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ABSTRACT

A new approach for noise reduction is presented. The method is ca-
pable of reducing noise of Gaussian, supergaussian and impulsive
characteristics in degraded high-quality audio signals. The approach
is based on classical autoregressive (AR) detection and interpola-
tion, applied to the residual signal of a binary time-frequency (T-F)
masking process. Analytic inspection allows for predicting the noise
reduction level for white noise types and shows good accordance to
simulation results. High reduction levels are achieved especially for
supergaussian and impulsive disturbances having a higher sample
kurtosis than Gaussian noise. The approach ensures high preserva-
tion of the underlying desired signal, satisfying the needs of high
quality audio restoration. Furthermore, the approach is capable of
reducing optical soundtrack noise of celluloid movie footage.

Index Terms— Interpolation, Noise Reduction, Optical Sound-
track Noise, Supergaussian, Time-Frequency Masking

1. INTRODUCTION

The term “noise reduction” covers several types of disturbances. For
suppression of hiss noise in audio recordings, spectral attenuation
methods are used, like the well-known Wiener filter or the Ephraim-
Malah method [1]. Since the Gaussian assumption of these methods
does not hold for most desired signals [2], as well as for the noise dis-
turbances, more sophisticated methods have been developed [3, 4].
For the removal of impulsive disturbances, like e.g. clicks caused by
dust and scratches on a gramophone disc, pioneering work has been
done by Vaseghi [5] and others [6, 7]. The hiss reduction methods
have in common to work in the frequency domain, while the methods
for impulse reduction are mostly based on interpolation in the time
domain, due to the sparse, localized occurrence of the disturbances
in the time signal. But the border between those two types of distur-
bances is not strict. For example, the noise of a heavy rainfall could
be imagined as a vast number of small clicks per time instant, giv-
ing a grainy noise somewhere between hiss and impulses. Optical
soundtrack noise, caused by dust, mould, or bad exposure of cel-
luloid film footage [8] can offer similar characteristics. Motivated
by the latter, this contribution investigates the effect of time-domain
interpolation techniques on noise signals with supergaussian proper-
ties.

The remainder of this paper is organized as follows. Section 2
presents the idea behind the new approach, being a combination of
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T-F masking and AR detection and interpolation. In Section 3, an
analytic examination is elaborated to predict the amount of noise
reduction. The analytic solution is compared to simulation results.
Conclusions are drawn in Section 4.

2. THEORY

The idea behind the new denoising approach is, to first separate a de-
sired audio signal from the noise signal as good as possible, then to
apply AR detection and interpolation on the extracted noise, and then
to add the estimated desired signal back to the interpolated noise sig-
nal to form the restored signal. The separation task can be done using
T-F masking. Wang gives in his article [9] an excellent overview on
this topic. In [10], the ideal binary mask (IBM) is proposed, calcu-
lated from the local signal-to-noise ratio. Of course, in real-world
applications, the instantaneous SNR is not known, so that the IBM
has to be estimated. Several binary mask estimation techniques are
compared in [11]. The imperfectness of the estimation justifies the
use of AR detection and interpolation for the reduction of the noisy
residual signal. Since the binary mask will not be perfect in real ap-
plications, components of the desired signal will fall into the resid-
ual signal erroneously. These components will be preserved by the
AR interpolation process, while the noisy components will be sup-
pressed. If the binary mask would work perfectly, the detection and
interpolation process would not be necessary.

2.1. Detection Algorithm

The task of a detection algorithm is to figure out the location of
damaged samples as exactly as possible. A low false alarm rate
is required for the preservation of unaffected desired signal parts.
Kauppinen [12] shows that the AR method works best in terms of
missing detection rate and lowest false alarm rate compared to other
methods. The AR detection method originally has been introduced
in [13, 14] and is also recommended in common audio restoration
literature [6, 15]. A clean audio signal x(n) is modelled by an au-
toregressive process,

x(n) =

P∑
m=1

amx(n−m) + ε(n) , (1)

with am being the AR coefficients, n the discrete time index, P the
AR model order and ε(n) being a white Gaussian excitation signal.
This corresponds to filtering the excitation ε(n) by an all-pole filter
A(z):

A(z) =
1

1−
P∑

m=1

amz−m

. (2)
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The AR coefficients are estimated from a signal block using the
Yule-Walker method or the Burg method (see e.g. [16]). Eq. (1) can
also serve as a predictor for a disturbed signal y(n), being the sum
of the desired signal x(n) and a noise disturbance d(n). Then, ε(n)
is replaced by the prediction error e(n):

y(n) =

P∑
m=1

amy(n−m) + e(n) . (3)

Vice versa, the prediction error e(n) can be calculated from the dis-
turbed signal y(n):

e(n) = y(n)−
P∑

m=1

amy(n−m) . (4)

As long as there is no impulse disturbance in y(n), the predici-
tion error e(n) will be low. But if an impulse occurs, the misfit
in prediction to the underlying signal x(n) will yield a high error
signal. Usually, clicks are detected by thresholding the squared er-
ror e2(n). AR model orders can be quite low for good detection
results, e.g. P = 10 (see [12]). Since the underlying audio sig-
nal x(n) is unknown, the AR coefficient have to be estimated using
the corrupted signal y(n). Thanks to the Yule-Walker and Burg esti-
mation techniques being robust towards impulsive disturbances, this
is not a problem.

2.2. Interpolation Algorithm

Several interpolation methods exist to replace the corrupted sam-
ples identified by the detection stage. The least-squares AR-based
(LSAR) interpolator, proposed in [17] and [18], is a very successful
tool for audio restoration (cf. [19] and others). By expressing Eq. (4)
in a matrix/vector form, and minimizing the sum of squared errors,
the following interpolator equation is obtained (cf. [6, 18] and oth-
ers):

yLS
u = −(AT

uAu)−1AT
uAkyk . (5)

In Eq. (5), yk denotes a column vector containing the “known” sam-
ples of the audio signal, i.e. the samples within a column vector y
of length N that are identified as not disturbed by the detection al-
gorithm, in order of appearance, and yLS

u is the solution for the “un-
known” or defective samples of y in the least-squares sense. Fig. 1
shows how the matrices Ak and Au are made up by column-wise
partitioning of a (N − P ) × N matrix A, holding the AR coeffi-
cients, according to the positions of known and unknown samples
within a signal block.

-aP ... -a1 1 0 0 ... 0
-aP0 ... -a1

1... -a1-aP

1 0 0...

... ... ... ... ... ... ... ...

0 ... 0 -aP ... -a1 1 0

0 0... 0

A =

Ak Au

Fig. 1. Partitioning of the AR coefficient matrix A into matrices Ak

and Au, according to the positions of known and unknown samples
in a signal block.

2.3. AR Detection and Interpolation within a Noise Signal hav-
ing a White Spectrum

If AR coefficients are drawn from a white process, the corresponding
all-pole filter transfer function A(z) of Eq. (2) will be equal to one,
since the assumed excitation signal ε(n) is also white (The gain is
inherent to the excitation signal ε(n), respectively e(n), see [20]).
So all the coefficients a1, ..., aP remain zero. Since common AR
detection works by thresholding the squared error signal e2(n) (see
Section 2.1), a look at Eq. (4) reveals that for the white case e(n) is
equal to the signal y(n). That means that the noise samples having
the highest magnitude will be detected as disturbance samples.

For the LSAR interpolator the following holds. Inside the AR
coefficient matrix shown in Fig. 1, all the coefficients are zero, and
only the secondary diagonal, containing the ones, remains. So the
product AT

uAk in Eq. (5) will always end up as a zero matrix, and
the term (AT

uAu)−1 as a unity matrix (except for some special
cases, like e.g. if all unknown samples are within the first P − 1
samples of the block [21]). So for the ideal white case, the interpo-
lator result yLS

u will be a vector of zeroes.

2.4. Noise Manipulation

Let us consider a white noise signal as the sum of a vast number of
small impulses. Then it would be interesting to know, how the detec-
tion and interpolation algorithm would change statistical properties
of the noise signal. Fig. 2 (top) shows a histogram of a white noise
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Fig. 2. Histogram of a Gaussian white residual signal before (top)
and after (bottom) AR detection and interpolation. The grey bars
represent simulated data, the black curves show the theoretical Gaus-
sian probabilty density function.

signal before detection and interpolation. After detection and in-
terpolation to a certain amount, the histogram is concatenated from
both sides (same figure, bottom). This is a result of the behaviour



described in Section 2.3. The concatenation of the histogram ex-
presses a reduction of the noise level, since the statistical variance
measure represents the level of energy of a random signal. The
amount of noise reduction can be predicted analytically, as will be
shown in Section 3. We can have direct influence on the amount
of noise reduction, by introducing a detection percentage γ rather
than the state-of-the-art detection threshold described in Section 2.1.
The percentage γ expresses how many percent of the samples of a
signal block shall be detected as impulsive, and thereby be inter-
polated. Detection in this case means, taking the γ % samples of
the signal block having the highest squared error e2(n). A value of
γ = 0 % would leave all samples unaffected (no concatenation of
the histogram), while a value of γ = 100 % would cause all the sam-
ples of a block to be interpolated, i.e. setting all the samples to zero,
and therefore leaving the histogram as a single high peak at sample
value zero.

3. ANALYTIC REVIEW

In the case of a white residual signal, it is possible to predict the
amount of noise reduction [21]. As mentioned before, the power of a
zero-mean random process is given by its variance. To determine the
noise power after interpolation, we have to calculate the variance of
the concatenated histogram of Fig. 2 (bottom), in dependency of the
percentage γ and the underlying probability density function (PDF)
of the noise signal. The concatenation borders −ycut and +ycut are
given by

ycut = −Φ−1
( γ

2 · 100 %

)
, (6)

with Φ−1(·) being the inverse cumulative density function (ICDF)
of the noise, and γ being the percentage parameter [21]. Then, the
variance σ2 of the signal can be calculated as

σ2 =

ycut∫
−ycut

y2ϕ(y)dy , (7)

with ϕ(·) being the PDF of the noise process. Finally, the corre-
sponding noise level Lnoise in dB is given by

Lnoise = 10 log10(σ2) . (8)

The analytic prediction was verified by a simulation, using four
different noise types, each having a flat spectrum:

• Gaussian

• Laplace

• modified Cauchy with density parameter η = 0.02

• modified Cauchy with density parameter η = 0.002.

The perceived sound of these noise types ranges from “smooth”
(Gaussian) over “sharp” (Laplace) up to “grainy” or “impulsive”
(modified Cauchy types). The modified Cauchy noise was gener-
ated by a script based on the α-stable random number generator
from [22]. See the appendix for the PDFs and ICDFs. The noise
signals shall be regarded as residual signals after a binary masking
process. They were interpolated using the proposed detection and
interpolation scheme, and the detection percentage γ was increased
from 0 % up to 100 %. Fig. 3 shows the simulation results and the an-
alytic solution. Deviations towards higher percentage levels γ result
from the low block length of N = 2048 samples. A good agree-
ment between analytic and simulation is given within the preferred
working range of γ of 0 % to 30 %. Values above 20− 30 % exhibit

too much musical noise with state-of-the-art BM techniques, so that
there is no need to increase the block length, which is of advantage
for low-latency implementations.
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Fig. 3. Simulated results (dashed lines) vs. analytic solution (solid
lines) of the noise level after interpolation, over the detection per-
centage γ, for four different noise types: Gaussian (grey, no mark-
ers), Laplace (black, no markers), mod. Cauchy with η = 0.02 (grey,
crosses), and mod. Cauchy with η = 0.002 (black, crosses). All
noise signals have flat spectra. Simulated block length N = 2048
samples.

Another point of view can be obtained by the sample kurtosis. It
is defined as the fourth central moment of a signal y(n), divided by
the fourth power of the standard deviation of y(n). It expresses the
“peakedness” of a signal, and thereby can serve as a measure of how
“impulsive” a noise signal is. The kurtosis w is defined as

w =

1
N

N∑
n=1

(y(n)− ȳ)4(
1
N

N∑
n=1

(y(n)− ȳ)2
)2 , (9)

where ȳ stands for the arithmetic mean value of y(n). White stan-
dard Gaussian noise always has a kurtosis of w = 3, whereas stan-
dard Laplace noise has a kurtosis of w = 6. For modified Cauchy
noise, the kurtosis is dependent of the density parameter η. A higher
kurtosis means a steeper slope of the histogram. Setting the detection
percentage γ to a fixed value, it would be interesting to know how
the residual noise level drops for a growing kurtosis. Fig. 4 shows
this dependency for two fixed detection percentages, γ = 10 % and
γ = 20 %. The results indicate a steadily growing noise reduction
as the kurtosis increases.

4. CONCLUSIONS

The proposed approach works for noise disturbances of Gaussian,
supergaussian and impulsive characteristics. The reduction of the
noise level is achieved by manipulation of the PDF of the noisy BM
residual, using AR detection and interpolation in the time-domain.
The method is especially successful for noise types that exhibit high
energy on the left and right edge of their PDFs, like supergaussian
types do. T-F masking and AR interpolation are the favoured tools
for a practical implementation, but other separation and interpola-
tion techniques might also be considered. The level of noise reduc-
tion is rather moderate, but high conservation of the desired signal
is guaranteed. The properties of the approach make it attractive for
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Fig. 4. Residual noise level Lnoise after interpolation, plotted over
the kurtosis w, for fixed detection percentages γ = 10 % (grey)
and γ = 20 % (black). Dashed lines indicate simulation re-
sults, solid lines are the analytic solution. Data points from left
to right: Gaussian (w = 3), Laplace (w = 6), mod. Cauchy at
η = 0.02 (w ≈ 27), mod. Cauchy at η = 0.01 (w ≈ 54),
mod. Cauchy at η = 0.005 (w ≈ 94), and mod. Cauchy at
η = 0.002 (w ≈ 174).

high quality audio restoration tasks, like e.g. the reduction of optical
soundtrack noise of old celluloid movie footage. However, single
high-energy clicks will not be captured by the BM and should be
removed in advance using a declicking tool. Finally, the approach is
also suitable for speech enhancement under special noise conditions
(e.g. rain noise). A web page with audio examples will be presented
in a subsequent paper.

A. STANDARD-GAUSSIAN DISTRIBUTION

PDF ϕ(·) and ICDF Φ−1(·) of the standard Gaussian distribution,
with zero mean value and variance one.

ϕ(y) =
1√
2π
e

1
2
y2

(10)

Φ−1(p) =
√

2 erf−1(2p− 1), p ∈ (0, 1) (11)
(erf−1 is the inverse error function. For evaluating Φ−1(·), we use
the MATLAB R© command norminv.)

B. STANDARD-LAPLACE DISTRIBUTION

PDF ϕ(·) and ICDF Φ−1(·) of Laplace distribution, with zero mean
value and variance one.

ϕ(y) =
1

2
exp (−|y|) (12)

Φ−1(p) =

{
ln (2p) , p < 1

2

− ln (2 (1− p)) , p ≥ 1
2

, p ∈ (0, 1) (13)

C. MODIFIED CAUCHY DISTRIBUTION

PDF ϕ(·) and ICDF Φ−1(·) of modified Cauchy distribution, with
density parameter η.

ϕ(y) =
1

(π − 2η)(y2 + 1)
(14)

Φ−1(p) = tan((π − 2η)(p− 1

2
)), p ∈ (0, 1) (15)

D. REFERENCES

[1] Y. Ephraim and D. Malah, “Speech Enhancement Using a Minimum-
Mean Square Error Short-Time Spectral Amplitude Estimator,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 32, no.
6, pp. 1109–1121, 1984.

[2] J. Porter and S. Boll, “Optimal Estimators for Spectral Restoration of
Noisy Speech,” IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 53–56, 1984.

[3] R. Martin, “Noise Power Spectral Density Estimation Based on Opti-
mal Smoothing and Minimum Statistics,” IEEE Transactions on Speech
and Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.

[4] I. Cohen, “Speech Enhancement Using Super-Gaussian Speech Models
and Noncausal a Priori SNR Estimation,” Speech communication, vol.
47, no. 3, pp. 336–350, 2005.

[5] S. V. Vaseghi, Algorithms for Restoration of Archived Gramophone
Recordings, Ph.D. thesis, University of Cambridge, 1988.

[6] S. J. Godsill and P. J. W. Rayner, Digital Audio Restoration, Springer,
London, Great Britain, 1998.

[7] A. Czyzewski, “Some Methods for Detection and Interpolation of Im-
pulsive Distortions in Old Audio Recordings,” IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics, pp. 139–142,
1995.

[8] D. Richter, I. Kurreck, and D. Poetsch, “Restoration of Optical Variable
Density Sound Tracks on Motion Picture Films by Digital Image Pro-
cessing,” Proceedings of the International Conference on Optimization
of Electrical and Electronic Equipments, vol. 3, pp. 793–798, 2000.

[9] D. L. Wang, “Time-Frequency Masking for Speech Separation and Its
Potential for Hearing Aid Design,” Trends in Amplification, vol. 12, no.
4, pp. 332–353, 2008.

[10] G. Hu and D. L. Wang, “Speech Segregation Based on Pitch Track-
ing and Amplitude Modulation,” Proceedings of IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 79–82,
2001.

[11] Y. Hu and P. C. Loizou, “Techniques for Estimating the Ideal Binary
Mask,” Proceedings of the 11th International Workshop on Acoustic
Echo and Noise Control, 2008.

[12] I. Kauppinen, “Methods for Detecting Impulsive Noise in Speech and
Audio Signals,” International Conference on Digital Signal Process-
ing, vol. 2, pp. 967–970, 2002.

[13] S. V. Vaseghi and P. J. W. Rayner, “A New Application of Adaptive
Filters for Restoration of Archived Gramophone Recordings,” Inter-
national Conference on Acoustics, Speech, and Signal Processing, pp.
2548–2551, 1988.

[14] S. V. Vaseghi and P. J. W. Rayner, “Detection and Suppression of Im-
pulsive Noise in Speech Communication Systems,” IEEE Proceedings
on Communications, Speech and Vision, vol. 137, pp. 38–46, 1990.

[15] S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduc-
tion, Teubner, Leipzig, Germany, 1st edition, 1996.

[16] J. G. Proakis and D. K. Manolakis, Digital Signal Processing, Prentice
Hall, 4th edition, Apr 2006.

[17] A. J. E. M. Janssen, R. Veldhuis, and L. B. Vries, “Adaptive Interpola-
tion of Discrete-Time Signals that can be Modelled as AR Processes,”
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, vol. 34, no. 2, pp. 317–330, 1986.

[18] R. Veldhuis, Restoration of Lost Samples in Digital Signals, Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[19] M. Kahrs and K. Brandenburg, Applications of Digital Signal Pro-
cessing to Audio and Acoustics, Springer, London, Great Britain, 1st
edition, 1998.

[20] K.-D. Kammeyer and K. Kroschel, Digital Signal Processing - Fil-
tering and Spectral Analysis with MATLAB R© Exercises, In German
language: Digitale Signalverarbeitung - Filterung und Spektralanalyse
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