulse, i.e.

d = [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T . (7)

The inverse filter is then computed by minimizing the least-
squares cost function

JMINT(g) = ‖Ĥg − d‖22 (8)

It has been shown in [2] that when the RIRs do not share any
common zeros and when Lg ≥ �Lh−1

M−1 �, the filter that inverts
the multichannel acoustic system can be computed as

gMINT = Ĥ+d (9)

with {·}+ denoting the Moore-Penrose pseudo-inverse. Since
the estimated convolution matrix Ĥ is assumed to be a full
row-rank matrix [8], its pseudo-inverse can be computed as
Ĥ+ = ĤT (ĤĤT )−1. When the RIRs are perfectly estimated,
MINT achieves perfect equalization. However, when the es-
timated RIRs differ from the true RIRs, the resulting EIR
c = HĤ+d not only differs from the desired response d,
but usually causes large distortions in the output signal.
Whereas MINT is very sensitive to estimation errors, experi-
mental investigations in [4], [5] have shown that techniques
aiming only at partial equalization such as P-MINT, are
significantly more robust.

P-MINT. The partial multichannel equalization technique
based on MINT [5] aims at setting the reverberant tail of the
EIR to 0, while still controlling the remaining taps correspond-
ing to the direct path and early reflections. To accomplish this
objective, the first part of one of the estimated RIRs is used
as the desired EIR in (8), i.e.

J
P−MINT

(g) = ‖Ĥg − ĥd
p‖22 (10)

where

ĥd
p = [0 . . . 0︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Ld − 1)︸ ︷︷ ︸
Ld

0 . . . 0]T , (11)

with p ∈ {1, . . . , M} and Ld denoting the length in number
of samples of the direct path and early reflections which is
typically chosen to correspond to Ls ∈ [50 ms 80 ms]. The
reshaping filter that partially equalizes the system can then be
computed as

gP−MINT
= Ĥ+ĥd

p (12)

In order to further increase the robustness of P-MINT to
estimation errors, a regularization term δ‖g‖22, corresponding
to the energy of the reshaping filter, is added to the P-MINT
cost function in (10), i.e.

J
R

P−MINT
(g) = ‖Ĥg − ĥd

p‖22 + δ‖g‖22 (13)

with δ a regularization parameter controlling the weight given
to the minimization of the filter energy. The regularized P-
MINT filter minimizing (13) can be calculated as

gR

P−MINT
= (ĤT Ĥ+ δI)−1ĤT ĥd

p (14)

where I is the MLg ×MLg–dimensional identity matrix.
Increasing the regularization parameter δ decreases the

energy of the reshaping filter g, increasing the robustness
to RIR estimation errors. However, increasing this parameter
also reduces the equalization performance with respect to
the true RIRs, resulting in a trade-off between equalization
performance for perfectly estimated RIRs and robustness in
the presence of estimation errors.

III. NON-INTRUSIVE SELECTION OF THE
REGULARIZATION PARAMETER

Obviously, different values of the regularization parameter
δ lead to different performance. The optimal value δopt which
yields the highest perceptual speech quality depends on the
acoustic system to be equalized and the RIR estimation
errors. While in simulations δopt can be intrusively determined
exploiting the known true RIRs (cf. Section IV), an automatic
non-intrusive procedure is required in practice.

Incorporating regularization in P-MINT introduces a trade-
off between minimizing the residual energy ‖Ĥg − ĥd

p‖22
and minimizing the filter energy ‖g‖22 (cf. (13)). A good
regularization parameter should hence incorporate knowledge
about both the residual energy and the filter energy, such that
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both energies are kept small. In order to automatically com-
pute a regularization parameter for regularized least-squares
problems, it has been proposed in [7] to use a parametric
plot of the filter norm versus the residual norm for several
values of δ. This plot always has an L-shape with the corner
(i.e. the point of maximum curvature) located exactly where
the regularized least-squares solution changes in nature from
being dominated by over-regularization to being dominated by
under-regularization.

We therefore propose to non-intrusively determine the au-
tomatic regularization parameter δauto in the regularized P-
MINT technique as the one corresponding to the corner of
the parametric plot of the filter norm ‖gR

P−MINT
‖2 versus the

residual norm ‖ĤgR
P−MINT

− ĥd
p‖2. As will be experimentally

validated in Section IV, such a regularization parameter also
leads to a nearly optimal perceptual speech quality.

The L-curve can be generated by computing the reshaping
filter gR

P−MINT
in (14) for several values of the regularization

parameter δ and then calculating the required norms. However,
in order to reduce the computational complexity, it is beneficial
to generate the L-curve using the singular value decomposition
(SVD) of the estimated convolution matrix Ĥ. Consider the
SVD of Ĥ, i.e.

Ĥ = ÛŜV̂T , (15)

where Û and V̂ are orthogonal matrices and Ŝ is a diagonal
matrix containing the singular values σ̂n of Ĥ in descending
order, i.e. Ŝ = diag{[σ̂1 σ̂1 . . . σ̂Lc

]}. Using (14) and (15),
the regularized P-MINT filter can be expressed as

gR

P−MINT
=

Lc∑
n=1

σ̂nû
T
n ĥ

d
p

σ̂2
n + δ

v̂n, (16)

where ûn and v̂n denote the n-th column of Û and V̂
respectively. Hence, for a given δ, the filter norm and the
residual norm can be expressed in terms of the singular
values/vectors as

‖gR

P−MINT
‖2 =

√√√√ Lc∑
n=1

σ̂2
n(û

T
n ĥ

d
p)

2

(σ̂2
n + δ)2

(17)

‖ĤgR

P−MINT
− ĥd

p‖2 =

√√√√ Lc∑
n=1

δ2(ûT
n ĥ

d
p)

2

(σ̂2
n + δ)2

(18)

Therefore, once the SVD is computed, the L-curve can be
readily generated using (17) and (18).

Fig. 2 depicts a typical L-curve obtained using regularized
P-MINT for equalizing an estimated acoustic system (cf.
Section IV). As illustrated in this figure, increasing the value
of δ decreases the filter norm but at the same time increases
the residual norm. Although from such a curve it seems easy to
determine the regularization parameter that corresponds to the
maximum curvature, numerical problems due to small singular
values may occur and hence, a numerically stable algorithm

Fig. 2. Typical L-curve obtained using regularized P-MINT for an erro-
neously estimated acoustic system
is required. In this work, the triangle method [9] is used for
locating the point of maximum curvature of the L-curve.

IV. EXPERIMENTAL RESULTS

We have considered an acoustic scenario with a single
speech source and M = 2 microphones in a room with
reverberation time T60 ≈ 600 ms. The RIRs have been
measured using the swept-sine technique with Lh = 2000
at a sampling frequency fs = 16 kHz. In order to simulate
estimation errors, the measured RIRs have been perturbed by
adding scaled white noise as proposed in [10], i.e.

ĥm(n) = hm(n)[1 + e(n)], (19)

with e(n) an uncorrelated Gaussian noise sequence with zero
mean and an appropriate variance, such that a normalized
channel mismatch Em, defined as

Em = 10 log10
‖hm − ĥm‖22

‖hm‖22
, (20)

is generated. The considered normalized channel mismatch
values are

Em ∈ {−33 dB, −30 dB, −25 dB, −20 dB, −15 dB}. (21)

The used simulation parameters are Lg = 1999, τ = 0, and
the desired EIR in regularized P-MINT is chosen as the direct
path and early reflections of the estimated first RIR, i.e. ĥd

1 .
Furthermore, 5 desired window lengths are investigated, i.e.
Ls ∈ {10 ms, 20 ms, 30 ms, 40 ms, 50 ms}.

The reverberant tail suppression is evaluated using the
energy decay curve (EDC) of the true EIR c = Hg, which is
defined as

EDC(n) = 10 log10
1

‖c‖22

Lc−1∑
i=n

c2(i), n = 0, . . . , Lc − 1. (22)

The perceptual speech quality of the output signal ŝ(n)
is evaluated using the objective speech quality measure
PESQ [11], where the reference signal employed in PESQ is
s(n) ∗ hd

1(n), i.e. the clean speech signal convolved with the
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Fig. 3. EDC of the true RIR h1 and EDC of the EIR using regularized
P-MINT with δopt and δauto (Em = −33 dB, Ls = 50 ms)

first part of the true first RIR. It has been shown in [12] that
measures relying on auditory models such as PESQ exhibit
the highest correlation with subjective listening tests when
evaluating the quality of dereverberated speech.

For the regularized P-MINT technique, we have considered
several regularization parameters, i.e.

δ ∈ {10−9, 10−8, . . . , 10−1}. (23)

The optimal regularization parameter δopt is selected as the
one leading to the highest PESQ score. It should be noted that
the computation of the PESQ score for selecting the optimal
regularization parameter is an intrusive procedure that is not
applicable in practice, since knowledge of the true RIRs is
required in order to compute the reference signal s(n)∗hd

1(n)
and the true EIR c(n) =

∑M
m=1 hm(n) ∗ gm(n). Furthermore,

the automatic regularization parameter δauto is determined as
the one corresponding to the corner of the L-curve generated
with the regularization parameters in (23).

The experiments presented in the following are structured
into two parts. In the first experiment, the performance of
the regularized P-MINT technique when using the automatic
regularization parameter δauto is compared to the performance
when using the optimal regularization parameter δopt. In the
second experiment, the performance of the regularized P-
MINT technique using the automatic regularization parameter
δauto is compared to the performance of state-of-the-art mul-
tichannel equalization techniques such as CS and RMCLS.

Experiment 1. Fig. 3 depicts the obtained EDCs for Em =
−33 dB and Ls = 50 ms using regularized P-MINT with
the optimal intrusive regularization parameter δopt and with
the automatic non-intrusive regularization parameter δauto. As
can be observed in this figure, the automatic regularization
parameter δauto yields a very similar reverberant tail suppres-
sion as the optimal regularization parameter δopt. In order
to compare the perceptual speech quality, Fig. 4 (a) depicts
the PESQ score of the output signal ŝ(n) obtained using

(a) (b)
Fig. 4. PESQ score of the first microphone signal x1(n) and PESQ score
of the system’s output ŝ(n) obtained using regularized P-MINT with δopt
and δauto for (a) several desired window lengths (Em = −33 dB) and (b)
several normalized channel mismatches (Ls = 50 ms)

regularized P-MINT with δopt and regularized P-MINT with
δauto for Em = −33 dB and several desired window lengths.
As illustrated in this figure, the perceptual speech quality when
using δauto is generally similar to the one obtained when
using δopt, except for the desired window length Ls = 40 ms
where the PESQ score is reduced by 0.5. However, the average
PESQ score reduction over all desired window lengths is only
0.2, implying that as Ls changes as a design parameter, the
automatic selection procedure for the regularization parameter
still yields a good perceptual speech quality.

Since the optimal regularization parameter typically changes
as the channel mismatch changes (larger estimation errors
in the RIRs require larger regularization), it is important to
evaluate the perceptual speech quality when the automatic
regularization procedure is used for larger normalized channel
mismatches. Fig. 4 (b) depicts the PESQ scores obtained using
regularized P-MINT with δopt and regularized P-MINT with
δauto for Ls = 50 ms and several normalized channel mis-
matches. It can be seen that using δauto yields a very similar
perceptual speech quality as using δopt, with an insignificant
average performance reduction over all considered Em of 0.03.

Experiment 2. Fig. 5 depicts the EDCs obtained for Em =
−33 dB and Ls = 50 ms using MINT, CS, RMCLS,
and regularized P-MINT with the automatic regularization
parameter δauto. As illustrated in this figure, MINT fails to
invert the acoustic system, leading to an EDC that is even
higher than the one of the true RIR. Furthermore, also CS
fails to reshape the channel, yielding an audible reverberant
tail. On the other hand, the RMCLS and the automatically
regularized P-MINT techniques are significantly more robust,
with RMCLS yielding the highest reverberant tail suppres-
sion. However, since the EDC does not fully describe the
quality of the processed speech, it is important to evaluate
the perceptual quality that these techniques yield. Fig. 6 (a)
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Fig. 5. EDC of the true RIR h1 and EDC of the EIR using MINT, CS,
RMCLS, and regularized P-MINT with δauto (Em = −33 dB, Ld = 50 ms)

depicts the obtained PESQ scores for several desired window
lengths and Em = −33 dB. As illustrated in this figure, the
regularized P-MINT approach using δauto outperforms MINT,
CS, as well as RMCLS for Ls ∈ {30 ms, 40 ms, 50 ms},
while a very similar performance as RMCLS is achieved for
Ls ∈ {10 ms, 20 ms}. Furthermore, Fig. 6 (b) illustrates the
obtained PESQ scores for Ls = 50 ms and several normalized
channel mismatch values. It can be seen that the automatically
regularized P-MINT technique yields a significantly higher
perceptual speech quality than all other state-of-the-art tech-
niques for all considered normalized channel mismatch values.

The results presented in these experiments show that the
automatic non-intrusive procedure for determining the regu-
larization parameter yields a nearly optimal perceptual speech
quality in the regularized P-MINT technique. Furthermore, it
is shown that the automatically regularized P-MINT technique
always yields a similar or higher performance than other state-
of-the-art multichannel equalization techniques.

V. CONCLUSION

In this paper we have presented an automatic non-intrusive
procedure based on the L-curve for selecting the regular-
ization parameter in regularized least-squares multichannel
equalization techniques. The performance of this procedure
has been extensively investigated and compared to the perfor-
mance when the intrusively determined optimal regularization
parameter is used for the regularized P-MINT technique. Sim-
ulation results show that using the non-intrusively determined
regularization parameter yields a very similar performance as
the optimal intrusive regularization parameter. Furthermore, it
has been shown that the regularized P-MINT technique using
the non-intrusively determined regularization parameter out-
performs state-of-the-art techniques such as CS and RMCLS.

(a) (b)
Fig. 6. PESQ score of the first microphone signal x1(n) and PESQ score of
the system’s output ŝ(n) obtained using MINT, CS, RMCLS, and regularized
P-MINT with δauto for (a) several desired window lengths (Em = −33 dB)
and (b) several normalized channel mismatches (Ld = 50 ms)
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