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This talk is about the paper:
 “Expectation Truncation and the Benefits of Preselection”, Lücke & Eggert, JMLR 2010.

Text that explains the slides in the absence of a speaker is provided in grey.
Additional material such as animations are available on fias.uni-frankfurt.de/cnml → Selected Publications
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Motivation

     
Preselection Recurrent Recognition

… this strategy is kind of well established.

Example Motivation:
“We propose an ‘analysis by synthesis’ strategy where lowlevel
cues, combined with spatial grouping rules (similar to Gestalt
laws), make bottom-up proposals which activate hypotheses
about objects and scene structures. “ 

Text and Fig. From: A. Yuille & D. Kersten, TICS 2006
Vision as Bayesian inference: analysis by synthesis?
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Motivation

Further examples:
“[The anatomy of the cortex provides] a large-scale
computational  hypothesis on visual recognition, which includes
both, rapid parallel forward recognition, independent of any
feedback prediction, and a feedback controlled refinement system.”  
Körner et al., Neural Networks 1999
A model of computation in neocortical architecture

or
Lee & Mumford, J Opt Soc Am A, 2003
Wolfrum et al., Journal of Vision 2008
Westphal und Würtz, Neural Comp 2009
and many more ...

Preselection + Recurrent Recognition            faster inference

… sounds like an approximate inference scheme.

Example Motivation:
“We propose an ‘analysis by synthesis’ strategy where lowlevel
cues, combined with spatial grouping rules (similar to Gestalt
laws), make bottom-up proposals which activate hypotheses
about objects and scene structures. “ 

Text and Fig. From: A. Yuille & D. Kersten, TICS 2006
Vision as Bayesian inference: analysis by synthesis?
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We start by considering a generative model 
with hidden variables  s  and observed 
variables  y.
Our general strategy will be to restrict the 
hidden space for learning with only small 
losses for the accuracy. With this strategy 
we will come back to preselection only later.

A generative model
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A generative model

Generated prior samples.

… and associated data samples.
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Idea 1: Define a set      that 

contains most prior mass.

This defines a truncated
generative model:
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This defines a truncated
generative model:

The truncated generative model

Generates data points in            .

The set      should for the moment be thought of 
as being large enough such that it contains most 
prior mass throughout learning. Flexible sizes
do not pose principle problems.

Idea 1: Define a set      that 

contains most prior mass.
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This defines a truncated
generative model:

The truncated generative model

Generates data points in            . This defines the likelihood of the truncated model.
It is computed w.r.t. the corresponding data points.

Idea 1: Define a set      that 

contains most prior mass.
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The truncated generative model

Generates data points in            .

What we really want to optimize is the original 
likelihood (top). To optimize it approximately, we can 
make use of an interesting relation that exists 
between the truncated likelihood (bottom) and the 
original likelihood one (at least if data and model
match). It is given by ...
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The truncated generative model

Generates data points in            .

For the usual generative models. 
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The truncated generative model

Generates data points in            .

Problem: We do not know       .

But: We can efficiently estimate it. 

For the usual generative models. 
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On this a crucial result the following steps 
will be based on. It can be derived via a 
variational approach.
Note that it gives us a necessary condition 
for parameter optima. 

For the usual generative models. 
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Before we consider examples, we can
use the result on the right to formulate
an approximation scheme... 

For the usual generative models. 



 

Jörg Lücke

 

 ET Algorithm
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 ET Algorithm

… this is a variational approximation.
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 ET Algorithm
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 Example
 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

The choice assumes that on 
average only few components 
generate a data point.
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 Example The choice assumes that on 
average only few components 
generate a data point. In the 
figure gamma is equal to two.

In the figure 
the optimal 
M is simply 
denoted
by M.
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 Example

Note that the basis functions 
extracted by the truncated model 
can be expected to represent 
approximate maximum likelihood 
solutions for the original model.

In the figure 
the optimal 
M is simply 
denoted
by M.
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 Example Sparse Coding
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 Preselection

We now turn our attention back to preselection. 
Preselection will be formulated  within the same 
framework. Instead of constraining the hidden 
space based on the prior, it will constrain the
hidden space based on the posterior.
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 Preselection Idea 1: Define a set      that 

contains most prior mass.
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 Preselection Idea 1: Define a set      that 

contians most prior mass.

Given a data point, the posterior mass is 
usually concentrated in small volumes (grey).
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 Preselection

Idea 2: Define a set          that 

contains most posterior mass.

Idea 1: Define a set      that 

contians most prior mass.

Given a data point, the posterior mass is 
usually concentrated in small volumes (grey).
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 Preselection Idea 1: Define a set      that 

contians most prior mass.

Given a data point, the posterior mass is 
usually concentrated in small volumes (grey).

Idea 2: Define a set          that 

contains most posterior mass.
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 Preselection Idea 1: Define a set      that 

contians most prior mass.

Within         this variational distribution is 

proportinal to the posterior in      .

Idea 2: Define a set          that 

contains most posterior mass.
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 Preselection Idea 1: Define a set      that 

contians most prior mass.

Find         by fast preselection!

Idea:

Idea 2: Define a set          that 

contains most posterior mass.

Within         this variational distribution is 

proportinal to the posterior in      .
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 ET Algorithm
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 Example BSC
 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.
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 Example BSC

The set I is the index set of the
H’ hidden units with largest values
of a selection function S_h (see 
lower left in figure).
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 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

Exact EM updates

 Example BSC



 

Jörg Lücke

 

 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

Exact EM updates ET-EM updates

These update rules are essentially the same.
Only the summation and expectations change. 

 Example BSC
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 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

Exact EM updates ET-EM updates

Because of the modified free-energy the update 
of prior parameters changes more significantly.

 Example BSC
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 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

Exact EM updates ET-EM updates

 Example BSC
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 Binary Sparse Coding (BSC):

Henniges et al., 2010

This is a sparse coding generative 
model with binary hidden units.

ET-EM updates

Efficiently computable ET expectation value.

 Example BSC
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Binary Sparse Coding can now be scaled up
and can, e.g., be applied to image patches:

Random selection of 200 of 700 basis functions if Binary Sparse Coding is applied to natural 
image patches (Henniges et al., Proc. LVA/ICA 2010).

Animations showing basis function modifications and the selection of data set M are provided on:
fias.uni-frankfurt.de/cnml → Selected Publications

 Example BSC
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exact EM

Lücke, Eggert,
JMLR 2010;

                          Complexity of BSC

Complexity of an exact E-step.
No approximation.
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approx. EM

Lücke, Eggert,
JMLR 2010;

Complexity of an E-step if the state space 
is truncated based on the prior.

… by choosing      .

                          Complexity of BSC
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ET-EM

Lücke, Eggert,
JMLR 2010;

Complexity of an E-step if the state space 
is truncated based on prior and posterior.

… by choosing       and          .

                          Complexity of BSC
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ET-EM

Lücke, Eggert,
JMLR 2010;

Expectation Truncation

ET allows to optimize prior parameters
Puertas et al., NIPS 2010;
Henniges et al., LVA/ICA 2010;
Lücke, Eggert, JMLR 2010;

                          Complexity of BSC
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 Example Sparse Coding

… not further elaborated.
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optimal case

latent space

data point

Relation to Other Approximations
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optimal casedeterministic

latent space

data point

Relation to Other Approximations
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optimal caseETdeterministic

Relation to Other Approximations
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Exact:

MAP:

Relation to Other Approximations
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Exact:

ET:

MAP:

Relation to Other Approximations
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exact:

truncated:

MAP:

Laplace:

factored:

Relation to Other Approximations
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exact

truncated (ET)MAP

Laplace

factored (mean-field)

expectation propagation

minimize

minimize

Visualization of variational approaches can 
differ based on different functinal forms of 
the factor distributions or the selected set K .
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y

Conclusion
Problem:
Exact inference is intractable.

Recognition System

p(s|y)
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y

Recurrent Recognition

p(s|y)

Preselection / 
Classification

generative part

discriminative part

Problem:
Approx. inference is intractable.

Conclusion
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Conclusion
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Conclusion

Thanks!
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