
Combining approximate inference methods for
efficient learning on large computer clusters

Zhenwen Dai1,2, Jacquelyn A. Shelton1, Jörg Bornschein1, Abdul Saboor Sheikh1, Jörg Lücke1,2

1 Frankfurt Institute for Advanced Studies,Germany
2 Physics Dept., Goethe-University Frankfurt, Germany

{dai, shelton, bornschein, sheikh, luecke}@fias.uni-frankfurt.de

1 Introduction

An important challenge in machine learning is to develop learning algorithms that can handle large
amounts of data at a realistically large scale. This entails not only the development of algorithms
that can be efficiently trained to infer parameters of the model in a given dataset, but also demands
careful thought about the tools (both software and hardware) used in their implementation.

Based on the previously developed framework of parallel Expectation Maximization (EM) learn-
ing [1], we extend it to different models with corresponding parallelization techniques. To further
tackle problems of computational complexity and to utilize the capability of the parallel computing
hardware (CPU/GPU clusters), we developed a set of techniques which can be catered to specific
large-scale learning problems. For instance, we design a dynamic data repartition technique for
“Gaussian sparse coding” (Sec. 3.2), use specialized GPU kernels for translation invariant learning
(Sec. 3.3), and show how sampling can be used to further scale the learning on very high dimen-
sional data (Sec. 3.4). We propose these as examples of a parallelization toolbox which can be
creatively combined and exploited in model-task driven ways.

The framework is a lightweight and easy to use implementation of Python which facilitates the de-
velopment of massive parallel machine learning algorithms using Message Passing Interface (MPI)
for communication between the compute nodes. Once algorithms are integrated into the framework,
they can be executed on large numbers of processor cores and can be applied to large sets of data.
Some of the numerical experiments we performed ran on InfiniBand interconnected clusters and
used up to 5000 parallel processor cores with more than 1017 floating point operations. For reason-
ably balanced meta-parameters (number of data points vs. number of latent variables vs. number of
model parameters to be inferred), we observe close to linear runtime scaling behavior with respect
to the number of cores in use.

2 Parallel EM Learning in Sparse Coding Models

We discuss parallelization of our algorithms for training Sparse Coding (SC) models on large data
sets. Sparse Coding (SC) models assume that each observation ~y = (y1, . . . , yD) is associated
to a (continuous or discrete) sparse latent variable ~s = (s1, . . . , sH), where sparsity means that
most of the components sh in ~s are zero. Each data point is generated according to the data model
p(~y |Θ) =

∑
~s p(~y |~s,Θ) p(~s |Θ) where Θ denotes the model parameters. Typically, p(~y |~s, Θ) is

modelled as a Gaussian with a mean ~µ given by some interactions of basis vectors Wh ∈ RD and
the latent variable ~s (e.g. linear superposition ~µ =

∑
h shWh for SC models). Typical choices for

p(~s |Θ) are Bernoulli, Laplace, or spike-and-slab distributions.

Such multi-causal data generation processes can be well formulated in terms of probabilistic gener-
ative models, which can be optimized in the framework of maximum likelihood learning (see, e.g.,
[2, 3] for an overview). A practical approach to optimize the parameters Θ of a generative model

1

given the data set Y is to maximize the data log-likelihood L(Θ):

Θ∗ = arg max
Θ
{L(Θ)} with L(Θ) = log

(
p(y(1), . . . , y(N)|Θ)

)
=

N∑
n=1

log p(y(n) |Θ), (1)

where p(y |Θ) =

∫
s

p(y | s,Θ) p(s |Θ)ds. (2)

Note that in order to maximize (1), we have to integrate over the entire space of s, or sum over it
in the case of discrete variables s. The optimal parameters that maximize the data log-likelihood
under the generative model can be sought by Expectation Maximization (EM) algorithm (see eg.,
[4]), which iteratively optimizes a lower bound F(Θ, q) of the likelihood w.r.t. the parameters Θ and
a distribution q:

L(Θ) ≥ F(Θ, qΘ′) =

N∑
n=1

∑
s

qn(s|Θ′) log
p(y(n), s|Θ)

qn(s|Θ′) . (3)

Each iteration consists of an E-step and an M-step. The E-step optimizes the lower bound w.r.t. to
the distributions qn(s) by setting them equal to the posterior distributions qn(s) ← p(s(n)|y(n),Θ)
while keeping the parameters Θ fixed, denoted by Θ′. The M-step then optimizes F(Θ, qΘ′) w.r.t.
the parameters Θ keeping the distributions qn(s) fixed. In general, the derived update equations in
the M-step take the form:

θnew =

(
N∑

n=1

〈f(y(n), s)〉qn(s)

)(
N∑

n=1

〈g(s)〉qn(s)

)−1

, (4)

where θ is some parameter to update, f and g are model dependent update functions, and 〈·〉qn are
their expectation values w.r.t. the distribution qn. In the above form, the computationally expensive
part is calculating the expectation values, and this is done independently for each data point. With
this observation, we can use shared-nothing parallelization. Specifically, we partition data points
and evenly distribute them among the nodes/cores of the cluster. (This generic strategy has been
further adapted in a model-driven way in Sec. 3.2.) At each iteration, each node/core computes
the expected sufficient statistics locally, gathers the local results from all the other nodes with the
“AllReduce” function of MPI and computes the new parameters. Note that the computations in
the E-step for the expectation values in Eqn. (4) consume most of the computing time (parallelized
and summed locally on each node), whereas and the computations of the parameter updates in the
M-step are relatively inexpensive (synchronously updating the parameters over all the nodes).

3 Illustrative Models: Combining the tools
3.1 Expectation Truncation (ET): As a first step in scaling our models to high dimensions, we ap-
ply a truncated variational EM approach based on a preselection hidden spaces carrying most prob-
ability mass. In the context of probabilistic approaches, it has recently been shown that preselection
of the most relevant latent variables can be formulated as a variational approximation to exact infer-
ence [5], referred to as expectation truncation, or ET. In ET, the posterior distribution p(~s | ~y (n),Θ)
is approximated by distribution qn(~s; Θ) that only has support on a subsetKn ⊂ {0, 1}H of the state
space:

p(~s | ~y (n),Θ) ≈ qn(~s; Θ) =
p(~s | ~y (n),Θ)∑

~s ′∈Kn

p(~s ′ | ~y (n),Θ)
δ(~s ∈ Kn) =

p(~s, ~y (n) |Θ)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)
δ(~s ∈ Kn) (5)

where δ(~s ∈ Kn) = 1 if ~s ∈ Kn and zero otherwise. The subsets Kn are chosen in a data-driven
way using a deterministic selection function and represent the preselected latent states H ′ ≤ H .
These sets vary per data point ~y (n) and should contain most of the probability mass p(~s | ~y) while
at the same time being significantly smaller than the whole latent space. With such a Kn, Eqn. 5
results in a good approximations to the posterior. Since for many applications the posterior mass
is concentrated in small volumes of the state space, the approximation quality can stay high even
for relatively small sets Kn. This approximation can be used to compute efficiently the expectation
values needed in the M-step (4):

〈g(~s)〉p(~s | ~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =

∑
~s∈Kn

p(~s, ~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)
. (6)

2

Eqn. 6 represents a reduction in required computational resources as it involves only summations
(or integrations) over the smaller state space Kn. For sparse coding models, for instance, we can
exploit that the posterior mass lie close to low-dimensional subspaces to define the sets Kn [5, 6].
Such a subspace can be determined using a computationally inexpensive selection function at the
beginning of each E-step. The selection functions compute those candidate hidden units sh that
are most likely to have contributed to a data point ~y (n). Appropriate selection functions Sh(~y,Θ),
e.g. for sparse coding models, can be realized as any efficiently computable function f(~y,Θ) with
a norm that correlates with the probabilities p(sh = 1 | ~y (n),Θ) [5, 6]; here a Sh(~y (n)) yielding a
reasonable definition of Kn is:

Sh(~y (n)) = (~WT
h / || ~Wh||) ~y (n), with || ~Wh|| =

√∑D
d=1(Wdh)2 . (7)

Other Sh(~y,Θ) are found via deterministic relations ~s = f(~y,Θ) in the limit of no data noise [5, 7].

In the following examples, we avoid the exact evaluation of expectations values by using the ap-
proximation in Eqn. 6 and selection function in Eqn. 7. Using this approximation scheme and the
massive parallel implementation, we have been able to train and compare models with non-trivial
priors and non-linear interactions with more than 1300 observed and up to 1600 latent variables [8].
These experiments were performed on up to 5000 CPU cores in parallel.

3.2 Dynamic data repartitioning: We have seen (in Sec. 3.1) that ET is an approximate learning
approach that discriminatively selects the most relevant causes of an observation ~y in order to varia-
tionally compute the posterior. In a parallel setup, we can further benefit from the preselection step
of ET to dynamically repartition and redistribute the data. At each E-step, we can cluster Y based
on the most relevant causes chosen by the preselection step for each ~y (n). The resulting clusters can
then be distributed among nodes/cores to perform the next E-step. This approach not only pursues a
natural partitioning of data, but in a parallel setting, it can prove to be more efficient than a uniform
distribution of data. By maximizing the similarity among data points assigned to an individual pro-
cessing unit, we can minimize across all the units redundant computations that are tied to specific
states of the causes. For instance in a sparse coding model with a two-part (combining a continuous
and discrete distribution) prior [9], the ET based posterior (5) takes the following form:

p(~s, ~z | ~y (n),Θ) ≈
N (~y (n); ~µ~s, C~s) Bernoulli(~s;~π)N (~z; ~κ

(n)
~s ,Λ~s)∑

~s ′∈Kn
N (~y (n); ~µ~s′ , C~s′) Bernoulli(~s′;~π)

δ(~s ∈ Kn). (8)

Here the parameters ~µ~s, C~s and Λ~s entirely depend on a state ~s of causes. Also, ~κ(n)
~s takes prefactors

that can be precomputed given ~s. To compute (8), it turns out that our dynamic data redistribution
strategy is more efficient than a static (and uniform) data distribution approach. This is illustrated
in Fig. 1, which shows empirical E-step speedup over the static data distribution strategy taken as a
baseline. The error bars were generated by performing 15 trials per given data size N . For all the
trials, model scale (i.e., data dimensionality) and ET parameters were kept constant1. Each trial was
run in parallel on 24 computing nodes. The red plot in the figure also shows the speedup as a result
of an intermediate approach. There we initially uniformly distributed the data samples which were
then only locally clustered by each processing unit at every E-step. The blue plot on the other hand
shows the speedup as a result of globally clustering and redistributing the data prior to an E-step.
It’s important to note that all reported results also take into account the cost of data clustering and
repartitioning.

We optimize the data clustering process by having each processing unit cluster its own data locally
and then merging the resulting clusters globally. To avoid unfair workload distribution, we also
bound the maximum cluster size. Currently we pick (per iteration) top α percentile of cluster sizes as
the threshold. Any cluster larger than α is evenly broken into smaller clusters of maximum α size2.
Moreover, to minimize communication overhead among computational units, we only recluster and
distribute indices of the datapoints. This entails that the actual data must reside in a shared memory
structure which is efficiently and dynamically accessable by all the computational units. Otherwise,
all the units require their own copy of the whole dataset.

1The observed and the latent dimensions of the GSC model [9] were 25 and 20 respectively. The ET
parameters H ′ and γ (maximum number of active causes in a given latent state) were 8 and 5 respectively.

2The α for the reported experiments was 5.

3

5 K 10 K 20 K 40K 80 K 160 K 320 K
0

5

10

15

Data Samples (N)

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Runtime speedup over static data distribution by means of
local vs. global dynamic data repartitioning

Local Repartitioning

Global Repartitioning

Figure 1: E-step runtime speedup (of the ET version of the GSC
model [9]) over the static data distribution strategy taken as a base-
line. The red plot shows the speedup when initially uniformly dis-
tributed data samples were only clustered locally by each processing
unit, while the blue plot shows the speedup as a result of globally
clustering and redistributing the data. The runtimes include the time
taken by clustering and repartitioning modules

Figure 2: Complexity in terms of
states the algorithm needs to con-
sider (log-scale) for various values
ofH ′, corresponding to experiments
of sparse coding models using ET or
ET+sampling.

It is important to note that although we have illustrated the gains of dynamic data repartitioning using
a specific sparse coding model which typically involves state-dependent computationally expensive
operations, the technique itself is inherently generic as it is based on a variational EM approach
which can be applied to a larger range of models and problems (see [5] Sec. 4).

3.3 Hybrid Parallelization with GPUs: As shown, with data point partitioning and ET, learning
can be done efficiently at a large scale. Beyond this, with suitable specialized hardware the speed can
be further increased. To demonstrate the performance gain, let us look at a computationally more
demanding task. In the previously mentioned models, no transformations of causes are considered.
In realistic data however, especially visual data, visual objects (causes) vary in positions, scales and
rotations within an image set. To learn causes under various translations without supervision, we
add another hidden variable X which defines the positions of causes selected by ~s (only positions
are considered here). It dramatically increases the size of the joint space of hidden variables (~s,X).

CPU vs. GPU: The computation of the expected sufficient statistics is an ideal situation for data par-
allelism: each configuration of (~s,X) within Kn is evaluated independently and summed together.
This parallelism scheme demands high memory bandwidth, while the memory structure of this CPU
is inefficient in this situation as it is designed for low-latency data access instead of high bandwidth.
We use GPU computation because the architecture of its memory system is structured to deliver
high bandwidth [10]. As a comparison, the memory bandwidth of Nvidia GTX480 is 177.4 GB/s,
but DDR3-1333 in dual-channel mode only provides a peak bandwidth of 21.3 GB/s. Beyond the
simple comparison of peak bandwidth, the large number of hardware threads on GPU can better
tolerate memory latency, making peak performance easier to reach. Furthermore, the GPU’s hard-
ware implemented exp/log instructions are helpful because probability calculations require a large
amount of these. The Nivida GTX480 can handle 60 exp/log operations per clock cycle with 32-bit
floating-point precision [11], whereas a CPU usually takes hundreds of clock cycles per such an
operation.

BLAS vs. specialized kernels: Both Nvidia and AMD offer their Basic Linear Algebra Subprograms
(BLAS) library to help programming with their GPUs. If an algorithm can be perfectly formulated
as matrix operations, it would be very straightforward to program with BLAS. However, in our
algorithm in order to formulate an algorithm into matrix operations, parameters of each cause need
to be aligned with data points for every configuration of (~s,X) within Kn. These alignments are
implemented by matrix shifting, which is a very inefficient memory operation. Instead, we wrote
specialized GPU kernels in which matrix shifting is avoided by manipulating the indices of matrices.

Overall, we divide the data points according to the number of GPU cards (18 GTX480 on 5 different
nodes) and assign every graphics card a dedicated CPU process. Sufficient statistic expectations are
replaced with computation by a specialized GPU kernel, and controlled by CPU-GPU synchroniza-
tion via PyOpenCL. With different data sets, we observe about 10-20 times speed up comparing
with only using CPUs in terms of total computing time. Such two-layer parallel computational
structure (MPI-GPU) is convenient and generally applicable to many learning algorithms where the
computational intensive parts can be replaced by GPU kernels.

4

3.4 Sampling: Although ET (Sec. 3.1) is a deterministic approach very different than the stochas-
tic nature of sampling, their formulations as approximations to expectation values (6) allow for a
straight-forward combination of both approaches to speed up the expensive calculations necessary
for inference in high dimensions [12] – an observation from which all of the above models discussed
could benefit. Specifically, given a data point, ~y(n), we first approximate the expectation value (6)
using the variational distribution qn(~s; Θ) as defined by preselection (6). Second, we approximate
the expectations w.r.t. qn(~s; Θ) using sampling. The combined approach is thus given by:

〈g(~s)〉p(~s | ~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) ≈ 1
M

∑M
m=1 g(~s(m)) with ~s(m) ∼ qn(~s; Θ), (9)

where ~s(1) to ~s(M) denote samples from the truncated distribution qn. Instead of drawing from a
distribution over the entire state space, approximation (6) requires only samples from a potentially
very small subspace Kn. In the subspace Kn, most of the original probability mass is concentrated
in a smaller volume, thus MCMC algorithms perform more efficiently; results in a smaller space to
explore, shorter burn-in times, and reduces the number of samples necessary. Compared to use of
ET in inference alone, combining it with sampling allows for an increase in efficiency as soon as the
number of samples required for a good approximation is less than the number of states in Kn. For
example, in the case of sparse coding models, the number of computations necessary to compute the
expectation values in (6) is

O
(
NS(D︸︷︷︸

p(~s,~y)

+ 1︸︷︷︸
〈~s〉

+ H ′︸︷︷︸
〈~s~sT 〉

)
)

(10)

where S either, (for models with ET alone, Sec. 3.1) denotes the number of hidden states or (for
models with both ET and sampling) denotes the number of samples, that contribute to the calculation
of the expectation values. Specifically, in experiments with high-dimensional data (N = 500, 000
on natural image patches, observed data D = 40 × 40 = 1, 600 pixels, and hidden dimensions
H = 1, 600, with H ′ = 34 and S = 200) we see major improvement in the scalability of H ′ over
use of ET alone, as shown in Fig. 2 (see [12]). This combination of approaches suggests strong
potential for scaling of other models to learn on large dimensional data, e.g. in the model discussed
in Sec. 3.2.

4 Discussion
As we illustrated with the above examples, there are already many tools available which we can use
in various combinations in order to accomplish learning at a large scale. We just need to carefully
evaluate the task and goals of a given algorithm, and as an additional model selection step, creatively
select the combinations of tools at hand to address i.e. problems of memory usage, large dimensional
data, and large data sets.

References
[1] J. Bornschein, Z. Dai, and J. Lücke, “Approximate em learning on large computer clusters,” NIPS Work-

shop: Learning on clusters and clouds, vol. 23, 2010.
[2] P. Dayan and L. F. Abbott, Theoretical Neuroscience. MIT Press, Cambridge, 2001.
[3] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[4] R. Neal and G. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,”

Learning in Graphical Models, pp. 355–369, 1998.
[5] J. Lücke and J. Eggert, “Expectation Truncation And the Benefits of Preselection in Training Generative

Models,” Journal of Machine Learning Research, 2010.
[6] G. Puertas, J. Bornschein, and J. Lücke, “The maximal causes of natural scenes are edge filters,” Neural

Information Processing Systems, vol. 23, 2010.
[7] M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Luecke, “Binary sparse coding,” Latent Variable

Analysis and Signal Separation, 2010.
[8] J. Bornschein, M. Henniges, G. Puertas, and J. Lücke, “Sparse codes of v1 simple-cells and the emergence

of globular receptive fields c a comparative study,” in Proc. of Computational and Systems Neuroscience,
2011.

[9] J. Lücke and A.-S. Sheikh, “Closed-form em for sparse coding and its application to source separation.”
arXiv:1105.2493 [stat.ML].

[10] K. Fatahalian and M. Houston, “A closer look at gpus,” Commun. ACM, vol. 51, pp. 50–57, October 2008.
[11] NVIDIA Corporation, OpenCL Programming Guide for the CUDA Architecture 4.0.
[12] J. Shelton, J. Bornschein, A.-S. Sheikh, P. Berkes, and J. Lücke, “Select and sample - a model of efficient

neural inference and learning,” Neural Information Processing Systems, vol. 24, 2011.

5

