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Abstract  
Introduction. The main purpose of this thesis was to investigate the functional connectivity of 
partial sleep deprivation (PSD) in a group of healthy elderly subjects (60-75 years). A number of 

previous studies have investigated resting state activity in a younger age range. Here we wanted 

to replicate the premises of previous studies on sleep deprivation carried out in young groups and 

extend the research to the older population using resting state functional magnetic resonance 

imaging (rs- fMRI). Finding signaling spikes in spatial dimensions that suggests that those brain 

regions are passing information implies a connection. This study entails to analyze the 

spontaneous fluctuations of the signal, meaning, when there is no specific cognitive demand for 

the subject (Bijsterbosch, Smith & Beckmann, 2017).  
 

Methods. The data was provided by the Stress Research Institute, part of the Faculty of Social 

Science from the Stockholm University, via OpenfMRI 

(https://www.openfmri.org/dataset/ds000201/). The data contained both anatomical and 

functional images taken at a rest state. Scanning was made after normal sleep and partial sleep 

deprivation of 3 hours on a crossover design (one month between sessions). We conducted a 

data analysis to investigate functional connectivity from 24 mature participants (14 females, 10 
male). Independent component and subsequent network analysis were done using FSL. Motion 

correction, standard volume-realignment followed by independent component analysis-based 

automatic removal of motion artifacts (FSL’s ICA-AROMA) were employed (Sörös et al., 2019). 

 

Results. This thesis demonstrates the feasibility of producing canonical networks in a group level 

decomposition on resting state data. Based on the pertinent literature, this study expected to find 

a decreased connectivity within the default mode network (De Havas et al., 2012). On the 

contrary, it did not obtain any significant changes in the mentioned network. In contrast, it is worth 
noticing that this thesis found a decreased activity in the cerebellar network (Left VI), as originating 

from the partially sleep deprived condition. 

 

Discussion. The performed analysis in this thesis was merely exploratory and fulfilled its 

investigative function satisfactorily. It addressed the fact that the ICA methodology approaches 

the underlying BOLD signals, substantiating the previous findings on resting state functionality. 
Consistent with existing literature, cerebellar activity is affected by lack of sleep. Malfunctions of 
the cerebellum are generally accompanied by sleep disorders and vice versa (Canto et al., 2017, 

Cunchillos & De Andrés,1982, DelRosso & Hoque, 2014). Nonetheless, elucidating about 

variations in the cerebellar network is futile if it is not accompanied by other variations in the 

cerebral cortex. Further research is needed to accurately establish the impact of sleep deprivation 

on the cerebellum and its cerebral connections.  
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1. Introduction 

1.1. Sleep Deprivation 
The first experimental study of cognitive impairment due to the absence of sleep was 

published in 1896 by the psychologists G. T. W. Patrick and J. Allen Gilbert. Thousands 

of articles have been published regarding the effects of total sleep deprivation, but only 

a small fraction approaches partial sleep deprivation, and an even smaller one is about 

the older population. Memory, emotion, mood, cognitive and motor performance, are 

some of the most popular measures used to research the effects of sleep deprivation 

(Chokroverty, 2017). The consequence of nearly all types of sleep deprivation results in 

an increase of negative states of mind and emotions, such as confusion, somnolence, 

decreased energy, lower motivation, and fatigue (Goel et al., 2009). 

 

1.1.1. Effects of Sleep Deprivation 
It is well known that a sleepless night can have negative impacts, specially in acute 

conditions. The certitude that sleep deprivation leads to a deterioration of cognitive 

performance is ubiquitous among the available literature on the deficit of sleep (Goel, 

Rao, Durmer & Dinges, 2009). Affected cognitive functions include vigilant and executive 

attention, psychomotor and cognitive speed and working memory, just to quote some 

higher cognitive skills (Tamm, 2019). In an exhaustive article about this health concern 

published by Namni Goel et al. in 2009, reports how cognitive deficits hoard over time, 

even unnoticed by the individual. As if the cognitive effects were not enough, lack of 

sleep is also associated with negative social effects such as high financial costs, both for 

the individual as well as for the health institution that supports them (Goel et al., 2009). 

Sleep problems are a public health concern. Being awake for more hours than 

biologically possible, a reduction in the quantity (and quality) of sleep, and prolonged 

driving duration, are all related to driving in a drowsiness and fatigue state, contributing 

to the occurrence of car accidents. Falling asleep while driving is particularly common, 

but often underestimated (ibid).  

1.2. Aging Brain and Sleep Deprivation 
There is not much previous literature that encompasses the analysis of sleep deprivation 

within a group of older people. Just as Nilsonne confirmed in his 2017 publication, only 

one prior study investigated the affinity between age, sleep deprivation and connectivity. 

Thereafter, Nilsonne himself and Tamm took the second chair. The first study I am 

referring to, suggest that sleep deprivation resembled the aging brain, thus their research 
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was based on a comparison between sleep deprived young subjects and non-sleep 

deprived old subjects (Zhou, Wu, Yu, & Lei, 2017). This group stipulated that, if younger 

subjects did not sleep, the brain connectivity of some regions would decrease to such 

an extent that they would resemble the functional connectivity of the older group of 

subjects, which was not sleep deprived (ibid).  

 

Aging is accompanied by certain changes in sleep patterns, such as sleep duration, 

sleep continuity (increased number of awakenings during the night), sleep intensity 

(decreased slow wave activity on EEG), lower arousal threshold that produces a 

decrease in the sleep depth, and an overall decline in quality and duration (Duffy, 

Willson, Wang & Czeisler, 2009). These changes occur even in the absence of clinical 

disorders (ibid). The older population has more sleep problems than the younger one; 

they have more discomfort caused by lack of sleep and the quality of their rest is 

significantly reduced (Tamm, 2019). These are important reasons why a mature group 

was chosen for analysis, including also the motivation to broaden knowledge in a field 

that, so far, has been scarcely researched. The Sleepy Brain Project results report that, 

compared to a younger group, somnolence is reduced in older people both when they 

are partially sleep deprived, as well as when they slept as usual (Nilsonne et al., 2017). 

Tamm's results indicate that the younger group appears to be more susceptible to lack 

of sleep (sustained through the physiological examination and the sleepiness 

questionnaires) (Tamm, 2019). In addition, sleep duration and the ability to produce 

sleep under optimal conditions is believed to decrease with age, suggesting that the 

need for sleep is reduced (Nilsonne et al., 2016). Due to possible structural changes in 

white matter that are part of the natural aging of the human brain, functional connectivity 

is generally lower compared to younger ones (Tamm, 2019).  

1.3. The Resting State 

1.3.1. Intrinsic Brain Functionality 
In 1870 already, The US psychologist and philosopher William James managed to 

capture the complexity of what would become a dichotomous debate regarding brain 

function: “Whilst part of what we perceive comes through our senses from the object 

before us, another part (and it may be the larger part) always comes out of our own head” 

(James, 1870). One of the first researchers in the field of resting state studies, Marcus 

Raichle (2010), endorses two approaches to the functionality question: one posits that 

the brain works mostly due to external stimuli and, as a result of temporary requirements 

produced in the environment; the second stipulates that brain processes are mostly 
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intrinsic, and supposes the acquisition and sustenance of information that allows one to 

interpret, respond and predict external events. A preponderance of fMRI studies has 

focused on task-related responses. These experiments tacitly foster a reflective 

comprehension of brain function. The approach is undoubtedly advantageous, however 

it also ignores the plausibility of intrinsic brain function (Raichle, 2010). 

 

In Raichle’s words, one of the most persuasive arguments about the importance of 

intrinsic activity arises from the consideration of its cost of brain energy consumption. 

Relative to the rate of energy consumption at rest, changing to an active state denotes 

a minimal increase in metabolic consumption, often no more than 5%. Fluctuations in 

brain activity rarely affect the overall rate of cerebral blood flow and metabolism, even 

when more strenuous activities are performed (Raichle, 2010). 

   

1.3.2. Connectivity 
Under the above predicate, the study of resting scans gained major attention. Nowadays 

it also seems intuitive to deduce that the brain networks are active even at rest. While 

Raichle worked on the breakdown of metabolic consumption, Stephen Smith, Christian 

Beckmann and colleagues concomitantly assessed the question of neuronal activity 

when the brain is conducting neither a cognitive nor a physical task. Studying 

spontaneous fluctuations, they deduced that brain networks show an analogous pattern 

between the analyses performed on the brain at rest and in activity (Bijsterbosch, Smith 

& Beckmann, 2017, Jenkinson, Beckmann, Behrens, Woolrich & Smith, 2012, Nilsonne 

et al., 2017). This group of pioneers working on the resting state opened very important 

paths when it comes to what we know today about the brain maps where upon not 

performing a specific task. There are two fundamental premises to emphasize, which 

have sustained the resting state approach in the last two decades: firstly, that the 

spontaneous blood oxygen level dependent (BOLD) fluctuations are not fortuitous 

artifacts, but rather are functionally correlated between brain regions and anatomical 

systems; and secondly, that the noise coming from the cardiac and respiratory activity is 

not responsible for the detected correlation patterns (Bijsterbosch, Smith & Beckmann, 

2017, Jenkinson, Beckmann, Behrens, Woolrich & Smith, 2012, Nilsonne et al., 2017, 

Raichle, 2010, Sonuga-Barke & Castellanos, 2007). 

 

Talking about connection refers to the communicative capacity of one area of the brain 

to communicate with another. Two or more regions located in different areas, but 

showing resemblances in their BOLD signals over time, are functionally connected 
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(Bijsterbosch et al., 2017, Fox et al., 2005, Raichle, 2010,). In order to investigate 

connectivity, it is necessary to measure the resemblance of the brain signals, i.e. to find 

signaling spikes in spatial as well as in temporal dimensions that suggests that those 

brain regions are passing information, implying a connection between the concerned 

areas. Functional connectivity is typically defined as “the observed temporal correlation 

(or other statistical dependencies) between two electro- or neurophysiological 

measurements from different parts of the brain” (Bijsterbosch, Smith & Beckmann, 2017, 

p. 3). The analysis of connectivity requires to study the spontaneous fluctuations of the 

signal, meaning, when there is no specific cognitive demand for the subject. 

 

1.3.3. The Importance of Resting State Research  
There are multiple reasons why it is important to study the brain at rest, since without a 

doubt this broadens our knowledge regarding its functionality.  As mentioned above, the 

resting state is the recourse to study the inherent organization of the brain. It should not 

be neglected that a better understanding of the intrinsic infrastructure of the brain is a 

primary neurological concern, just as its underlying communicative levels (Fox et al., 

2005, Raichle, 2010, Bijsterbosch, Smith & Beckmann, 2017). It enables us to discern 

different brain areas, and detect activity in established networks, allowing them to be 

evaluated and analyzed. This constancy is what makes it a completely reliable method 

(Beckmann, DeLuca, Devlin & Smith, 2010). As Bijsterbosch, Smith, and Beckmann 

(2017) have explained, this type of research could help us comprehend how the brain is 

capable of processing such complex information, such as behavior, thoughts and 

motivations. Knowing how the communication model works can clarify why things tend 

to fail in a whole spectrum of disorders. Another benefit is, by better understanding the 

brain in its basal state, the knowledge of how the brain 'activates' in the face of cognitive 

demands or tasks can be broadened further (Smith et al., 2009).  

 

The vast majority, though not all, of current neuroimaging studies are based on the 

principle of cognitive subtraction. This concept refers to the comparison of two conditions 

which only differ in a single aspect: the independent variable (Harrison B.J., Pantelis C., 

2010). This definition premises that a cognitive process can be added or inserted into a 

task without affecting the remaining processes, ignoring a possible interaction between 

them, which is called “pure insertion” (ibid). The interaction of cognitive processes is 

quite complex, so this assumption is probably violated in many situations. Even the 

simplest processes such as attention and working memory, are involved in everyday life 

(Fox et al., 2005). This cannot be ignored. Studying spontaneous fluctuations may 
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eliminate the problem of "pure insertion”, evaluating the possible influence of recent 

experiences or the current cognitive state of the subject (Bijsterbosch, Smith & 

Beckmann, 2017). Resting state also has a great potential to serve as the biomarker for 

mental disorders. A biomarker is something that can be measured accurately and can 

be reproduced, and therefore serve as an objective indication of the medical state of a 

person over time (ibid). 

1.3.4. Resting State Networks 
As defined in the English Oxford Dictionary, a group or system of interconnected people 

or things with a particular purpose is a network. Given the definition of functionality as 

described by Bijsterbosch and colleagues, a resting state network is a set of brain 

regions that exhibit affinity in their time series obtained during rest (Bijsterbosch, Smith 

& Beckmann, 2017). To date there still is no exact understanding of how the resting state 

networks operate, but we can obtain an insight on the basis of their predictable patterns 

(Beckmann, DeLuca, Devlin & Smith, 2005). One of the advantages of the RSN study, 

is that a number of networks have already been recognized, as they can always be 

observed in resting scans, and, in addition, are completely replicable (Smith et al., 2009). 

Figure 1 shows the networks identified by Smith and colleagues, who named them based 

on the parallelism to task-based regions (Bijsterbosch, Smith & Beckmann, 2017).  
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Figure 1 The ten resting state networks established by Smith et al.. In 2009, Smith and 
colleagues identified the major activation networks by carrying out an analysis of thousands of 
separate activation maps derived from the BrainMap database of functional imaging studies, 
involving nearly 30,000 human subjects. Left column: resting fMRI data, superimposed on the 
mean images from the 36-subject resting FMRI dataset. Right column: corresponding network 
from the 29,671-subject BrainMap activation database, superimposed on the MNI152 standard 
space template image. Reprinted from ‘Correspondence of the brain’s functional architecture 
during activation and rest’ by Smith et al., 2009, Oxford: Oxford University Press, Copyright 
by Oxford University Press. 2009 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Default Mode Network (DMN). Perhaps the most known resting state network is the 

Default Mode Network. Posterior cingulate cortex, precuneus, medial prefrontal cortex, 

inferior parietal lobule, and lateral temporal cortex comprise this network (Figure 2) 

(Bijsterbosch, Smith, & Beckmann, 2017). In the initial research years of the DMN, its 

peculiar activation was allotted to mental assignments in which the individual is not 

focused on the outside world, i.e., the brain at conscious rest, such as daydreaming and 

mind wandering (Raichle et al., 2001). It was hypothesized that internal cognitive 

processes needed to be down regulated in order to perform externally oriented 

behaviors, thus, negatively correlating the DMN with attention networks (Broyd et. al., 

2009, Bijsterbosch, Smith, & Beckmann, 2017). Although it was originally reported that 

the DMN was inactive in goal-oriented tasks (coining the name of Task-Negative 

Network) (Fox et al., 2005), it has been evidenced in recent studies that it is active in 

social working memory and autobiographical tasks (Spreng, 2012). In 2018, Sormaz et 

al. discovered that this network also contributes to elements of external task experience. 

It is active when the subject is thinking of others (theory of mind, moral and social 
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reasoning), thinking about oneself, remembering the past, episodic memory, planning 

for the future and story comprehension (Andrews-Hanna, 2011). In Andrews-Hanna’s 

own words, the DMN plays an important role in the introspective and adaptive mental 

activities in which humans spontaneously and deliberately engage in everyday, i.e., 

internal mentation (ibid). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Sleep deprivation causes changes in connectivity within the default mode network 
(DMN). A sleep deprivation study found a significant reduced functional connectivity 

within the DMN, as well as a reduced anticorrelation between DMN and anti-correlated 

network (De Havas, 2012). The subjects of this study underwent full 24 hours of non-

sleep. It's not further reported how do they measured the tiredness of the subjects, and 

if they took extra measures to prevent them from falling asleep during the scanning. This 

study supports the principle that sleep deprivation impacts the intrinsic connectivity within 

DMN and reduces anti-correlation between the DMN and anti-correlated network. 

 

 

 

 

Figure 2 The three most representative orthogonal slices from the Default Mode Network, shown 
on a volumetric view. The network was identified using independent component analysis performed 
on data from the Human Connectome Project. Reprinted from ‘Introduction to Resting State fMRI 
Functional Connectivity’, by Bijsterbosch, J., Smith, S., & Beckmann, C., 2017, Oxford: Oxford 
University Press, p.5. Copyright by Oxford University Press. 
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1.4. Hypothesis  
The preceding paragraphs provide an overview of the most important theories that 

shaped this thesis, the overall effect observed in the resting brain after sleep deprivation, 

and how this affects pivotal brain networks. Functional changes have a direct impact on 

memory, social and emotional regions. The representative cases cited above provide 

supportive tools to investigate functional connectivity on sleep deprivation. This thesis 

has two purposes. First, we want to distinguish the well-established resting state 

networks in our group of healthy mature subjects. Second, we want to investigate 

possible associations between functional connectivity and lack of sleep in older people. 

To date, there is no available study that addresses functional connectivity in conjunction 

with partial sleep deprivation in a group of exclusively older people. Therefore, we also 

want to broaden the discoveries about younger subjects and apply that knowledge to a 

group between 65 and 75 years of age (inclusively). Based on the literature reviewed in 

this introductory chapter, we expect a decreased connectivity within the default mode 

network (De Havas et al., 2012).  
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2. Methods 

2.1. Dataset  
The dataset analyzed for this thesis was provided by the Stress Research Institute from 

the Stockholm University, via OpenfMRI (https://www.openfmri.org/dataset/ds000201/). 

Data included functional and structural MRI recordings. The study had a crossover 

within-group design. MRI scanning was performed twice with an interval of one month 

between sessions. The order of partial sleep deprivation or full sleep was randomized 

and counterbalanced. Participants slept in their own homes, monitored by ambulatory 

polysomnography. Full sleep condition group was instructed to follow their usual bedtime 

routine, while the sleep deprived group was instructed to go to bed three hours before 

the time they would usually wake up, and to continue their day's activities as usual. 

(Nilsonne, 2017).  

2.2. Participants  
The original sample by Nilsonne et. al. (2016) consisted on 36 mature (65-75 years) 

healthy participants. One participant was discarded because his number of volumes was 

smaller than the number of volumes of the other participants. 3 subjects reported to have 

fallen asleep during the resting state scan, thus, being discarded as well. 8 subjects 

presented a high-volume displacement, therefore being eliminated from the 

sample (Nilsonne 2017, Sörös 2019, Tamm 2019). The remaining data we worked with 

for the subsequent analysis consisted of 24 subjects. Mean age of the 

sample (n=24) was 71.6 years (range 65 – 75 years, SD= 3.2 years). 14 of the subjects 

were female.   

2.3. Psychological Assessment 
Sleepiness was measured with the Karolinska Sleepiness Scale (KSS) (Nilsonne et al., 

2016). As reported in Nilsonne’s manuscript, in order to select those participants who 

would be included in the sample, they were required to have no current or past self-

reported psychiatric or neurological illness, including addictions, to not suffer from 

hypertension or diabetes, to not use psychoactive or immune-modulating drugs, to not 

smoke every day, and to not have a higher habitual daily caffeine intake greater than 

four cups of coffee. Further inclusion criteria included: no ferromagnetic items in body, 

no refractive error greater than five diopters, not to be color blind, right-handed, to be 65-

75 years old (inclusive), understand and speak fluent Swedish, and to reside in the 

greater Stockholm area (Nilsonne et al., 2016). 
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The insomnia severity index (ISI) and the Karolinska Sleep Questionnaire (KSQ) were 

used to exclude participants with insomnia symptoms, out-of-circadian sleep patterns, or 

snoring/apnea (Nilsonne et al., 2016). The Insomnia Severity Index reports scores 

ranging from 0 to 28; a clinically relevant insomnia case is assessed by a result greater 

than or equal to 15 points (Morin, Belleville, Bélanger, & Ivers, 2011). The Karolinska 

Sleep Questionnaire (KSQ) was used to characterize sleep patterns and exclude 

participants who had a sleep phase that was too early, or too late, i.e., going to bed 

before 22:00pm, or after 1:00am. Further KSQ assessment criteria was not provided in 

the data. The Hospital Anxiety and Depression Scale (HADS) was used to exclude 

participants with depressive symptoms (Nilsonne et al., 2016). The Hospital Anxiety and 

Depression Scale reports scores ranging from 0 to 21; a result greater than or equal to 

8 in either of the two mood disorders is considered a clinical case of anxiety and/or 

depression (Zigmond & Snaith, 1983). Further exclusion criteria included: students or 

employees in the fields of psychology, behavioral science, or medicine, nursing and 

allied fields. This background might be prone to the participants becoming aware of the 

experimental paradigm (Nilsonne et al., 2016). The participants were recruited through 

newspaper advertisements. To avoid behavior compensatory changes, such as naps, 

participants were not told until the evening before the experiment to what order they were 

randomized. Demographic information is shown in the table below.  
 

 

 
 

Note. BMI= Body Mass Index. ISI= Insomnia Severity Index. HADS= Hospital Anxiety and Depression 
Scale.  

 
Note. BMI= Body Mass Index. ISI= Insomnia Severity Index. HADS= Hospital Anxiety and Depression 

Table 1 

Demographic information from the included participants in this study. 

 
 
Table 2 

Demographic information from the included participants in this study. 
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2.4. Study Design 
All the functional and anatomical images were acquired by the Sleepy Brain Project, who 

assessed functional connectivity in the resting state during two eight-minute runs in each 

session. The participants were instructed to stay awake while looking at a fixation cross 

presented against a gray background, displayed on special goggles. In the second run, 

participants rated their sleepiness with the Karolinska Sleep Scores (KSS) every two 

minutes. The second run was discarded from this study as rating their sleepiness may 

introduce task related noise. Participants were monitored regarding eye-tracking during 

fMRI scanning to ensure they were awake. The study has a cross-over within-group 

design. Participants slept at home while being monitored with ambulatory 

polysomnography. To capture the partial sleep deprivation condition, they were 

instructed to go to bed three hours before the time they wake up. For the full sleep 

condition, they were instructed not to change anything on their usual bedtime routine 

(Nilsonne et al., 2016).  

2.5. Data Acquisition 
Scanning was performed on a 3T Discovery 750 MRI scanner (General Electric) with an 

8- channel head coil.  

T1-weighted images were acquired with the following settings:  TR 2.5s (2500ms), field 

of view 24, slice thickness 1 mm, sagittal orientation, interleaved acquisition bottom to 

top, covering the whole head. Before publication of images the face region was removed 

in order to preserve anonymity. (Nilsonne, 2017).  

Resting state fMRI were obtained in accordance with the following procedure: echo-

planar imaging (EPI) with field of view 28.8, slice thickness 3 mm, no interslice gap, axial 

orientation, 49 slices covering the whole brain, interleaved acquisition bottom -> up, TE 

30ms, TR 2.5 s (2500ms), and flip angle 75° (Nilsonne, 2017). 

2.6. Data Analysis  

2.6.1. Preprocessing 
The brain extraction was performed with the widely used Advanced Normalization Tools 

software (ANTs) (Avants, Tustison, & Song, 2011) on the anatomical images of both 

sessions, then the images with better quality were manually selected for further analysis. 

Preprocessing of resting state FMRI data was carried out using FMRIB’s Software 

Library (FSL, version 6.00) (Smith et al., 2004, Jenkinson, Beckmann, Behrens, Woolrich 

& Smith, 2012). The following pre-statistics processing was applied: volume removal, 

head motion correction was performed by realignment to the middle using MCFLIRT 
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(Jenkinson et al., 2002). Because each subject had a different number of BOLD volumes, 

these were manually inspected, and the elimination of the first volumes was such that 

the outcome was 188 volumes, thus, allowing the balance of the signal. Non-brain 

removal using BET (Smith 2002); spatial smoothing using a Gaussian kernel of FWHM 

5mm; grand-mean intensity normalisation of the entire 4D dataset by a single 

multiplicative factor were applied. Based on previous 

literature (Nilsonne 2017, Sörös 2019, Tamm 2019), after MCFLIRT motion correction, 

each subject was individually analyzed, and those who presented 

a framewise displacement > 1.0 mm, equivalent to an amount greater than 25% of the 

total volumes, were discarded from this analysis, leading to the removal of 8 subjects. 

 

Registration of functional to high resolution structural images was carried out using 

boundary-based registration in FLIRT (Jenkinson & Smith, 2001, Jenkinson, Bannister, 

Brady, & Smith, 2002). Registration from high resolution structural to Montreal 

Neurological Institute (MNI152) standard space was further refined using 12-parameter 

affine transformation and non-linear registration with a warp resolution of 12 mm in 

FNIRT (Anderson 2007a, 2007b). The denoised data sets were then high-pass filtered 

with a cutoff of 100s (0.01Hz).  

2.6.2. ICA-Based Noise Removal 
In resting state fMRI analysis, independent component analysis (ICA) is a commonly 

used method employed to decompose the 4-dimentional BOLD dataset into a space-

structured set of components (Bijsterbosch, Smith & Beckmann, 2017). These 

components usually consist of signals, as well as noise. Because of this, in a data driven 

analysis, the first instance to use ICA will be to identify and remove artifactual noise. The 

second instance is when ICA is used in a group-level analysis to identify resting state 

networks. 

 

In this paragraph the first occurrence will be detailed, while the second one will be further 

discussed in the dual regression section. ICA for noise reduction should be applied after 

standard preprocessing (motion correction, temporal filtering, and spatial smoothing) 

(Smith et al., 2004). Independent component analysis-based automatic removal of 

motion artifacts (FSL’s ICA-AROMA version 0.3-beta) was employed to detect artifacts, 

and subsequently remove those components from the data. ICA yields a set of 

components that are composed of spatial maps and timecourses. The output is identified 

either as noise or as a neural signal. The program automatically separates the 

components into noise or signal. However, it is strongly recommended to do a visual 
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inspection as well. There are 3 pieces of information: the spatial maps, the timecourses 

and the frequency spectra. Each of these tells a portion of the information about how to 

designate the component correctly. First, the spatial maps should exclusively overlap 

with the gray matter; if they overlap with white matter, cerebrospinal fluid, or show the 

characteristic motion “ring” around the brain, those components should be classified as 

noise. Second, the timeseries of a signal are stable, that is, no sudden changes in the 

oscillation pattern. And finally, the power spectrum should be in the low-frequency range 

(below 0.1 Hz) (Bijsterbosch, Smith & Beckmann, 2017, p.41). In order to remove the 

variance that corresponds to noise components, a regression analysis is performed 

(Beckmann, 2012). There are two options to proceed with this step: “aggressive” and 

“non- aggressive” removal. The aggressive approach eliminates all the variance 

explained by the noise component's timeseries, even if part of it is shared with signal 

components. The non-aggressive approach only removes the variance that solely 

belongs to the noise components, keeping the variance that is shared between noise 

and signal components (Bijsterbosch, Smith & Beckmann, 2017). The "non-aggressive" 

approach was used for this study in order to maintain the signal as much as possible 

(Sörös, 2019). Through multivariate exploratory linear decomposition into independent 

components, ICA-AROMA applies probabilistic ICA of each individual's resting state data 

(FSL’s MELODIC, version 3.15) (Beckmann & Smith, 2004). This tool employs temporal 

and spatial features to select motion-related components from the MELODIC output, 

removing them automatically from the initial data set (Pruim et al., 2015). ICA-AROMA 

is a robust and accurate approach to eliminate artifacts related to movement, in addition 

to preserving the signal of interest and increasing the reproducibility of resting state 

networks (Pruim, Mennes, Buitelaar, & Beckmann, 2015). 

2.6.3. ICA as a voxel-based functional connectivity analyses 
ICA is a data-driven (model free) exploratory data analysis method, which aims to 

decompose a multivariate signal into a set of features that represent structure in the 

given data, i.e., components. In other words, the objective of ICA is to separate the BOLD 

signal into different components, because it deduces that the given 4-D data is a mixture 

of multiple latent components that cannot be directly observed, but that can be separated 

(Beckmann, 2012, Bijsterbosch, Smith & Beckmann, 2017). It should also be noted that 

ICA is a multivariate approach, due to considering the data from all the voxels at once in 

order to find the components (ibid).   

 

The components obtained with ICA are maps formed by spatial (the delineated space 

where the signal is located) and temporal (the timeseries that describes the pattern of 
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the signal over time) properties (Beckmann & Smith, 2004, Beckmann & Smith, 2004b, 

Woolrich et al., 2009, Beckmann, 2012). Because its linearity, adding all the resulting 

components builds up the original BOLD data. ICA is widely used to extract resting state 

networks, such as the default mode network and dorsal attentional network. When ICA 

is applied to a resting state study, it has been demonstrated that these resting state 

networks can be found accurately and reliably (Smith et. al., 2009, Bijsterbosch, Smith 

& Beckmann, 2017, Beckmann, DeLuca, Devlin, & Smith, 2010).  

2.7. Identifying the Components  
Starting from the premise that the BOLD data is a set of mixed components, which can 

be divided due to their spatial and temporal characteristics, we proceed with the 

assertion that it is sufficient to separate the BOLD signals to obtain the components 

(Storti et al., 2013, Beckmann, DeLuca, Devlin, & Smith, 2010). In order to unmix the 

observed BOLD signal, it is necessary to factorize the data matrix (Bijsterbosch, Smith, 

& Beckmann, 2017). MELODIC is the tool in FSL that we use to separates the signal by 

looking for components that are maximally independent from each another (Smith et al., 

2004), meaning that the program will look for components that are not correlated (there 

is no statistical association between them). When signals are statistically independent, 

signal ´A´ cannot be predicted due to signal ‘B’. The best known example to clarify this 

concept is the throwing of two dice: the outcome of the first die cannot foretell the 

outcome of the second die. This is how this method is conducted to separate the resting 

state data into independent components (Bijsterbosch, Smith, & Beckmann, 2017). The 

margin of independence was applied on the spatial dimension. The spatial dimension 

(looking into spatially independent signals) was chosen over the temporal dimension 

(looking into temporally independent signals) due to two main reasons: 1) there are 

commonly more voxels than time points, 2) spatial signals are much more non- Gaussian 

(Beckmann, DeLuca, Devlin, & Smith, 2010., Beckmann, 2012). When the different 

signals are mixed, the average that forms such mixture has a more Gaussian distribution 

than the distribution of its signals separately. In other words, finding the set of 

components that are maximally non-Gaussian, allows to recognize the set of 

timecourses and independent spatial maps that explain the data (Bijsterbosch, Smith, & 

Beckmann, 2017). 

 

2.8. Resting State Networks 
To recognize significant networks caused by lack of sleep in older adults, all data sets (n 

= 24, preprocessed and de-noised as described above) were concatenated in temporal 
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order to create a single data set. This concatenated data set was then decomposed into 

30 spatially independent components using group ICA with MELODIC (In the next 

section, these 30 components will also be used as template maps for dual regression). 

As explained in previous paragraphs, ICA can be applied to identify and remove noise 

from a single subject data, as well as in a group level to identify large-scale resting state 

networks. Group ICA uses the denoised and preprocessed 4-D single subject data as 

an input. To extract the group components, first, all subject´s data are spatially 

registered, and thereafter temporally concatenated (all subjects together) (Beckmann et 

al., 2005). As shown in figure 3, the data of subject n+1 will be placed after the data of 

subject n, and so on, until a two-dimensional matrix (columns= timeseries, rows=space 

information) from all voxels is created. 

 

30 components were deliberately selected because it has been demonstrated that in a 

data driven analysis conducted with the FSL tools (ICA MELODIC), a selection of less 

than 20 components can lead to a misestimation of the underlying signals (underfitting). 

On the other hand, it is known that estimating too many components (>50) leads to over-

fitting, where some signals turned out to be divided and represented through multiple 

maps (Beckmann & Smith, 2004b, Beckmann, 2012, Woolrich et al., 2009). The literature 

is divided in an optimal fitting of 20 and 30 components, hence this analysis explored 

both for a better insight and comprehension of the possible results. It was identified that 

the 20-component run, predominantly presented superimposed maps, leaving relevant 

networks in disuse. The 30-component run yielded networks that were distinct, 

identifiable and comparable with the literature of Smith et al. (2009). These arguments 

are the basis on which a decomposition into 30 spatially independent components was 

properly chosen.  
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Figure 3 Concatenation Group ICA. After registering into the standard space, group-ICA is 
accomplished by merging all the data from the subjects. The data is temporally concatenated across 
subjects. Reprinted from ‘Introduction to Resting State fMRI Functional Connectivity’, by Bijsterbosch, J., 
Smith, S., & Beckmann, C., 2017, Oxford: Oxford University Press, p.59. Copyright by Oxford University 
Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To explore possible resemblances between the components from this study and the well-

established components from Smith, a spatial cross-correlation between them was 

performed using FSL’s fslcc command. Five canonical resting state networks were 

selected from the resulting data, that showed a spatial affinity with the well-established 

RSNs published by Smith et al. in 2009, thus, improving the extent of analysis and 

visualization of this study (Figure 5 shown in results). 

2.9. Dual Regression 
The interest of this study is not only to identify the resting states networks, but also to 

carry out a statistical analysis that allows us to compare between groups, answering the 

question about a feasible change related to lack of sleep. To address this comparison, 

FSL’s dual regression script was used. Dual regression is a powerful script that extracts 

the timeseries for each ICA map in a resting state analysis (Filippini et al., 2009, 

Nickerson, Smith, Öngür, & Beckmann, 2017). It is named ‘dual’ because it involves two 

stages of multiple regression (GLM), aiming to capture spatial-maps components 

(Bijsterbosch, Smith, & Beckmann, 2017). The data input into both stages is the 

preprocessed BOLD data from subject n (done one subject at a time). The model input 

in stage 1 is the set of components derived from the group ICA. The output of stage 1 is 
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the subject´s n timeseries for each group component, subsequently used as input model 

for stage 2. The outcome of the second stage is a spatial map that will be used for a 

group-level analysis (Figure 4) (Nickerson, Smith, Öngür, & Beckmann, 2017). 

(Comparing differences in network structure between subjects is what Bijsterbosch et al. 

(2017) call stage 3 of dual regression). 

 

The 30 ICA components were regressed in the first stage of dual regression against each 

participant’s 4 dimensional rs-fMRI data, producing 30 time series per participant (one 

for each template map). In the second stage, the subject-specific time series from stage 

1 are regressed against the subjects 4 dimensional rs-fMRI data to identify each 

participant's specific spatial maps (corresponding to the 30 map templates) (Nickerson, 

Smith, Öngür, & Beckmann, 2017). 

 

To identify possible effects related to the sleep condition within the 30 networks, a paired 

two-sample t-test was performed on the participant-specific spatial maps for each 

network using the general linear model (Sörös, 2019). FSL’s randomise (version 2.9) 

was used with 10,000 permutations for a non-parametric permutation testing (Nichols & 

Holmes, 2001). Family wise error rate was applied (FWE) with p <0.05.  

 

Figure 4 Dual Regression Stages. A) FIrst stage, the template maps are regressed against each 
subjects FMRI data in order to extract subject-specific timecourses. B) Second stage, the output 
of the stage 1 (subject-specific timecourses) is regressed against the subjects FMRI data, 
resulting in a set of subject-specific spatial maps. Adapted from `Using Dual Regression to 
Investigate Network Shape and Amplitude in Functional Connectivity Analyses’ by Nickerson, 
Smith, Öngür, & Beckmann, 2017. Copyright by Nickerson et al. 2017 

 

 
Figure 5 Dual Regression Stages. A) FIrst stage, the template maps are regressed against each 
subjects FMRI data in order to extract subject-specific timecourses. B) Second stage, the output 
of the stage 1 (subject-specific timecourses) is regressed against the subjects FMRI data, 
resulting in a set of subject-specific spatial maps. Adapted from `Using Dual Regression to 
Investigate Network Shape and Amplitude in Functional Connectivity Analyses’ by Nickerson, 
Smith, Öngür, & Beckmann, 2017. Copyright by Nickerson et al. 2017 
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3. Results 

3.1. Resting State Networks 
Once the decomposition was performed using MELODIC, 5 resting state networks were 

found using group level analysis within the general linear model (GLM) framework, 

coinciding with previous published studies (Smith et. al., 2009). Figure 5 illustrates the 5 

resting state networks identified in our sample of older adults (components 1, 2, 6, 8, and 

17) from the 30-component prototype as a result of the group ICA. Figure 5 shows the 3 

most informative orthogonal slices from the network. All ICA spatial maps were 

converted to z statistic images (ibid), thresholded at Z 2. The resting state networks were 

confined in the MNI space using mask analysis as defined by Smith et al. (2009), thus, 

allowing to identify the networks and its regions. The correlated spontaneous fluctuations 

identified when the brain is at rest (not performing a task) have a correspondence to the 

major functional networks (from the task-engaged brain) (Smith et al., 2009).  

a) IC1 Default Mode Network 

 

b) IC2 Visual Network 
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d) IC8 Right Executive Control Network 

 

e) IC17 Cerebellar Network 

 

c) IC6 Left Sensorimotor Network 

 

Figure 5 (a - e)  The 5 resting state networks identified in our sample of older adults from the 30 
component prototype as a result of the group ICA, coinciding with the well-established networks 
identified by Smith et. al., 2009. Brain images are displayed in radiological convention (right 
hemisphere appears on the left side, positive sagittal axes= right side). IC = Independent 
Component. 
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Map 130 Default Mode Network (medial and parietal precuneus; posterior cingulate; 

frontal cortex (Smith et. al. 2009)). Probably the most studied network in the resting state 

FMRI literature. One of the first DMN assertions was that it is most active when we are 

not engaged in a task (Raichle et al., 2001). Further literature suggests that it sustains 

internal cognitive processes, representations of the self (Buckner et al., 2008), some 

degrees of consciousness (Laureys et al., 2004), and it is even linked to self-awareness, 

past memories, and projections to the future (Addis et al., 2007). 

 

Map 230 Visual Network (medial and occipital pole; lateral visual areas; primary visual 

cortex (Smith et. al. 2009, Nikolaou et al., 2016)). This map is consistent to the visual 

behavioral domain. Cognition–language–orthography correspond to the occipital pole 

whereas cognition–space correspond to the lateral visual maps (Smith et al. 2009). In 

this study, collecting the resting state scans was prior to any task. Nevertheless, the 

slightest visual exposure can trigger an activity on this network (Rosazza & Minati, 2011). 

A probable explanation can be the visual novelty of being inside a magnetic resonance 

machine, and the use of the googles. 

 

Map 630 Sensorimotor Network (somatosensory and motor regions, 

and supplementary motor areas (Biswal et al., 1995, Smith et. al. 2009)). The 

sensorimotor network was the first identified resting state network, when back in 1995, 

Biswal et al. found activations in bimanual motor tasks (Biswal et al., 1995, Smith et. al. 

2009). 

 

Map 830 Right Executive Control Network (several frontal areas, regions of the 

posterior/inferior parietal lobules (Smith et. al. 2009)). This network pertains to well-

known cognitive paradigms, such as perception–somesthesis–pain, emotion and action–

inhibition (ibid). In addition, it has been documented that the Executive Control Network 

is involved in tasks that require external attention, such as working memory, task-

switching, and data integration (Beaty et al., 2015). 

 

Map 1730 Cerebellar Network (Covers the cerebellum (Smith et. al., 2009)). This 

network is considered to be involved in action-execution and perception–somesthesis– 

pain circuits (ibid). 
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Differences in functional connectivity between genders. An 2 x 2 ANOVA showed 

no significant interaction between male and female, not under full sleep condition, neither 

under partial sleep deprivation condition.  

 

Associations between functional connectivity and sleepiness. A two-sample paired 

t-test with the Karolinska Sleepiness Scores as a regressor of interest produced two 

contrasts: normal sleep > sleep deprived and sleep deprived > normal sleep. Neither 

revealed significant results in functional connectivity in this sample. 

 

3.2. Association Between Functional Connectivity and Sleep 

Deprivation  
The components mentioned above were used as an input in the general linear model, 

an endeavor to answer the question whether a lack of sleep affects the identified 

networks. A two-sample paired t-test was performed, yielding significant results for the 

normal sleep > partially sleep deprived contrast, revealing regions that show a decreased 

cerebellar connectivity in the partially sleep deprived group compared to the normal 

sleep condition. Moreover, the second contrast, partially sleep deprived > normal sleep, 

did not reveal any significant differences, confirming that the relevant brain changes 

occur after partial sleep deprivation. In other words, reduced sleep decreases 

connectivity within the cerebellar network in a group of healthy mature subjects. Figure 

6 shows the significant decrease in functional connectivity, found in the cerebellar 

network, IC 17. The cluster encompasses the Left VI (k= 1273, p < 0.01), the coordinates 

of the voxel with highest significance are: x = − 14 mm, y = -64 mm, z = − 22 mm. Table 

3 contains the MNI peak coordinates and the scope of the local maxima. 
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Cluster Index Region No. of voxels x(mm) y(mm) z(mm) p-value 

6 Left VI (95%) 1273 -14 -64 -22 0.01 

 
 

 

Table 3 

Region of decreased functional connectivity in an elderly population after one night of partial sleep 
deprivation in the cerebellar network. 

 

 

 

 

 

 

 

 

 

 

 

 

Cerebellar nomenclature is based on Schmahmann et al. (2000), in his work he labeled 

and divided the cerebellar lobules from I-X, from the anterior/superior border, to the 

anterior/inferior border. FSL tools include a probabilistic atlas of the human cerebellum, 

based on Schmahmann et al. (2000), which was produced by averaging the cerebellar 

lobule masks of 20 subjects, aligned to the standard MNI152 space (creating two 

different atlases, one with affine registration and one with non-linear registration) 

(Diedrichsen et al., 2009, 2011). 

 

Figure 6 Region of decreased functional connectivity in a healthy group of sleep deprived mature 
subjects (65-75 years) within the cerebellar network (IC17 in figure 4). The MNI coordinates of the 
voxel with highest significance are: x=-14, y=-64, z=-22 (p= 0.01 ). Brain images are displayed in 
radiological convention. 

 
Figure 6 Region of decreased functional connectivity in a healthy group of sleep deprived mature 
subjects (65-75 years) within the cerebellar network (IC17 in figure 4). The MNI coordinates of the 
voxel with highest significance are: x=-14, y=-64, z=-22 (p= 0.01 ). Brain images are displayed in 
radiological convention. 
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4. Discussion 

4.1. Key Findings and Interpretations 
The aim of this study was to better understand partial sleep deprivation in an elderly 

group, using resting state fMRI analysis. To this end, this thesis arrived at two major 

findings. First, it demonstrates the feasibility of producing canonical networks in a group 

level decomposition on resting state data. It obtained five networks, which show spatial 

affinity with the claims of Smith (2009). Second, based on the pertinent literature, this 

study expected to find a decreased connectivity within the default mode network (De 

Havas et al., 2012). On the contrary, it did not obtain any significant changes in the 

mentioned network. In contrast, it is worth noticing that this thesis found a decreased 

activity in the cerebellar network (Left VI), as originating from the partially sleep deprived 

condition.  

 

Pursuant to the definition of functional connectivity, the internal communicative capacity 

of the cerebellar network is diminished after a partially sleep deprived night. In other 

words, Intrinsic functional networks are evidenced by the slow spontaneous fluctuations 

that are correlated when the brain activity is at ‘rest’. Thus, the results suggest that the 

degree of regional cerebellar covariation is decreased due to a lack of sleep. 

4.2. The Relevance of the Cerebellum in the Results  
The cerebellum is not directly involved with sleep, but rather through its cerebro-cortical 

pathways (Manto, Gruol, Schmahmann, Koibuchi, & Rossi, 2012). According to the 

current understanding, the functionality of the cerebellar network resides in relation to 

the joint work it performs with cerebral brain regions. Despite the fact that the cerebellar 

network is accepted as one of the established networks, there still exist no conclusive 

insight into the intra-connectivity properties that this network is supposed to have.  

 

Due to the unfeasibility of anatomical analyses, cerebellar connections remained mostly 

unmapped until the study of cerebellar connectivity took a new direction when 

researchers started using resting state analysis methods (O'Reilly, Beckmann, 

Tomassini, Ramnani, & Johansen-Berg, 2009). Based on a resting state analysis, 

O´Reilley and colleagues divided the human cerebellum into two main zones: the primary 

sensorimotor zone (Lobules V, VI, and VIII) and the supramodal zone (Crus I and II). 

The former is functionally connected to the motor and premotor cortex, somatosensory 

cortex, and some visual and auditory regions, while the latter is functionally connected 

to the prefrontal and parietal cortex. Figure 7 shows the cerebellar correlation from the 
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motor and prefrontal cortices as presented by O’Reilley and colleagues. The authors 

also concluded that the cerebro-cerebellar mapping is contralateral, meaning that the 

right-hemisphere of the cerebral cortex had a stronger correlation in the left cerebellum, 

and vice versa (O’Reilly et al., 2009). These results are coherent with Schmahmann’s 

assertions, where the cerebellum is divided into motor and executive regions 

(Schmahmann and Sherman 1998). Nevertheless, there is not an exclusive association 

between the executive functions described by the authors and one distinct region of the 

cerebral cortex. Thus, cerebellar connectivity fits in a model where the cerebellum 

exhibits diverse functionality from (and to) a range of cortical regions, rather than being 

specialized in just one (O'Reilly et al., 2009). 

 

 

 

 

Figure 7 Correlation maps from motor and prefrontal cortices. Adapted from ‘Distinct and Overlapping 
Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity’, by O'Reilly, 
Beckmann, Tomassini, Ramnani, & Johansen-Berg, 2009. Cerebral Cortex 20 (4) p.956. Copyright 
2009 by O’Reilly et al. 
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4.3. Cerebellum in Sleep Research 
It is difficult to state with certainty the impact sleep deprivation has on the cerebellum, 

since to date, little is known about the interaction between the cerebellum during sleep 

(Canto, Onuki, Bruinsma, Van der Werf, & De Zeeuw, 2017). Cunchillos and De Andrés 

(1982), explained in their study, how cerebellar dysfunctions lead to important changes 

in the sleep-wakefulness cycle; DelRosso and Hoque (2014) also discovered in a recent 

study that a malfunction in the cerebellum impairs sleep; additionally, Rath, Rohde, and 

Møller (2012) revealed that clock genes (circadian rhythm associated) are expressed in 

cerebellar neurons as well. Last but not least, primary malfunctions of the cerebellum 

are generally accompanied by sleep disorders and vice versa (Canto et al., 2017). 

 

Research has shown a decrease in cerebellar activity during the transitional phase from 

awake (pre- sleeping) to slow wave sleep (SWS) (Braun, as cited in Canto, 2017). This 

is an observation of direct relevance to the results of this study, since the findings of this 

thesis coincide with the characteristics of Braun's claim. Another study suggests that the 

mental phase prior to falling asleep is similar to the state a sleep-deprived subject 

experiences (Vetrugno & Montagna, 2011). Until today, no specific moment has been 

identified as defining the sleep onset. It is rather characterized by the sublime and 

gradual changes in behavioral and physiological characteristics, such as EEG rhythms, 

cognition, mental processing, and reaction time (Chokroverty, 2017). The sleep onset 

begins even before stage 1 NREM, epitomized by heavy eyelids, blurry senses, as well 

as a distorted perception of the external stimuli (ibid). This phase was coined by 

McDonald Critchley as 'pre-dormitum'. According to Vetrugno & Montagna, these are the 

same somnolence indicators as caused by more than one cycle being awake. 

Interestingly, there exist specialized studies on this pre-dormitum phase, since some 

motor abnormalities, such as restless leg syndrome, usually occur at this stage 

(Vetrugno & Montagna, 2011). In fact, this could be coherent with the decreased activity 

in the cerebellar anterior lobe given by this thesis. Indeed, much literature can be found 

linking this sleep stage with motor discrepancies. The mentioned study is not in realm of 

functional connectivity, and this thesis lacks physiological data. These comparable 

resemblances cannot be more than a possible interpretation. Future studies attempting 

to solve these compelling congruencies will need both physiological data as well as rs-

fMRI. 

 

Patients with an acute case of REM sleep behavior disorder have a decreased cerebellar 

volume (DelRosso & Hoque, 2014). In general, diverse studies suggest that patients who 

suffer from sleep disorders typically present a lower cerebellar volume (Canto et al., 
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2017, Cunchillos & De Andrés, 1982, DelRosso & Hoque, 2014). It is well known that 

normal and healthy aging comes with a decrease in the volume of the brain and 

cerebellum. Given the age range of the subjects included in this study, it is very likely 

that their cerebellum was already smaller in volume than the one they had in their youth. 

However, to verify this, a volumetric analysis would be necessary. Therefore, when 

studying the connectivity schema in older adults, future studies could take the volumetric 

measurement into account. 

4.4. Conclusion & Outlook 
The subsequent deliberation considers, to what degree one can infer a verifiable impact 

on sleep deprivation by solely a decreased connectivity in the posterior lobe of the 

cerebellum. As mentioned above, the existing literature on cerebellar functional 

connectivity connotes that the extent of this network's capabilities depends on the 

connections it has with the brain. In other words, the scope of the cerebellar network is 

delimited by its concerted functions with the brain. The cerebellum is an organ of versatile 

functionality, and this feature is better appreciated when examining its extensive 

connectivity with the motor and cognitive brain regions (Ren, Guo & Guo, 2019). The 

observation obtained by the mere decrease in cerebellar spontaneous fluctuations is not 

enough to confidently address the impact of sleep deprivation on this healthy group of 

mature adults. To be able to objectively report the manifolds implications that this 

cerebellar network raises, it would also be necessary to examine the areas of the brain 

that work in conjunction with the cerebellum -such as the frontal cortex and thalamus, 

which are involved in the fronto-cerebellar network, and the motor and 

prefrontal cortices, as shown in O´Reilley, 2009- , and thus be able to verify whether 

there is a functional impact caused by the lack of sleep, or not. This not only applies to 

the cerebellum, but also to the different regions that, to date, are known to suffer a 

decrease in functional connectivity as a result of lack of sleep. The results of this study 

are demarcated by the chosen connectivity analysis. It should be remembered that, due 

to the essence of connectivity using a data-driven method, very specific hypotheses 

could not have been supported. In addition, the existing literature has not yet addressed 

partial sleep deprivation in a group of mature people using resting state functional 

connectivity analysis. Thus, finding deactivations in the cerebellar network is a profit. 

 

Another important point concerns the difficult interpretation of a crossover within-group 

design of only healthy subjects. This healthy group was partially sleep deprived for only 

one night. Of course, sleeping three hours gives an ecological validity to this study that 

allows to simulate a realistic restlessness night. Nilsonne also argued in favor of the 
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three-hour sleep measure in order to decrease the tendency of the subjects to fall asleep 

in the scanner. Nonetheless, three hours could be sufficient to achieve a restful sleep in 

a healthful group, biasing the primary concern of what a sleep deprivation analysis would 

require (Tamm, 2019). 

 

This study has the potential to open a path to the preliminary question of how sleep 

deprivation influences functional brain connectivity. Using other analytical tools that can 

delve into more specific regions could broaden not only the interpretation of results, but 

also the factors presented in the initial research question. By utilizing ICA/dual 

regression, we are bound to detect changes only within the resting state networks 

proposed by Smith in 2009. Seed-based could be a complementary analysis to expand 

to other brain regions, such as the thalamus and amygdala, which are known to be 

affected by lack of sleep. Previous studies have already employed seed-based analysis 

in the field of sleep deprivation. Shao and colleagues deprived their subjects of sleep for 

a period of 36 hours. Employing seed-based analysis, their study revealed distributed 

changes in the thalamocortical connectivity (Shao et al., 2013, 2014). In another study, 

Lei and colleagues demonstrated that sleep deprivation causes changes in connectivity 

from the amygdala, specially decreased connectivity between amygdala and prefrontal 

cortex (Lei et al., 2015). Future studies could be based on these analyses and apply 

them to a group of mature people as well. 

 

The performed analysis in this thesis was merely exploratory and fulfilled its investigative 

function satisfactorily. It addressed the fact that the ICA methodology approaches the 

underlying BOLD signals, prime factor in the resting state maps. Its voxel-wise 

applicability to the whole brain makes ICA a powerful tool for resting state fMRI, and the 

temporal signals from the resting state maps can be easily set apart for group 

comparison. Some of the advantages of ICA-based noise removal are the following: it is 

the perfect tool to work with when researching resting state fMRI because it is a data- 

driven method; detects noise components from a vast range of sources, including 

physiological noise and MRI artifacts (Smith et al., 2004, Bijsterbosch, Smith & 

Beckmann, 2017). In contrast, some ICA-based noise removal disadvantages are its 

ability to separate components is highly dependent on the temporal and spatial resolution 

of the data. The more time points, the better. It is more difficult to detect noise 

components in a relatively low-quality data; it also depends on the division of noise and 

signal components (Bijsterbosch, Smith & Beckmann, 2017).  
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What is evident is that the study of resting state networks has been, and will continue to 

be, of high value for scientific dissemination. It provides a significant insight on how 

spontaneous connectivity patterns are altered under different settings. As a further factor 

of consideration, the precise connotation of these intrinsic processes, fundamental to the 

neural functional architecture, is still uncertain. One of the main premises of the resting 

state study is that, due to the removal of task driven BOLD changes, it would contribute 

to the optimal baseline of brain function. Yet, even Smith and Beckmann, in their 2009 

study, mention that its unconstrained constitution yields so varied interpretations that it 

can fall into an outlook difficult to interpret.  

 

This study substantiates the previous findings on resting state functionality. Further 

endeavors are needed to support the main factors of our initial hypothesis. Future 

research could use a seed-based analysis in conjunction with ICA/ dual regression to 

directly target regions known for being affected by lack of sleep, and to search for 

changes within the well-established resting state networks. Additionally, a potential aim 

might be a comparison of a healthy control group (such as the group we work with), and 

a group that presents difficulties in their sleep patterns; behavioral data may be a very 

useful addition to this research, allowing to elucidate better on the impact of partial sleep 

deprivation. Now that we have some evidence of irregularities in the cerebellum, this 

study could lead to an analysis between a control group and a group that presents motor 

abnormalities related to poor sleep.  



  34 

5. References 
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining 

the future: Common and distinct neural substrates during event construction and 
elaboration. Neuropsychologia, 45(7), 1363–1377. 
https://doi.org/10.1016/j.neuropsychologia.2006.10.016 

 

Analysis Group, FMRIB, Oxford, UK.. (2010). Correspondence between BrainMap and 
Resting-FMRI ICA components. Retrieved August 5, 2019, from 
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/  

 

Andersson, J.L.R., Jenkinson, M., & Smith S.M. (2007) Non-linear optimisation. FMRIB 
technical report TR07JA1.    

 
Avants, B. B., Tustison, N., & Song, G. (2011). Advanced Normalization Tools (ANTS). 

Retrieved from http://scil.dinf.usherbrooke.ca/static/website/courses/imn530/ants.pdf
  

 
Beckmann, C. F., DeLuca, M., Devlin, J., & Smith, S. M. (n.d.). Investigations into 

Resting-state Connectivity using Independent Component Analysis (FMRIB 
Technical Report TR05CB1). Retrieved from 
https://www.fmrib.ox.ac.uk/datasets/techrep/tr05cb1/tr05cb1.pdf 

 
Beckmann, C., & Smith, S. (2004). Probabilistic Independent Component Analysis for 

Functional Magnetic Resonance Imaging. IEEE Transactions on Medical 
Imaging, 23(2), 137–152. https://doi.org/10.1109/tmi.2003.822821   

 
Beckmann, C. F. (2012). Modelling with independent components. NeuroImage, 62(2), 

891–901. https://doi.org/10.1016/j.neuroimage.2012.02.020  
 
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into 

resting-state connectivity using independent component analysis. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013. 
https://doi.org/10.1098/rstb.2005.1634  

Berry, R. et al. (2015) The AASM Manual for the Scoring of Sleep and Associated 
Events: Rules, Terminology, and Technical Spec- ifications Version 2.2, American 
Academy of Sleep Medicine  
 

Bijsterbosch, J., Smith, S., & Beckmann, C. (2017). Introduction to Resting State fMRI 
Functional Connectivity. Oxford, United Kingdom: Oxford University Press. 

 
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional 

connectivity in the motor cortex of resting human brain using echo-planar 
mri. Magnetic Resonance in Medicine, 34(4), 537–541. 
https://doi.org/10.1002/mrm.1910340409 

 
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, 

E. J. (2009). Default-mode brain dysfunction in mental disorders: A systematic 
review. Neuroscience & Biobehavioral Reviews, 33(3), 279–296. 
https://doi.org/10.1016/j.neubiorev.2008.09.002   

 



  35 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The Brain's Default 
Network. Annals of the New York Academy of Sciences, 1124(1), 1–38. 
https://doi.org/10.1196/annals.1440.011 

 
Castellanos, F. X., Margulies, D. S., Kelly, C., Uddin, L. Q., Ghaffari, M., Kirsch, A., . . . 

Milham, M. P. (2008). Cingulate-Precuneus Interactions: A New Locus of Dysfunction 
in Adult Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 63(3), 332–
337. https://doi.org/10.1016/j.biopsych.2007.06.025  

 
Chokroverty, S. (2017). Sleep Disorders Medicine: Basic Science, Technical 

Considerations and Clinical Aspects. New York, United States of America: Springer 
New York. 

 
Cunchillos, J., & De Andrés, I. (1982). Participation of the cerebellum in the regulation of 

the sleep-wakefulness cycle. Results in cerebellectomized 
cats. Electroencephalography and Clinical Neurophysiology, 53(5), 549–558. 
https://doi.org/10.1016/0013-4694(82)90067-0   

 
D'Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum 

disorder. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00408 
 
DelRosso, L. M., & Hoque, R. (2014). The Cerebellum and Sleep. Neurologic 

Clinics, 32(4), 893–900. https://doi.org/10.1016/j.ncl.2014.07.003  
 
De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. (2012). Sleep deprivation 

reduces default mode network connectivity and anti-correlation during rest and task 
performance. NeuroImage, 59(2), 1745–1751. 
https://doi.org/10.1016/j.neuroimage.2011.08.026 

 
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A 

probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1), 39–46. 
https://doi.org/10.1016/j.neuroimage.2009.01.045 

 
Diedrichsen, J., Maderwald, S., Küper, M., Thürling, M., Rabe, K., Gizewski, E., . . . 

Timmann, D. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and 
normalization procedure. NeuroImage, 54(3), 1786–1794. 
https://doi.org/10.1016/j.neuroimage.2010.10.035 
 

Duffy, J. F., Willson, H. J., Wang, W., & Czeisler, C. A. (2009). Healthy Older Adults 
Better Tolerate Sleep Deprivation Than Young Adults. Journal of the American 
Geriatrics Society, 57(7), 1245–1251. https://doi.org/10.1111/j.1532-
5415.2009.02303.x  

 
Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. 

M., . . . Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the 
APOE-ε4 allele. Proceedings of the National Academy of Sciences, 106(17), 7209–
7214. https://doi.org/10.1073/pnas.0811879106.   

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed 
with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 
700–711. https://doi.org/10.1038/nrn2201 

 
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. 

E. (2005). From The Cover: The human brain is intrinsically organized into dynamic, 



  36 

anticorrelated functional networks. Proceedings of the National Academy of 
Sciences, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102 

 
Goel, N., Rao, H., Durmer, J., & Dinges, D. (2009). Neurocognitive Consequences of 

Sleep Deprivation. Seminars in Neurology, 29(04), 320–339. 
https://doi.org/10.1055/s-0029-1237117 

 
Harrison B.J., Pantelis C. (2010) Cognitive Subtraction. In: Stolerman I.P. (eds) 

Encyclopedia of Psychopharmacology. Springer, Berlin, Heidelberg   
Hong, C. C., Harris, J. C., Pearlson, G. D., Kim, J., Calhoun, V. D., Fallon, J. H., . . . 

Pekar, J. J. (2009). fMRI evidence for multisensory recruitment associated with rapid 
eye movements during sleep. Human Brain Mapping, 30(5), 1705–1722. 
https://doi.org/10.1002/hbm.20635 

 
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved Optimization for 

the Robust and Accurate Linear Registration and Motion Correction of Brain 
Images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.113  

 
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). 

FSL. NeuroImage, 62(2), 782–790. 
https://doi.org/10.1016/j.neuroimage.2011.09.015 

 
Jenkinson, M., & Smith, S. (2001). A Global Optimisation Method for Robust Affine 

Registration of Brain Images. Medical Image Analysis, 5(2), 143–156. 
https://doi.org/10.1016/s1361-8415(01)00036-6 

 
James, W. (1870). The Principles of Psychology. New York, USA: H. Holt and Company, 

1890.   
 
Kelly, R. M., & Strick, P. L. (2003). Cerebellar Loops with Motor Cortex and Prefrontal 

Cortex of a Nonhuman Primate. The Journal of Neuroscience, 23(23), 8432–8444. 
https://doi.org/10.1523/jneurosci.23-23-08432.2003 

 
Konrad, K., & Eickhoff, S. B. (2010). Is the ADHD brain wired differently? A review on 

structural and functional connectivity in attention deficit hyperactivity disorder. Human 
Brain Mapping, 31(6), 904–916. https://doi.org/10.1002/hbm.21058   

 
Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, 

and related disorders. The Lancet Neurology, 3(9), 537–546. 
https://doi.org/10.1016/s1474-4422(04)00852-x 

 
Lei, Y., Shao, Y., Wang, L., Ye, E., Jin, X., Zou, F., . . . Yang, Z. (2015). Altered superficial 

amygdala-cortical functional link in resting state after 36 hours of total sleep 
deprivation. Journal of Neuroscience Research, 93(12), 1795–1803. 
https://doi.org/10.1002/jnr.23601    

 
Manto, M., Gruol, D. L., Schmahmann, J., Koibuchi, N., & Rossi, F. (2012). Handbook of 

the Cerebellum and Cerebellar Disorders. Amsterdam, Netherlands: Springer 
Netherlands. 

 
Morin, C. M., Belleville, G., Bélanger, L., & Ivers, H. (2011). The Insomnia Severity Index: 

Psychometric Indicators to Detect Insomnia Cases and Evaluate Treatment 
Response. Sleep, 34(5), 601–608. https://doi.org/10.1093/sleep/34.5.601 

 



  37 

Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional 
neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. 
https://doi.org/10.1002/hbm.1058 

 
Nickerson, L. D., Smith, S. M., Öngür, D., & Beckmann, C. F. (2017). Using Dual 

Regression to Investigate Network Shape and Amplitude in Functional Connectivity 
Analyses. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00115
   

 
Nikolaou, F., Orphanidou, C., Papakyriakou, P., Murphy, K., Wise, R. G., & Mitsis, G. D. 

(2016). Spontaneous physiological variability modulates dynamic functional 
connectivity in resting-state functional magnetic resonance imaging. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences, 374(2067), 20150183. https://doi.org/10.1098/rsta.2015.0183 

 
Nilsonne, G., Tamm, S., D'Onofrio, P., Thuné, H., Schwarz, J., Lavebratt, C., . . . 

Åkerstedt, T. (2016). A multimodal brain imaging dataset on sleep deprivation in 
young and old humans: The Stockholm Sleepy Brain Study. Recovered from 
http://hdl.handle.net/10616/45181 

 
Nilsonne, G., Tamm, S., Schwarz, J., Almeida, R., Fischer, H., Kecklund, G., . . . 

Åkerstedt, T. (2017). Intrinsic brain connectivity after partial sleep deprivation in young 
and older adults: results from the Stockholm Sleepy Brain study. Scientific 
Reports, 7(1). https://doi.org/10.1038/s41598-017-09744-7  

 
O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. 

(2009). Distinct and Overlapping Functional Zones in the Cerebellum Defined by 
Resting State Functional Connectivity. Cerebral Cortex, 20(4), 953–965. 
https://doi.org/10.1093/cercor/bhp157 

 
Pruim, R. H., Mennes, M., Van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. 

(2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from 
fMRI data. NeuroImage, 112, 267–277. 
https://doi.org/10.1016/j.neuroimage.2015.02.064  

 
Pruim, R. H., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015). Evaluation of ICA-

AROMA and alternative strategies for motion artifact removal in resting state 
fMRI. NeuroImage, 112, 278–287. https://doi.org/10.1016/j.neuroimage.2015.02.063 

 
Oxford Dictionaries | English. (2019). network | Definition of network in English by Oxford 

Dictionaries. [online] Available at: https://en.oxforddictionaries.com/definition/network 
[Accessed 3 Jun. 2019]. 

 
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 

180–190. https://doi.org/10.1016/j.tics.2010.01.008  
 
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & 

Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National 
Academy of Sciences, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676  

 
Rath, M. F., Rohde, K., & Møller, M. (2012). Circadian Oscillations of Molecular Clock 

Components in the Cerebellar Cortex of the Rat. Chronobiology International, 29(10), 
1289–1299. https://doi.org/10.3109/07420528.2012.728660   

 



  38 

Ren, Y., Guo, L., & Guo, C. C. (2019). A connectivity-based parcellation improved 
functional representation of the human cerebellum. Scientific Reports, 9(1). 
https://doi.org/10.1038/s41598-019-45670-6 

 
Rosazza, C., & Minati, L. (2011). Resting-state brain networks: literature review and 

clinical applications. Neurological Sciences, 32(5), 773–785. 
https://doi.org/10.1007/s10072-011-0636-y   

 
Schmahmann, J., & Sherman, J. C. (1998). The cerebellar cognitive affective 

syndrome. Brain, 121(4), 561–579. https://doi.org/10.1093/brain/121.4.561 
 
Shao, Y., Wang, L., Ye, E., Jin, X., Ni, W., Yang, Y., . . . Yang, Z. (2013). Decreased 

Thalamocortical Functional Connectivity after 36 Hours of Total Sleep Deprivation: 
Evidence from Resting State fMRI. PLoS ONE, 8(10). 
https://doi.org/10.1371/journal.pone.0078830 

 
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., 

Johansen-Berg, H., . . . Matthews, P. M. (2004). Advances in functional and structural 
MR image analysis and implementation as FSL. NeuroImage, 23, 208–219. 
https://doi.org/10.1016/j.neuroimage.2004.07.051 

 
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., …    

Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during 
activation and rest. Proceedings of the National Academy of Sciences of the United 
States of America, 106(31), 13040–13045. doi:10.1073/pnas.0905267106 

 
Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations 

in impaired states and pathological conditions: A neurobiological 
hypothesis. Neuroscience & Biobehavioral Reviews, 31(7),977-986. 
https://doi.org/10.1016/j.neubiorev.2007.02.005.  

 
Sormaz, M., Murphy, C., Wang, H., Hymers, M., Karapanagiotidis, T., Poerio, G., . . . 

Smallwood, J. (2018). Default mode network can support the level of detail in 
experience during active task states. Proceedings of the National Academy of 
Sciences, 115(37), 9318–9323. https://doi.org/10.1073/pnas.1721259115   

 
Spreng, R. N. (2012). The Fallacy of a “Task-Negative” Network. Frontiers in 

Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00145 
 
Sörös, P., Hoxhaj, E., Borel, P., Sadohara, C., Feige, B., Matthies, S., . . . Philipsen, A. 

(2019). Hyperactivity/restlessness is associated with increased functional connectivity 
in adults with ADHD: a dimensional analysis of resting state fMRI. BMC 
Psychiatry, 19(1). https://doi.org/10.1186/s12888-019-2031-9 
 

Sripada, C., Kessler, D., Fang, Y., Welsh, R. C., Prem Kumar, K., & Angstadt, M. (2014). 
Disrupted network architecture of the resting brain in attention-deficit/hyperactivity 
disorder. Human Brain Mapping, 35(9), 4693–4705. 
https://doi.org/10.1002/hbm.22504 

 
Storti, S. F., Formaggio, E., Nordio, R., Manganotti, P., Fiaschi, A., Bertoldo, A., & 

Toffolo, G. M. (2013). Automatic selection of resting-state networks with functional 
magnetic resonance imaging. Frontiers in Neuroscience, 7. 
https://doi.org/10.3389/fnins.2013.00072 

 



  39 

Sudre, G., Szekely, E., Sharp, W., Kasparek, S., & Shaw, P. (2017). Multimodal mapping 
of the brain’s functional connectivity and the adult outcome of attention deficit 
hyperactivity disorder. Proceedings of the National Academy of Sciences, 114(44), 
11787–11792. https://doi.org/10.1073/pnas.1705229114 

 
Tamm, S. (2019). A Neuroimaging Perspective On The Emotional Sleepy Brain. 

Stockholm, Sweden: Karolinska Institutet. 
 
Tomasi, D., & Volkow, N. D. (2011). Gender differences in brain functional connectivity 

density. Human Brain Mapping, 33(4), 849–860. https://doi.org/10.1002/hbm.21252
  

 
Vetrugno, R., & Montagna, P. (2011). Sleep-to-wake transition movement 

disorders. Sleep Medicine, 12, 11–16. https://doi.org/10.1016/j.sleep.2011.10.005 
 
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., . . . 

Smith, S. M. (2009). Bayesian analysis of neuroimaging data in 
FSL. NeuroImage, 45(1), 173–186. 
https://doi.org/10.1016/j.neuroimage.2008.10.055 

 
Zhou, X., Wu, T., Yu, J., & Lei, X. (2017). Sleep Deprivation Makes the Young Brain 

Resemble the Elderly Brain: A Large-Scale Brain Networks Study. Brain 
Connectivity, 7(1), 58–68. https://doi.org/10.1089/brain.2016.0452   

Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta 
Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-
0447.1983.tb09716.x 

  



  40 

 

Declaration of Originality 

I hereby confirm that this thesis is entirely my own work. I confirm that no part of the 

document has been copied from either a book or any source -including the internet- 

except where such sections are clearly shown as quotations and the sources have been 

correctly identified within the text or list of references. Moreover I confirm that I have 

taken notice of the ‘Leitlinien guter wissenschaftlicher Praxis’ of the University of 

Oldenburg.  

 

 

 

 

Place, Date        Signature 


