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Summary

parallel implementation of Expectation Maximization (EM) [1]
based algorithms for large data sets.
parallelization based on MPI
running experiments on up to 5000 cores in parallel [2]
lightweight and easy to use
framework implemented in Python
supporting GPGPU accelerated computation using PyCUDA
and PyOpenCL
applicable to a variety of algorithms. Currently implemented:
Mixture of Gaussians, Sparse Coding, Binary Sparse Coding,
Maximal Causes Analysis

Parallelization strategy

partition according to data points
compute sufficient statistics on local set of data points
use (sum-)reductions to aggregate statistics in M-step
if necessary use global operation to select data points
(e.g.: sort data points according to their posterior
probability when using ET)

Computer Clusters:

Name # CPU cores # GPUs
GPU-Scout 144 108
FIAS 500 12
Fuchs CSC ∼4500 0
Loewe CSC ∼19000 786

Typical runtime trace:

Multiple cause model with Expectation Truncation (ET)

Binary Sparse Coding generative model:
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p(~y |~s,Θ) = N (~y ; W~s, σ2)

where
~y ∈ RD observed variables λ prior parameter
~s ∈ {0,1}H hidden variables σ noise level
W ∈ RD×H basis functions

The parameter update equations (M-step) are given by:
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p(~s |~y (n),Θ)δ(~s ∈ Kn) (ET approximation [3])
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Model complexity

‖Kn‖ = 4796

‖Kn‖ = 8085

‖Kn‖ = 16599

Software architecture

model specific code is encapsulated in Model-classes
Model classes are stateless in respect to model parameters,
annealing parameters and data points:

class SparseCoding(Model):
def generate_data(self, model_params, N):

...

def EM_step(self, model_params, annealing_params, my_data):
...

EM class handles data and drives computation:
class EM:

def set_data(self, data):
...

def set_annealing(self, annealing):
...

def set_model_params(self, model_params):
...

def run(self):
...

Annealing objects determine variables that parameterize
the annealing scheme (e.g. temperature)
Utility functions: data input/output, runtime tracing, etc.

Conclusions

parallelization of many EM based algorithms is straight forward
a framework providing infrastructure (input/output, data-handling,
etc.) is neccessary to facilitate parallel implementations
using MPI and Python results in a convenient environment to run
large-scale machine learning experiments.
implementation demonstrates good scaling properties

Sourcecode will be available at

http://fias.uni-frankfurt.de/∼bornschein
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