Sparse codes of V1 simple-cells and the emergence of
globular receptive fields - a comparative study
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Application to natural image patches

Analysis of obtained basis functions

To analyze the receptive fields associated with the inferred basis functions, we
convoluted (reverse-correlated) the basis functions and matched them with Gabor

Abstract

= multiple cause models with sparse priors h\‘ T A wavelets and with difference of gaussian kernels.

m linear or non-linear superposition of basis functions Tl o . . . .

m maximization of the data likelihood on image patches N L Shape of the gaussian envelope; shown simultaneously with data measured in
Wi , e - . .

= likelihood maximization using a novel form of variational EM (ET) _— - vivo [6] (red triangles).

B same parameter set and training method for both models !{'!'f':: ?—‘ .

m comparative analysis of the obtained basis functions

Results The strong non-linearity of the MCA generative model may represent a more

plausible assumption for the superposition of components in preprocessed im-
age patches.

m Gabor-like basis functions are obtained in both cases
m more elongated basis functions when using the non-linear model
m higher fraction of globular basis functions for the non-linear model

To study the implications of the linear vs. non-linear superposition for visual data,
both algorithms were applied to N = 200000 image patches extracted from the
van Hateren image database (26 x 26 pixels; preprocessed using a DoG filter
and channel splitting to ensure non-negativity). Parameters of both models were
inferred for the same set of patches using the same training scheme with the
same parameter initialization.

Linear vs. non-linear component extraction
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(MCA; non-linear superposition)

) - Fraction of globular fields; fields that are bet-

ter matched by DoG kernels than by Gabor
wavelet functions. The receptive fields ex-
tracted by MCA have a significantly higher
fraction of globular shaped fields.

Conclusions
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We study two generative models: Binary Sparse Coding (BSC; [1]) and Maximal SENAFHAENEEANRERE I// L[ ——-:: ‘lH
Causes Analysis (MCA; [2, 3]). As in standard approaches such as Sparse Cod- | : G VL 2= =2 ; \\J,,“lmwl /" \{1 \\\N m m S
iIng [4] or Independent Component Analysis, both BSC and MCA assume a sparse
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prior with independent hidden variables. In the place where standard approaches
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and BSC use the sum to combine basis functions, MCA uses a (pixel-wise) max- Z MW =W AN W N/ NI =
Imum operation. To derive tractable approximations for parameter estimation we,
for both models, apply Expectation Truncation (ET; [5]) - a variational EM ap-
proach. The resulting learning algorithms are applicable to large-scale problems
with hundreds of observed and hidden variables. Furthermore, ET allows one
to infer all model parameters including observation noise, o, and the degree of
sparseness, .
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Basis functions inferred by BSC
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Basis functions inferred by MCA

m in both models Gabor-like basis functions are inferred
m linear and non-linear models result in very different RF distributions
m MCA infers a much higher fraction of globular RFs

m continuous linear models can represent globular structures
by superimposing gabors
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