
Combining approximate inference methods for efficient learning on large computer clusters
Zhenwen Dai1,2, Jacquelyn A. Shelton1, Jörg Bornschein1, Abdul Saboor Sheikh1, Jörg Lücke1,2

1 Frankfurt Institute for Advanced Studies, Germany; 2 Physics Dept., Goethe-University Frankfurt, Germany

Summary

A framework of parallel Expectation Maximization (EM) learning
Parallelization based on MPI
Approximate inference with Expectation Truncation (ET)
Dynamic data repartitioning
Hybrid parallelization with GPUs
Efficient inference in high dimensions with sampling

Parallel EM Learning Framework

A Typical Sparse Coding Generative Model:

p(~s |Θ) =
m∏

i=1

C(si) , where C(si) =
1

π (1 + s2
i)

p(~y |~s,Θ) = N (~y ; W~s, σ2 1)

where ~y ∈ RD observed variables
~s ∈ RH hidden variables
W ∈ RD×H basis functions
σ noise level
π prior parameter

Observed Data Points (~y)

Note:
p(~s |Θ) can be replaced by other distributions, e.g. Bernoulli, Laplace, or
spike-and-slab distributions.
W~s can be replaced by other superposition rules, e.g. maximum or occlusion.

Maximum Likelihood Learning via EM:

Θ∗ = arg max
Θ
{L(Θ)} with L(Θ) = log

(
p(y (1), . . . , y (N)|Θ)

)
=

N∑
n=1

log p(y (n) |Θ),

where p(y |Θ) =

∫
~s

p(y |~s,Θ) p(~s |Θ)d~s.

In general, the derived update equations in the M-step take the form:

θnew =
(N∑

n=1

〈f (y (n),~s)〉qn(~s)

)(N∑
n=1

〈g(~s)〉qn(~s)

)−1
,

where θ is some parameter to update, f and g are model dependent update functions,
and 〈·〉qn are their expectation values w.r.t. the distribution qn.

Parallelization Framework:

partition according to data points
compute sufficient statistics on local
sets of data points
use (sum-)reductions to aggregate
statistics in M-step

Typical Runtime Trace

Expectation Truncation

The posterior distribution is approximated by truncating the true posterior distribution
on a subset Kn of the state space:

p(~s |~y (n),Θ) ≈ p(~s, ~y (n) |Θ)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)
δ(~s ∈ Kn)

The subsets Kn are chosen in a data-driven way using a deterministic selection
function Sh. Appropriate selection functions Sh(~y ,Θ), e.g. for sparse coding models,
can be realized as any efficiently computable function f (~y ,Θ) with a norm that
correlates with the probabilities p(sh = 1 |~y (n),Θ); here a Sh(~y (n)) yielding a reasonable
definition of Kn is:

Sh(~y (n)) = (~W T
h / || ~Wh||)~y (n), with || ~Wh|| =

√∑D
d=1(Wdh)2 .

Computer Clusters

Name # CPU cores # GPUs
GPU-Scout 144 108
FIAS 500 12
Fuchs CSC ∼4500 0
Loewe CSC ∼19000 786

Performance Evaluation for a Sparse Coding Model

0 1000 2000 3000 4000 5000
CPU Cores

0

1000

2000

3000

4000

5000

6000

7000

D
at

ap
oi

nt
s

pe
rs

ec
on

d

Model complexity

‖Kn‖ = 4796

‖Kn‖ = 8085

‖Kn‖ = 16599

ET Based Dynamic Data Repartitioning for Parallel EM Learning

EM based optimization of latent causes models can also involve state (~s) dependent
computationally expensive operations. e.g. consider a SC model with a spike-and-slab
prior (combining continuous ~z and discrete ~s hidden variables):

p(~s |Θ) =
H∏

h=1

πsh
h (1− πh)1−sh = Bernoulli(~s;~π) and p(~z |Θ) = N (~z; ~0,1H) (Gaussian),

with p(~y |~s, ~z,Θ) = N (~y ; W (~s � ~z), σ21D) where (~s � ~z)h = sh zh for all h,

The (ET) truncated posterior of the model takes the following form:

p(~s, ~z |~y (n),Θ) ≈
N (~y (n); ~µ~s,C~s) Bernoulli(~s;~π)N (~z; ~κ

(n)
~s ,Λ~s)∑

~s ′∈Kn
N (~y (n); ~µ~s′,C~s′) Bernoulli(~s′;~π)

δ(~s ∈ Kn). (1)

where C~s = W̃~sW̃
T
~s + σ21D, (W̃~s)dh = Wdhsh, M~s = W̃ T

~s W̃~s + σ2 1H, (2)

Λ~s = σ2 (M~s)−1 and ~κ
(n)
~s = (M~s)−1 W̃ T

~s ~y
(n). (3)

Computation of the posterior is expensive, It requires parameters (2) to (3), and it also
involves inverting and taking determinant of C~s.

Note:
The parameters ~µ~s,C~s and Λ~s entirely depend on a state ~s of causes and ~κ(n)

~s also
takes prefactors that can be precomputed given ~s
ET preselection of the most probable hidden causes defines a sub-state-space Kn

for each ~y (n) ∈ Y = {~y (1), . . . , ~y (N)}
Data points associated with the same subspaces can share the computations
involved in (1) - (3)
In a parallel setting, maximizing the similarity among data points assigned to
individual processing units can minimize redundant computations overall

Dynamic Data Repartitioning Parallelization Framework:

Prior to each E-step, cluster data based on ET subspace preselection
To avoid unfair workload distribution, split large clusters
Distribute clusters evenly among computing nodes.
Use (sum-)reductions (as before) to aggregate statistics in M-step

E-step runtime speedup over the static data
distribution strategy taken as a baseline. The
red plot shows the speedup when initially
uniformly distributed data samples were only
clustered locally by each processing unit,
while the blue plot shows the speedup as a
result of globally clustering and redistributing
the data. The runtimes include the time taken
by data clustering and repartitioning modules.

5 K 10 K 20 K 40K 80 K 160 K 320 K
0

5

10

15

Data Samples (N)

A
ve

ra
ge

 S
pe

ed
up

 F
ac

to
r

Runtime speedup over static data distribution by means of
local vs. global dynamic data repartitioning

Local Repartitioning

Global Repartitioning

Hybrid Parallelization with GPUs

Divide data points according to the number of GPUs.
Assign every GPU a dedicated CPU (MPI) process.
Replace the sufficient statistic computation by specialized GPU kernels.
Control CPU-GPU synchronization via PyOpenCL.
Observed about 10-20 times speed up than only using CPUs.

MPI processes

GPU cards

Cluster Nodes n0

p01 p02

g01 g02

PyOpenCL

n1

p11 p12

g11 g12

PyOpenCL

Sampling

Straight forward to integrate with sampling.
Gibbs-, MCMC or more advanced sampling methods.
E.g. Select and Sample Sparse Coding with H = 1600 latent variables on 40× 40
image patches.

exact EM

∑
~s

p(~s |~y)g(~s)g(~smax)

MAP estimate

~smax

∑
~s∈K n

qn(~s; Θ)g(~s)

preselection

1
M

M∑
m=1

g(~s)

sampling select and

1
M

M∑
m=1

g(~s)

sample

Sh(~y (n))

Kn

s1 sH

y1 yD

s1 sH

y1 yD

Wdh Wdh

selected units

selected units

~s(m) ∼ p(~s |~y (n),Θ) ~s(m) ∼ qn(~s; Θ)

Kn
BSCselect : S = 2H

0

BSCs+s : S = 200× H 0

400
100

1012

34

104

108

#
of

st
at
es

H0

'

'

'

Acknowledgement This project was supported by the German Federal Ministry of Education and
Research (BMBF) within the ”Bernstein Focus: Neurotechnology Frankfurt” through research grant
01GQ0840 and by the German Research Foundation (DFG) in the project LU 1196/4-1.

