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Input normalization and synaptic scaling – two sides of the same coin
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Network properties:
● functionality: clustering 
● lateral competition (softmax) 

Neural network: learned weights Mixture model: learned generative fieldsData
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EM stepsExamples of generated artificial data
with strong Poisson noise (for small A)
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In neural network models:
● input normalization commonly used e.g. for contrast invariance
● weight normalization needed to stabilize Hebbian learning

In neural circuits:
● input normalization implemented through feedforward inhibition [1]
● weight normalization by homeostatic synaptic scaling [2]

Questions:
● could they be more closely related than the separate investigations
 suggest?

● what functional purpose may this relation have?

Labelling generative fields for classification

Causes

Generated data:
● rectangles
● overlap

● neural network with homeostatic synaptic scaling and feedforward 

 inhibition learns optimal parameters in mixture model
● synaptic scaling mirrors the normalization of input patterns

 (the weights „follow“ the input) 
● simplified learning on constraint space →  input normalization and synaptic

 scaling could generally facilitate  learning in neural circuits

● we label learned generative fields using few data points (less than 10%)
● an overcomplete setup allows for learning different styles of digits
● performance increases with overcompleteness ( 97% correct for 5x overcomplete )

Interpreted as a graphical model:
● datapoint    is generated by cause
● cause    is generated by label 
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