Combining approximate inference methods for efficient learning on large computer clusters

Zhenwen Dai^{1,2}, Jacquelyn A. Shelton¹, Jörg Bornschein¹, Abdul Saboor Sheikh¹, Jörg Lücke^{1,2}

¹ Frankfurt Institute for Advanced Studies, Germany; ² Physics Dept., Goethe-University Frankfurt, Germany

Summary	ET Based Dynamic Data Repartitioning for Parallel EM Learning
 A framework of parallel Expectation Maximization (EM) learning Parallelization based on MPI Approximate inference with Expectation Truncation (ET) Dynamic data repartitioning Hybrid parallelization with GPUs Efficient inference in high dimensions with sampling 	EM based optimization of latent causes models can also involve state (\vec{s}) dependent computationally expensive operations. e.g. consider a SC model with a spike-and-slab prior (combining continuous \vec{z} and discrete \vec{s} hidden variables): $p(\vec{s} \Theta) = \prod_{h=1}^{H} \pi_h^{s_h} (1 - \pi_h)^{1-s_h} = \text{Bernoulli}(\vec{s}; \vec{\pi}) \text{ and } p(\vec{z} \Theta) = \mathcal{N}(\vec{z}; \vec{0}, 1 _H) \text{ (Gaussian)},$ with $p(\vec{y} \mid \vec{s}, \vec{z}, \Theta) = \mathcal{N}(\vec{y}; W(\vec{s} \odot \vec{z}), \sigma^2 1 _D) \text{ where } (\vec{s} \odot \vec{z})_h = s_h z_h \text{ for all } h,$ The (ET) truncated posterior of the model takes the following form:
Parallel EM Learning Framework	$p(\vec{s}, \vec{z} \mid \vec{y}^{(n)}, \Theta) \approx \frac{\mathcal{N}(\vec{y}^{(n)}; \vec{\mu}_{\vec{s}}, C_{\vec{s}}) \operatorname{Bernoulli}(\vec{s}; \vec{\pi}) \mathcal{N}(\vec{z}; \vec{\kappa}_{\vec{s}}^{(n)}, \Lambda_{\vec{s}})}{\sum_{\vec{s}' \in \mathcal{K}_n} \mathcal{N}(\vec{y}^{(n)}; \vec{\mu}_{\vec{s}'}, C_{\vec{s}'}) \operatorname{Bernoulli}(\vec{s}'; \vec{\pi})} \delta(\vec{s} \in \mathcal{K}_n). $ (1)
A Typical Sparse Coding Generative Model: Observed Data Points (\vec{y})	where $C_{\vec{s}} = \tilde{W}_{\vec{s}}\tilde{W}_{\vec{s}}^{\mathrm{T}} + \sigma^2 \mathbb{1}_D$, $(\tilde{W}_{\vec{s}})_{dh} = W_{dh}s_h$, $M_{\vec{s}} = \tilde{W}_{\vec{s}}^{\mathrm{T}}\tilde{W}_{\vec{s}} + \sigma^2 \mathbb{1}_H$, (2) $\Lambda_{\vec{s}} = \sigma^2 (M_{\vec{s}})^{-1}$ and $\vec{\kappa}_{\vec{s}}^{(n)} = (M_{\vec{s}})^{-1}\tilde{W}_{\vec{s}}^{\mathrm{T}}\vec{y}^{(n)}$. (3)

Note:

- $\mathbf{P}(\vec{s} \mid \Theta)$ can be replaced by other distributions, e.g. Bernoulli, Laplace, or spike-and-slab distributions.
- \blacksquare W \vec{s} can be replaced by other superposition rules, e.g. maximum or occlusion.

Maximum Likelihood Learning via EM:

$$\Theta^* = \arg \max_{\Theta} \{ \mathcal{L}(\Theta) \} \text{ with } \mathcal{L}(\Theta) = \log \left(p(y^{(1)}, \dots, y^{(N)} | \Theta) \right) = \sum_{n=1}^N \log p(y^{(n)} | \Theta),$$

where $p(y | \Theta) = \int_{\vec{s}} p(y | \vec{s}, \Theta) p(\vec{s} | \Theta) d\vec{s}.$

In general, the derived update equations in the M-step take the form:

$$\theta^{\mathsf{new}} = \left(\sum_{n=1}^{N} \langle f(y^{(n)}, \vec{s}) \rangle_{q_n(\vec{s})} \right) \left(\sum_{n=1}^{N} \langle g(\vec{s}) \rangle_{q_n(\vec{s})} \right)^{-1}$$

Computation of the posterior is expensive, It requires parameters (2) to (3), and it also involves inverting and taking determinant of $C_{\vec{s}}$.

Note:

- The parameters $\vec{\mu}_{\vec{s}}$, $C_{\vec{s}}$ and $\Lambda_{\vec{s}}$ entirely depend on a state \vec{s} of causes and $\vec{\kappa}_{\vec{s}}^{(n)}$ also takes prefactors that can be precomputed given \vec{s}
- \blacksquare ET preselection of the most probable hidden causes defines a sub-state-space \mathcal{K}_n for each $\vec{y}^{(n)} \in \mathcal{Y} = {\{\vec{y}^{(1)}, \dots, \vec{y}^{(N)}\}}$
- Data points associated with the same subspaces can share the computations involved in (1) - (3)
- In a parallel setting, maximizing the similarity among data points assigned to individual processing units can minimize redundant computations overall

Dynamic Data Repartitioning Parallelization Framework:

- Prior to each E-step, cluster data based on ET subspace preselection
- To avoid unfair workload distribution, split large clusters
- Distribute clusters evenly among computing nodes.
- Use (sum-)reductions (as before) to aggregate statistics in M-step

E-step runtime speedup over the static data distribution strategy taken as a baseline. The red plot shows the speedup when initially uniformly distributed data samples were only clustered locally by each processing unit, while the blue plot shows the speedup as a result of globally clustering and redistributing the data. The runtimes include the time taken by data clustering and repartitioning modules.

34 40

Η'

where θ is some parameter to update, f and g are model dependent update functions, and $\langle \cdot \rangle_{q_n}$ are their expectation values w.r.t. the distribution q_n .

Parallelization Framework:

- partition according to data points
- compute sufficient statistics on local sets of data points
- use (sum-)reductions to aggregate statistics in M-step

Typical Runtime Trace		
pre-selection	param. update	pre-selection
+++		
++		
· · · · · · · · · · · · · · · · · · ·		
+=====		
+		
+		
		(1)
		(1)
:		-
		\xrightarrow{t}

Expectation Truncation

The posterior distribution is approximated by truncating the true posterior distribution on a subset \mathcal{K}_n of the state space:

$$p(\vec{s} \mid \vec{y}^{(n)}, \Theta) \approx rac{p(\vec{s}, \vec{y}^{(n)} \mid \Theta)}{\sum_{\vec{s}' \in \mathcal{K}_n} p(\vec{s}', \vec{y}^{(n)} \mid \Theta)} \delta(\vec{s} \in \mathcal{K}_n)$$

The subsets \mathcal{K}_n are chosen in a data-driven way using a deterministic selection

Hybrid Parallelization with GPUs

- Divide data points according to the number of GPUs.
- Assign every GPU a dedicated CPU (MPI) process.
- Replace the sufficient statistic computation by specialized GPU kernels.
- Control CPU-GPU synchronization via PyOpenCL.
- Observed about 10-20 times speed up than only using CPUs.

Sampling

5000

Straight forward to integrate with sampling.

function S_h . Appropriate selection functions $S_h(\vec{y}, \Theta)$, e.g. for sparse coding models, can be realized as any efficiently computable function $f(\vec{y}, \Theta)$ with a norm that correlates with the probabilities $p(s_h = 1 | \vec{y}^{(n)}, \Theta)$; here a $S_h(\vec{y}^{(n)})$ yielding a reasonable definition of \mathcal{K}_n is:

 $S_h(\vec{y}^{(n)}) = (\vec{W}_h^T / ||\vec{W}_h||) \vec{y}^{(n)}, \text{ with } ||\vec{W}_h|| = \sqrt{\sum_{d=1}^D (W_{dh})^2}.$

Gibbs-, MCMC or more advanced sampling methods. • E.g. Select and Sample Sparse Coding with H = 1600 latent variables on 40×40 image patches.

Acknowledgement This project was supported by the German Federal Ministry of Education and Research (BMBF) within the "Bernstein Focus: Neurotechnology Frankfurt" through research grant 01GQ0840 and by the German Research Foundation (DFG) in the project LU 1196/4-1.