
Approximate EM Learning on Large Computer Clusters

Jörg Bornschein†, Zhenwhen Dai, and Jörg Lücke

Frankfurt Institute for Advanced Studies, Goethe-University Frankfurt, Germany
†Corresponding author: bornschein@fias.uni-frankfurt.de

An important challenge in the field of unsupervised learning is not only the development of
algorithms that infer model parameters given some dataset but also to implement them in
a way so that they can be applied to problems of realistic size and to sufficiently complex
benchmark problems. We developed a lightweight, easy to use MPI (Massage Passing In-
terface) based Python framework that can be used to parallelize a variety of Expectation
Maximization (EM) based algorithms. We used this infrastructure to implement standard
algorithms such as Mixtures of Gaussians (e.g., [1]), Sparse Coding [2], or probabilistic PCA
[3, 4], as well as novel algorithms such as Maximal Causes Analysis [5, 6], Occlusive Causes
Analysis [7], Binary Sparse Coding [8] or mixture models for visual object learning [9, 10].
Once integrated into the framework the algorithms can be executed on large numbers of pro-
cessor cores and can be applied to large sets of data. Some of the numerical experiments we
performed ran on InfiniBand interconnected clusters and used up to 4000 parallel processor
cores with more than 1017 floating point operations. Current experiments on a new cluster
use still more cores (Loewe CSC,>10 000 cores). For reasonably balanced meta-parameters
(number of data points vs. number of latent variables vs. number of model parameters to be
inferred), we observe close to linear runtime scaling behavior with respect to the number
of cores in use. Furthermore, we use algorithms running on GPU equipped compute nodes.
The implementations use MPI to parallelize across the GPUs of the distributed memory
cluster, and use OpenCL to perform high-throughput computation on locally stored data
(algorithms are executed on the Scout cluster, >100 GPUs, see Fig. 1).

Exact and approximate EM learning. The algorithms we implemented are all based
on probabilistic generative models (see, e.g., [11, 12] for an overview). We will briefly de-
scribe the general approach and common methods for parameter optimization. To illustrate
parallelized optimization, we discuss the implementation and challenges of a specific model
and training scheme.

Given a generative model, one of the most frequently used criteria for parameter opti-
mization is the maximization of the data likelihood under the generative model: L(Θ) =
p(~y(1), . . . , ~y(N) |Θ), where ~y(n) is a data point. A standard approach to maximize the
likelihood is the EM algorithm. EM is a gradient approach that iteratively updates the
parameters Θ of the model. Each iteration consists of an E-step and an M-step. For algo-
rithms such as Mixture of Gaussians approaches or probabilistic PCA, the E- and M-steps
are computationally tractable. However, for almost all models that go beyond such ele-
mentary approaches, the E-steps become computationally intractable. Typical examples of
generative models with intractable E-steps are multiple-causes models, i.e., models that are
used to analyse the compositional structure of data. Among the most frequently used such
models are variants of Sparse Coding. The complexity of exact EM learning for such models
typically scales exponentially with the number of data components (usually all combinations
of all components have to be evaluated).

The fundamental problem of intractable learning for most generative models have motivated
extensive research on tractable approximations to exact EM. Prominent approaches are
maximum a posteriori (MAP) approximations (e.g., [2]), variational EM (e.g., [13]), or
Expectation Propagation (EP; [14]). Such approaches use analytical approximations to
exact E-step solutions. Another class of approaches are sampling approaches that include
importance sampling, Gibbs sampling, or Markov Chain Monte Carlo (see, e.g., [11, 12] for
overviews). These approaches seek efficient ways to draw samples from complex posterior
distributions to approximate exact EM. Approximate EM approaches differ in their accuracy,
computational cost, and in their suitability for parallelization.

In the development of novel learning algorithms in our group we work with exact EM for
mixture models and probabilistic PCA, and with variational EM and sampling approaches

1

for multiple-causes models. The algorithms listed in the beginning have been implemented
and parallelized to run on large-scale clusters. As an example to discuss the challenges for
parallelization we will here use a variant of Sparse Coding and a variational EM approach
for learning. Much of the learning algorithm’s structure will be similar to that of other
models.

Parallelization of Sparse Coding variants. The probabilistic generative formulation
of Sparse Coding (SC) consists of a sparse prior distribution (few hidden units with values
significantly different from zero), and a Gaussian noise distribution with W~s as mean value.
We focus on a SC variant with binary hidden variables but for completeness we also state
a (classical) continuous version:

Continuous Sparse Coding Binary Sparse Coding

p(~s|Θ) =

H∏
h=1

1

π (1 + s2h)
p(~s|Θ) =

H∏
h=1

λsh
(
1− λ

)1−sh
p(~y |~s,Θ) = N (~y; W~s, σ21) p(~y |~s,Θ) = N (~y; W~s, σ21)

(1)

where W ∈ RD×H and H denotes the number of hidden variables sh. Θ is the set of
parameters given by Θ = (W,σ).

Independent of the prior, the parameter update rules (M-step equations) are given by:

W new =
(∑

n∈M
~y (n) 〈~s 〉Tqn

) (∑
ñ∈M

〈
~s~sT

〉
qñ

)−1
, σnew =

√
1

|M| D
∑
n∈M

〈∣∣∣∣~y (n) −W ~s
∣∣∣∣2〉

qn

where 〈g(~s)〉qn =
∑
~s

qn(~s; Θ)g(~s) for a function g(~s). (2)

The set M contains all or a subset of all data points. For the continuous case the sum in
(2) has to be replaced by an integral. Note that M-step equations of probabilistic PCA or
Factor Analysis are essentially of the same form.

The expectation values (E-step equations) computed in (2) are intractable for large numbers
of hidden variables and have to be approximated for large-scale applications. Variational EM
approximations replace the optimal choice qn(~s; Θ) = p(~s | ~y (n),Θ) by distributions which
result in tractable evaluations of expectation values (2). We consider three cases, exact EM,
Expectation Truncation (ET; [15]), and maximum a posteriori (MAP) estimation. The
latter two can both be regarded as instances of variational EM:

Exact qn(~s; Θ) = p(~s | ~y (n),Θ)

ET qn(~s; Θ) = 1
A p(~s | ~y

(n),Θ) δ(~s ∈ Kn),
∑
~s

δ(~s ∈ S)f(~s) =
∑
~s∈S

f(~s)

MAP qn(~s; Θ) = δ(~s− ~smax),
∑
~s

δ(~s− ~smax)f(~s) = f(~smax)

(3)

For ET, A is a normalization constant. Note that δ(~s ∈ S) is one if ~s ∈ S and zero otherwise,
and that sums have to be replaced by integrals in the continuous case. The set Kn for the
ET approximation is chosen to contain most of the posterior mass with high probability
(see [15]). For the MAP approximation ~smax is chosen to be the maximum of the posterior
distribution p(~s | ~y (n),Θ) (see, e.g., [2]).

We will consider training using ET which represents a compromise between exact EM and
the relatively severe MAP estimation. The update equations for each of the model parame-
ters usually contain sums over the expectation values 〈g(~s)〉qn , where the index n in (2) may

run over a subset of data points (compare [15]). To parallelize an EM iteration we compute
the expectation values 〈g(~s)〉qn independently for each data point and integrate the results
in a final step by using a collective sum-reduction. Note that the parameter update equa-
tions for some model parameters contain two or more of these sums (e.g. the W -update in

2

Computer Clusters

Name # CPU cores # GPUs

FIAS local 64 6

GPU-Scout 144 108

Fuchs CSC ∼4500 0

Loewe CSC ∼19000 786

Figure 1: Left: The clusters we used for our experiments. Right: A typical runtime trace.
Red sections indicate that a processor core was occupied with computation. Gaps indicate
that a core was either waiting for or performing communication via MPI.

(2)). We therefore split the training dataset into partitions of approximately equal size and
distribute these to the compute nodes. To perform a global parameter update, each node
performs a partial sum over the locally computed expectation values 〈g(~s)〉qn and finally

participates in a global reduction operation. In case of the W -update in (2) we need to
perform a global reduction over a matrix of type RH×D for the first multiplier, and second
global reduction over a matrix of type RH×H for the second multiplier. In the case of the
σ-update, the global reduction only covers a single scalar value1. This illustrates, that the
communication cost for a global parameter update is relatively small compared to the com-
putation that has to be performed. Note that to evaluate the expectation values 〈g(~s)〉qn ,

all the approximate posterior probabilities qn(~s,Θ) for all the data points ~y(n) and for all
hidden states ~s ∈ Kn that are of interest have to be computed.

Per core performance and vectorization. Using MPI and Python results in a conve-
nient environment to run large-scale machine learning experiments. Although Python is an
interpreted and relatively slow language (in terms of instructions per second), its execution
speed is not the limiting factor: The evaluation of the approximate posterior probabilities
qn(~s,Θ) in high dimensional parameter and data spaces is one of the computationally inten-
sive steps of a typical component extraction algorithm such as Sparse Coding. For all the
models we implemented so far, the required expectation values can be computed through
vectorized notations. These vectorized expressions are evaluated efficiently by Python. Of-
ten it is also possible (and convenient) to aggregate the evaluation of multiple hypotheses
~s ∈ Kn into vectorized expressions. Applying this kind of vectorization merges a large num-
ber of mathematical operations into a single Python expression. As a result, the Python
expressions in the inner loops of our algorithm typically involve thousands of mathematical
operations. These observations are backed by profiling runs: In all our experiments the time
spent in the Python interpreter was less than 10% of the total runtime, typically even less
than 5%.
Looking closer at the runtime behaviour of our implementation, it became evident that the
evaluation of exponential and logarithm functions often consumed a significant fraction of
the computing time. Highly optimized implementations of these transcendental functions
can be found in the AMD Core Math Library (ACML) and in the Intel Math Kernel Library
(MKL) and provided a significant speedup compared to the standard lib-c implementation

Software architecture. We designed the software framework to be lightweight and to
facilitate the development of parallel EM learning programs. The basic idea behind the
software architecture is to encapsulate model dependent functionality into stateless objects
which provide a set of methods like Estep, Mstep, generate data etc. Although model
classes are stateless with respect to model parameters, data points and annealing param-
eters, they might store meta-parameters that do not change over the course of a full EM
training run. An instance of an EM class handles the outer iterative EM loop and executes
an EM iteration (and potentially provides a predefined annealing scheme). The EM class
ensures that the EM iteration functions receives the current set of model parameters, a
local partition of the data points and all other necessary parameters as arguments.

1Similarly, note that ET also allows for the update of the prior parameter λ [8].

3

The framework itself is currently used by a group of eight users and is developed using
typical development tools such as version control, unity tests etc.

Conclusion and future challenges. The parallelization strategy we have chosen demon-
strated good scaling behavior for the models we implemented and for the compute clusters
we used. An interesting observation is, that we usually only require a small subset of the
functionality provided by MPI: Reductions for the parameter updates, broadcasts for (e.g.)
parameter noise, and for ET based algorithms, a collective selection of data points across
all nodes. This observation and the fact that the compute nodes mostly operate on their
locally stored data subsets indicate that our overall program structure could be translated
to so-called map-reduce based programming model ([16], not to be confused with the MAP
approximation scheme). By using a map-reduce infrastructure like, e.g., Hadoop [17], we
can in future work make further advances towards automatically distributed storage and,
potentially, a higher aggregate throughput by running multiple EM jobs in parallel on the
same set of nodes. Most importantly, we can gain better resilience to node failures—which
becomes an increasingly important aspect for massively parallel programs. So far this has
been mitigated by saving a checkpoint containing the full set of the learned parameters at
the end of each EM iteration. In combination with improvements on the analytical side,
e.g. by using optimized batch sizes with partial EM, the current scope of applications can
thus be extended still further.

Acknowledgements. We acknowledge funding by the projects DFG LU 1196/4-1 and
BMBF 01GQ0840 and support by the Frankfurt Center for Scientific Computing (CSC Frankfurt).

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

[2] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607 – 609, 1996.

[3] S. Roweis. EM algorithms for PCA and SPCA. NIPS, pages 626–632, 1998.

[4] M. E. Tipping and C. M. Bishop. Probabilistic Principal Component Analysis. Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 61(3), 1999.

[5] J. Lücke and M. Sahani. Maximal causes for non-linear component extraction. Journal of
Machine Learning Research, 9:1227 – 1267, 2008.

[6] G. Puertas, J. Bornschein, and J. Lücke. The Maximal Causes of Natural Scenes are Edge
Filters. In NIPS 23, in press., 2010.

[7] J. Lücke, R. Turner, M. Sahani, and M. Henniges. Occlusive Components Analysis. In NIPS
22, pages 1069–1077, 2009.

[8] M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Lücke. Binary Sparse Coding. In
Proc. LVA/ICA, volume 6365 of LNCS, pages 450–457. Springer, 2010.

[9] Z. Dai and J. Lücke. A probabilistic generative approach to invariant visual inference and
learning. In Proc. BCCN, volume 4, 2010.

[10] B. J. Frey and N. Jojic. Transformation-invariant clustering using the EM algorithm. IEEE
Pattern Analysis and Machine Intelligence, pages 1–17, 2003.

[11] P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT Press, Cambridge, 2001.

[12] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[13] M.I. Jordan. Learning in graphical models. Kluwer Academic Publishers, 1998.

[14] T. P. Minka. Expectation propagation for approximate Bayesian inference. In Porc. UAI,
pages 362–369, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[15] J. Lücke and J. Eggert. Expectation truncation and the benefits of preselection in training
generative models. Journal of Machine Learning Research, 11:2855 – 2900, 2010.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Operating
Systems Design and Implementation, pages 137–149, 2004.

[17] A Bialecki, M. Cafarella, D. Cutting, and O. O’Malley. Hadoop: A Framework
for Running Applications on Large Clusters Built of Commodity Hardware, 2005.
http://lucene.apache.org/hadoop/.

4

