Combining approximate inference methods for efficient learning on large computer clusters
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m A framework of parallel Expectation Maximization (EM) learning
m Parallelization based on MPI

m Approximate inference with Expectation Truncation (ET)

m Dynamic data repartitioning

m Hybrid parallelization with GPUs

m Efficient inference in high dimensions with sampling

Parallel EM Learning Framework

A Typical Sparse Coding Generative Model:
Observed Data Points (y)
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Note:

m p(s|©) can be replaced by other distributions, e.g. Bernoulli, Laplace, or
spike-and-slab distributions.

m WS can be replaced by other superposition rules, e.g. maximum or occlusion.

Maximum Likelihood Learning via EM:

©" = argmax{L(©)} with L(©) =log (p(y™M, ...y
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where p(y|©) = / o(y|§,©) p(8| ©)ds
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In general, the derived update equations in the M-step take the form:
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where 6 Is some parameter to update, f and g are model dependent update functions,

and (-),, are their expectation values w.r.t. the distribution g.
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m partition according to data points

m compute sufficient statistics on local
sets of data points

m use (sum-)reductions to aggregate
statistics in M-step
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Expectation Truncation

The posterior distribution is approximated by truncating the true posterior distribution
on a subset I, of the state space:
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The subsets I, are chosen in a data-driven way using a deterministic selection
function S,. Appropriate selection functions Sy(y, ©), e.g. for sparse coding models,
can be realized as any efficiently computable function f(y, ©) with a norm that
correlates with the probabilities p(s, = 1|y, ©); here a Sy(y (") yielding a reasonable
definition of IC, is:

Sn(y\™) = (WS

WA 7, with [[Wal = /S35 (Wan)?

Performance Evaluation for a Sparse Coding Model
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ET Based Dynamic Data Repartitioning for Parallel EM Learning

EM based optimization of latent causes models can also involve state (S) dependent
computationally expensive operations. e.g. consider a SC model with a spike-and-slab
prior (combining continuous Z and discrete s hidden variables):

H
p(s|0©) = Hw,f”(1 — 75)' % = Bernoulli(S; 7) and p(Z|0©) = M(Z; 0,1ly) (Gaussian),
h=1
with  p(y|8,Z,0)=N(y;, W(So 2),0%1p) where (8 Z), = spz, forall h,

The (ET) truncated posterior of the model ta
Ny s, C3) Bernoulli(ﬁ;
>ger, NV
where Cs = W;W! + o®1lp,  (Ws)gn = Wdhsh, (2)
As =02 (Mg)™" and &Y = (Mg~ WLy, (3)
Computation of the posterior is expensive, It requires parameters (2) to (3), and it also
iInvolves inverting and taking determinant of Cx.

Note:

m The parameters jiz, Cs and A entirely depend on a state s of causes and /Z(gn) also
takes prefactors that can be precomputed given s

m ET preselection of the most probable hidden causes defines a sub-state-space K,
foreach y(" ¢ y = {y) .y}

m Data points associated with the same subspaces can share the computations
involved in (1) - (3)

m In a parallel setting, maximizing the similarity among data points assigned to
individual processing units can minimize redundant computations overall

Kes the following form:
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Dynamic Data Repartitioning Parallelization Framework:

n E-step, cluster data based on ET subspace preselection
m To avoid unfair workload distribution, split large clusters

m Distribute clusters evenly among computing nodes.

m Use (sum-)reductions (as before) to aggregate statistics in M-step

m Prior to eac

Runtime speedup over static data distribution by means of
local vs. global dynamic data repartitioning

E-step runtime speedup over the static data
distribution strategy taken as a baseline. The
red plot shows the speedup when initially
uniformly distributed data samples were only
clustered locally by each processing unit,
while the blue plot shows the speedup as a
result of globally clustering and redistributing
the data. The runtimes include the time taken
by data clustering and repartitioning modules. 0
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Hybrid Parallelization with GPUs

m Divide data points according to the number of GPUs.

m Assign every GPU a dedicated CPU (MPI) process.

m Replace the sufficient statistic computation by specialized GPU kernels.
m Control CPU-GPU synchronization via PyOpenCL.

m Observed about 10-20 times speed up than only using CPUs.
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Sampling

m Straight forward to integrate with sampling.
m Gibbs-, MCMC or more advanced sampling methods.

m E.g. Select and Sample Sparse Coding with H = 1600 latent variables on 40 x 40
iImage patches.
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