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Multiple cause model with Expectation Truncation (ET) Software architecture

m parallel implementation of Expectation Maximization (EM) [1] Binary Sparse Coding generative model: = model specific code Is encapsulated in Mode 1-classes
based algorithms for large data sets. H B Model classes are stateless in respect to model parameters,
m parallelization based on MPI p(s|©) = [ (1 - >\)1_S” annealing parameters and data points:
® running experiments on up to 5000 cores in parallel [2] h:1 s j{;i;jjﬁgdgggﬁgjﬁ model params, 1) -
m lightweight and easy to use p(y|s8,08) = N(y;, WS, %)
= framework implemented in Python def EM_step(self, model_params, annealing_params, my_data) :
m supporting GPGPU accelerated computation using PyCUDA where
y € RP  observed variables \ prior parameter
and PyOpenCL s € {0,1}" hidden variables o noise level m EM class handles data and drives computation:
m applicable to a variety of algorithms. Currently implemented: W e RP*H pasis functions ER—
Mixture of Gaussians, Sparse Coding, Binary Sparse Coding, The parameter update equations (M-step) are given by: det setdatalselt, datals
Maximal Causes Analysis . e o , ,
= (n%\;y <S>qn) (F§4<SS >qﬁ) defi%t_anneallng(self, annealing) :
izati 1 . ef set_model_params (self, model_params) :
Parallelization strategy \new _ A(A)ﬁrg\;@s%ﬁ def set_model_p (self, model_p )
= partition according to data points grew [ 3 <\|J7(”) _ W§\|2> fer mmisert):
m compute sufficient statistics on local set of data points MID "
B use (Sum_)reductions to aggregate statistics in I\/I-Step B Annealing objects determine variables that parameterize
m if necessary use global operation to select data points ) - ) the annealing scheme (e.g. temperature)
(e.g.: sort data points according to their posterior with — (9(5)), = : dn(s; ©)g(s) forafunction g(s) and m Utility functions: data input/output, runtime tracing, etc.
probability when using ET) 0(5:0) = p(&| 7. 0) (exact EM) or
gn(S; ©) = lB p(3|y™,0)5(8 € K,) (ET approximation [3])

Computer Clusters: Typical runtime trace:

E-Step M-Step E-Step

g e _ R ' ' ' ' m parallelization of many EM based algorithms is straight forward

m implementation demonstrates good scaling properties
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Name # CPU cores # GPUs § - 6000 m a framework providing infrastructure (input/output, data-handling,
GPU-Scout 144 108 & - oo etc.) is neccessary to facilitate parallel implementations

:IAS 009 12 - - : m using MPI and Python results in a convenient environment to run
-uchs CSC ~4500 0 Ha— g large-scale machine learning experiments.

_oewe CSC ~19000 /86 s = =

Model complexity 1
o—eo ||/C,|| =4796

o—eo |/C,|| =8085 |-
o—eo |K,|| = 16599
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Sourcecode will be available at

http://fias.uni-frankfurt.de/~bornschein
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