
Approximate EM Learning on Large Computer Clusters

Jörg Bornschein, Zhenwhen Dai and Jörg Lücke
Frankfurt Institute for Advanced Studies, Goethe-University, Germany

Summary

parallel implementation of Expectation Maximization (EM) [1]
based algorithms for large data sets.
parallelization based on MPI
running experiments on up to 5000 cores in parallel [2]
lightweight and easy to use
framework implemented in Python
supporting GPGPU accelerated computation using PyCUDA
and PyOpenCL
applicable to a variety of algorithms. Currently implemented:
Mixture of Gaussians, Sparse Coding, Binary Sparse Coding,
Maximal Causes Analysis

Parallelization strategy

partition according to data points
compute sufficient statistics on local set of data points
use (sum-)reductions to aggregate statistics in M-step
if necessary use global operation to select data points
(e.g.: sort data points according to their posterior
probability when using ET)

Computer Clusters:

Name # CPU cores # GPUs
GPU-Scout 144 108
FIAS 500 12
Fuchs CSC ∼4500 0
Loewe CSC ∼19000 786

Typical runtime trace:

Multiple cause model with Expectation Truncation (ET)

Binary Sparse Coding generative model:

p(~s |Θ) =
H∏

h=1

λsh
(
1− λ

)1−sh

p(~y |~s,Θ) = N (~y ; W~s, σ2)

where
~y ∈ RD observed variables λ prior parameter
~s ∈ {0,1}H hidden variables σ noise level
W ∈ RD×H basis functions

The parameter update equations (M-step) are given by:

W new =
(∑

n∈M
~y (n)

〈
~s
〉T

qn

) (∑
ñ∈M

〈
~s~s T

〉
qñ

)−1

λnew = A(λ)
1
|M|

∑
n∈M

〈
|~s |
〉

qn

σnew =

√
1

|M| D

∑
n∈M

〈∣∣∣∣~y (n) −W ~s
∣∣∣∣2〉

qn

with
〈
g(~s)

〉
qn

=
∑
~s

qn(~s; Θ)g(~s) for a function g(~s) and

qn(~s; Θ) = p(~s |~y (n),Θ) (exact EM) or

qn(~s; Θ) =
1
B

p(~s |~y (n),Θ)δ(~s ∈ Kn) (ET approximation [3])

0 1000 2000 3000 4000 5000
CPU Cores

0

1000

2000

3000

4000

5000

6000

7000

D
at

ap
oi

nt
s

pe
rs

ec
on

d

Model complexity

‖Kn‖ = 4796

‖Kn‖ = 8085

‖Kn‖ = 16599

Software architecture

model specific code is encapsulated in Model-classes
Model classes are stateless in respect to model parameters,
annealing parameters and data points:

class SparseCoding(Model):
def generate_data(self, model_params, N):

...

def EM_step(self, model_params, annealing_params, my_data):
...

EM class handles data and drives computation:
class EM:

def set_data(self, data):
...

def set_annealing(self, annealing):
...

def set_model_params(self, model_params):
...

def run(self):
...

Annealing objects determine variables that parameterize
the annealing scheme (e.g. temperature)
Utility functions: data input/output, runtime tracing, etc.

Conclusions

parallelization of many EM based algorithms is straight forward
a framework providing infrastructure (input/output, data-handling,
etc.) is neccessary to facilitate parallel implementations
using MPI and Python results in a convenient environment to run
large-scale machine learning experiments.
implementation demonstrates good scaling properties

Sourcecode will be available at

http://fias.uni-frankfurt.de/∼bornschein

References

[1] R.Neal, G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants Learning in Graphical Models 355-368, 1998
[2] G. Puertas, J. Bornschein and J. Lücke. The Maximal Causes of Natural Scenes are Edge Filters. NIPS 23:1939-1947, 2010
[3] J. Lücke, J. Eggert. Expectation Truncation and the Benefits of Preselection in Training Generative Model. JMLR 11:2855–2900, 2010

This project was supported by the German Federal Ministry of Education and Research (BMBF)
within the ”Bernstein Focus: Neurotechnology Frankfurt” through research grant 01GQ0840 and
by the German Research Foundation (DFG) in the project LU 1196/4-1.

