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ABSTRACT

In an acoustic sensor network, consisting of spatially distributed
microphone nodes, a significant noise reduction can be achieved us-
ing the centralized multi-channel Wiener filter (MWEF), requiring all
available microphone signals in the entire network. However the
limited bandwidth of the communication link typically does not al-
low to transmit all microphone signals between the different nodes.
Recently, a distributed node-specific MWF-based noise reduction
scheme has been presented, where each node only transmits a filtered
combination of its microphone signals. In this paper, the perfor-
mance gain of the centralized MWF and the distributed node-specific
MWE-based scheme are analyzed as a function of the available band-
width of the communication link.

Index Terms— Acoustic sensor networks, distributed estima-
tion, rate distortion theory

1. INTRODUCTION

Due to current advances in hardware technology it is nowadays pos-
sible to produce small microphone devices capable to communicate
wirelessly over a short range. By spatially distributing these mi-
crophones one can build a so-called acoustic sensor network (ASN)
with several microphones located at distinct places, e.g. at locations
where it is impossible or undesirable to place wired microphones.
When distributed over a large area, the acoustic sensor array network
is able to collect more information than a microphone array located
at a single position. For example, in a binaural hearing aid appli-
cation, microphone arrays located on different hearing aids (or even
other devices) are able to exchange information with each other us-
ing a wireless link in order to improve speech intelligibility in noisy
environments [1]-[6].

For a binaural link with limited capacity, a theoretically optimal
(in an information-theoretic sense) transmission scheme has been
presented in [4], however requiring knowledge about the joint statis-
tics of the signals at both hearing aids, which is typically not avail-
able in practice. In [5] the relation between performance gain and
link capacity has been analyzed for several suboptimal (but practical)
schemes, such as transmitting one microphone signal or transmitting
an estimate of the desired signal obtained at the transmitting device.
In [7] a similar relation between performance gain and link capac-
ity has been presented for the iterative distributed MWF scheme [3],
which (similarly as in [4] and [5]) has been designed for an ASN
with only 2 nodes.

Recently, a more general distributed adaptive node-specific sig-
nal estimation (DANSE) algorithm has been introduced for signal
estimation in an acoustic sensor network with more than two nodes
[6]. In [6][8] the benefit of this noise reduction scheme, where the
different nodes in the ASN can exchange information to improve
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their performance, has been shown, however assuming an infinite
bandwidth for transmitting the microphone signals. In this paper the
effect on the performance due to the limited capacity of the wireless
link will be analyzed.

This paper is organized as follows. Section 2 presents the sig-
nal model and the sensor network configuration. In section 3 the
centralized MWF is reviewed. Section 4 introduces the DANSE al-
gorithm. In section 5 we address the rate distortion theory, which en-
ables to link the transmission rate to the mean-squared-error (MSE).
Finally, in section 6 simulation results are presented for an example
with 3 microphone array nodes, where it is shown that the distributed
MWE-based algorithm performs, under specific rate constraints, bet-
ter than the centralized MWF.

2. SIGNAL MODEL AND SENSOR NETWORK
CONFIGURATION

Consider the acoustic sensor network with J nodes depicted in
Figure 1, where each node n has a microphone array consist-
ing of M,, microphones, with the total number of microphones
M = Zi:l M,,. The m-th microphone signal Yn,m(w) of the
n-th node can be described in the frequency domain as

Yiem(Ww) = XnmW) + Vam(w), m=0...M,—1, (1)

where X, m(w) represents the speech component and Vi, m(w)
represents the noise component. For conciseness we will omit
the frequency-domain variable w in the remainder of the paper.
We define the M,,-dimensional stacked vectors Y, and the M-
dimensional signal vector Y as

KL,O Yl
Y, = : Y= @ |. )
Yo, M, -1 Y,

The network-wide signal vector can hence be writtenas Y = X+V.
In the case of a single desired speech source, the speech signal vector
can be written as X = A.S, where the steering vector A containing
the acoustic transfer functions between the speech source and the
microphones is defined similarly as Y and S denotes the speech
signal.

The output signal X, of the n-th node is obtained by filtering
and summing the node-specific microphone signals and the transmit-
ted signals from the other nodes. Assuming an ideal fully connected
network, i.e. the signals transmitted by one node are received at all
other nodes without any distortion (e.g. due to coding), the output
signals can be written as a linear combination of all microphone sig-
nals in the network, i.e.

X, =WH2Y, n=1...J, 3)
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Fig. 1. Configuration of a sensor network with .J sensor nodes

where W, is a node-specific M -dimensional filter.

3. CENTRALIZED MULTICHANNEL WIENER
FILTERING

In the following we will consider the problem of estimating at each
node n as desired signal the speech component X, o of the first
microphone signal selected to be the reference microphone of node
n. The node-specific centralized multi-channel Wiener filter (MWF)
produces a minimum-mean-square-error (MMSE) estimate at each
node by minimizing the MSE cost function [6]

E(Wo) = E{|Xno — WEY['), “)

where £{.} denotes the expected value operator. Assuming that the
speech and noise components are uncorrelated, the multi-channel
Wiener filter at node n is given by

W) =®, ' ®,e,, )

with ®, = £{YY"} and &, = £{XX"} and e, an M-
dimensional vector with one element equal to 1 and all other ele-
ments equal to 0, which selects the column of ®, corresponding
to the reference microphone at node n. By using the multi-channel
Wiener filter in (4) the minimum MSE is than equal to

f(wz) = CI)In‘o - (I)fznq)gjlq)zmm

2 }
4. DISTRIBUTED MWF IN A SENSOR NETWORK

where ®,,, = ®,e, and O, ; = E{|Xn,0

To compute the node-specific centralized MWEF, each node n needs
to transmit its unprocessed microphone signals to all other nodes
in the network, which requires a large communication bandwidth,
obviously depending on the number of nodes and on the number
of microphones at each node. As described in [6][8], the DANSE
algorithm aims to compute the network-wide MWF in a distributed
fashion, hence reducing the communication bandwidth. Figure 2
shows a schematic illustration of the DANSE scheme.

We will now briefly review the DANSE algorithm. For more
details we refer to [6][8]. Redefine the filter W, at each node as

W, = [ W£1WZ2~-'WEJ ]Tv (6)

where W, kK = 1...J, can be viewed as a partial estimator that
is specific to node n. Instead of transmitting all microphone signals,
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Fig. 2. The DANSE scheme with J = 3 sensor nodes

we now consider the case where each node n only transmits the sig-
nal Z, = WL Y,. The output signal at each node can then be
written as a linear combination of the node-specific signals and the
received signals from the other nodes, i.e.

J
Xo = WhLYa+ > guZe @
k=1,k#n

Define the vectors Z,, = [21 e ZJ]T and g, = [gnl . ‘gnJ] T
The vectors Z_,, and g,,_,. are defined as the vectors Z,, and g,, with
the elements Z,, and g, respectively omitted. Equation (7) can now
be rewritten as

Xn = er;lnYn + g.f,nz—n =W, an

- Wnn </ o Yn
The DANSE-algorithm evaluated in this paper iteratively up-
dates the filter coefficients in a round-robin fashion, i.e. at each it-
eration one specific node updates its parameters. If we denote the

filters and the signals in the ith iteration with superscript ¢, then the
iterative procedure of the DANSE algorithm runs as follows:

with

1. Initialization': 5 < 0,p « 1
Initialize W2, and ggfn with random vectors, Vn

2. Each node transmits its partial estimate to the other nodes.
Update the parameters of each node according to:

(@;n)_ltﬁénén ifn=p

Wikt ;
{gi;“n] R ifn#p ®

3. Compute the estimate of the desired signal at each node using
. . ~ i1
the multi-channel Wiener filter Wif .

4 i it
p< (p mod J)+1

5. return to step 2.

Notice that the parameter p indicates which node in the network is al-
lowed to update its parameters.



The (M,, + J — 1)-dimensional vector €,, is defined similarly to e,
i.e. it selects the reference microphone of node n. Compared to the
centralized MWF, each node n now has access to only M,, + J —
1 signals instead of M signals, which leads to a reduction of the
dimension of the matrices ®, and ®,,.

In the case of a single speech source and in an ideal fully con-
nected network, i.e. the signals transmitted by a node can be received
by all other nodes in the network without any coding distortion, it
has been shown in [8] that the DANSE algorithm converges for any
initialization of its parameters to the centralized MWF for all nodes.

5. CAPACITY OF WIRELESS LINK

Whereas in [6] an ideal communication link (with infinite band-
width) between the nodes has been assumed, in this paper we will
analyze the influence of the available capacity of the link on the per-
formance of the centralized MWF and the DANSE algorithm.
When the transmitted signal Z,, from node n is compressed at
rate R (bits per sample), the following rate-distortion relation holds

[9]:

R(\) = - 7oomax (O,log2 /\> dw )
DO = %/ min (A, ., (w)) du , (10)

with the parameter A linking the rate R and the distortion D, and
®.,. the power spectral density (PSD) of the signal Z,,. Using the
forward channel representation [9], depicted in Figure 3, the com-
pressed signal Z,, received at all other nodes can be represented as
Zn = BZ, + W, where B is a bandpass filter with frequency re-

sponse
D, —A
B = —
max <0, ) ,

Zn

and W is additive Gaussian noise with PSD

Py = max (O,Aq)z;z:)\) .

It should be noted that using such a representation in the analysis
provides an upper bound on the achievable performance at rate 1.

Znle) B(w)

Fig. 3. Forward channel representation

6. EXPERIMENTAL RESULTS

In this section the performance of the centralized MWF and the
DANSE algorithm are compared as a function of the capacity of the
communication link.

6.1. Setup and performance measures

Simulations have been performed using the simple acoustic scenario
depicted in Figure 4. This sensor network with J = 3 nodes rep-
resents the case of two hearing aid users listening to one speaker,
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Fig. 4. The scenario of an acoustic sensor network with J = 3 nodes

who produces a desired signal. The number of microphones on each
hearing aid is M,, = 2 and the distance between the microphones
on each hearing aid is 1cm. We consider a scenario with a single
speech source .S, a single interference I and spatially uncorrelated
noise on each microphone, such that the microphone signal vector
Y can be written as

Y=A,S+A;1+1U0, (11)

where A, and A; represent the acoustic transfer functions for the
speech source and the interference, respectively, and U represents
spatially uncorrelated noise. Since the speech source, interference
and noise are assumed to be uncorrelated, the correlation matrix @,
is equal to

&, = O AA] +OAAT + DI, (12)

with ®,, ®; and ¥, the PSDs of the speech source, interference
and noise, respectively. All involved PSDs are assumed to be flat
in the band [-2,Q2], where 2 = 27 F and F' = 8kHz. The signal-
to-interference ratio (SIR) and the signal-to-noise ratio (SNR) are
defined as

P,
SIR = 10log; &

K3

D
SNR = 10log;, o~ - (13)

The acoustic transfer functions A and A; are modeled using the
spherical head shadow model in [10] with a radius of 8.75 cm, with-
out taking into account reverberation. Note however that the PSD
., is non-flat due to the non-flat acoustic transfer functions.

As in [4, 5, 7], the performance gain is defined as the ratio be-
tween the MSE at rate 0 and the MSE at rate R, i.e.

£(0)

§(R)

which represents the gain in dB due to the availability of the wireless
link. £(R) denotes the integrated MSE over all considered frequen-
cies obtained when estimating the desired signal at node n when the
total available rate in the network is equal to R. We will only con-
sider the performance gain at node 1, but the same analysis holds
when considering the other nodes.

G(R) = 10log;, (14)

6.2. Results

For SIR= 0dB and SNR= 20 dB, Figures 5 and 6 compare the per-
formance gain of the DANSE algorithm with the centralized MWE.
For the centralized MWF the total rate R is equally distributed be-
tween the microphone signals, i.e. the m-th microphone signal of
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Fig. 5. Performance gain as a function of link capacity for central-
ized MWF and DANSE for different number of iterations (SIR=
0dB, SNR= 20dB, rate R/1).

SNR =20 dB, SIR=0dB, rate R

16 x_‘x.x»x-x—x—*—x—x——
i e T e -
14 X |
*
vz
12 ”» J
//
10+ / E
& bd
o /
c 8 / ]
o] *
ot/ - — - DANSE atnode 1, i =1 i
| — % —DANSE atnode 1,i=2
al K Centralized MWF at node1 |
U
i
ol 1
o ; ; ; ;
0 100 200 300 400 500

Rate (kbps)

Fig. 6. Performance gain as a function of link capacity for central-
ized MWF and DANSE for different number of iterations (SIR=
0dB, SNR= 20dB, rate R).

the n-th node is compressed at rate Ry, = R /M . For the first iter-
ation of the DANSE algorithm (i = 1), the filter coefficients W,,,
are initialized to W = [ 1 0 |, ie. the front microphone sig-
nals of the hearing aids are transmitted to the other nodes.

Figure 5 shows the performance gain of the centralized MWF
and the DANSE algorithm for a different number of iterations i,
where the total rate R is evenly distributed between the iterations,
i.e. in each iteration the signals Z,, transmitted from node n to the
other nodes are compressed with rate R/i. As can be seen from
Figure 5, for low rates the highest performance gain is achieved by
transmitting just a single microphone signal (in this case the front
signal), corresponding in this figure to ¢ = 1. Performing more it-
erations only leads to an improved performance at very high rates.
For example at rate B = 500 kbps it is still better to just transmit
the single microphone signal instead of performing more iterations.
As shown in [6], for a sensor network with ideal communication link
(i.e. infinite or large enough bandwidth) the DANSE algorithm con-
verges to the centralized MWF solution, typically requiring only a
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small number of iterations.

For many applications it can however be assumed that the signal
statistics remain stationary over a (small) number of signal frames,
such that the iterations of DANSE can be spread over subsequent
frames, instead of performing several iterations on the same frame,
as in Figure 5. Figure 6 shows the performance gain of the DANSE
algorithm and the centralized MWEF, where now in each iteration the
signals Z,, are compressed with rate K. This figure shows that for
the considered scenario, DANSE converges after ¢ = 2 iterations at
all rates, moreover achieving the highest performance gain.

7. CONCLUSION

In this paper, the performance gain of the DANSE algorithm com-
pared to the centralized MWF has been analyzed as a function of
the capacity of the communication link. It has been shown that the
DANSE algorithm converge to the centralized MWF only at high
bitrates. When the iterations can be spread over subsequent frames,
the DANSE algorithm yields the highest performance gain after only
a small number of iterations for all bitrates.
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