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Abstract 

 

Introduction:    Parkinson’s disease (PD) is a debilitating and prevalent 

neurodegenerative disease affecting around 1% of the population over the 

age of 60. The exact cause in most cases is unknown. One common non-

motoric symptom of PD is hyposmia; a dysfunction of olfaction. This 

symptom precedes most motor symptoms and is highly correlated with 

cognitive decline. The present study aims to determine if alterations in 

resting-state networks (RSN) and brain structure correlate with hyposmia 

and/or PD. It is predicted that PD patients with severe hyposmia will 

display changes in brain connectivity within and between RSNs compared 

to the control group.   

Methods:        45 cognitively normal volunteers underwent an fMRI scan at 

rest. 15 participants were healthy controls, 15 were PD patients with severe 

hyposmia, and 15 were PD patients with no/mild hyposmia. Hyposmia was 

assessed based on scores from a smell recognition test (OSIT-J). The data 

was measured and publicized by Yoneyama et al. (2018). An ICA-based 

analysis method with a low dimensionality specification, in combination 

with dual-regression was utilized to identify interpretable RSNs and 

compare them between participants with additional regressors. Freesurfer 

software was selected to produce both cortical thickness and subcortical 

volume median values for each participant’s structural brain image .  

Results:          The results of these analyses support the null hypothesis. 

There were no significant differences in any independent components 

reflective of canonical RSNs between groups, or within the entire group 

related to smelling scores or cognition. The median volumes for several 

subcortical regions and median thickness values of cortical regions were 

statistically independent from the clinical effects of PD and hyposmia in 

this study (p > 0.05). 

Discussion:    The results of the ICA combined with dual-regression 

analysis reject the hypothesis that there would be significant changes in 

RSNs as a consequence PD pathology and hyposmia, and there were also no 

reportable differences in brain morphometry. This suggests that PD patients 

on medication maintain strikingly intact RSNs and brain structure. This 

result could alternatively be attributed to a number of methodological study 

limitations. The same dataset in the Yoneyama et al. (2018) study yielded 

several significant results between group RSNs and cortical thickness 

values. Thus, the results presented here highlight a reoccurring issue: MRI 

replication studies applying alternative methodological choices to the same 

data can produce rather varied results. The neuroimaging of potential 

changes related to PD, dopamine regulatory medications, and hyposmia, 

requires further attention.   

 

 

 



 

ii 
 

Contents 

 
Abstract 

Abbreviations List 

 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . .  

 1.1 Parkinson’s Disease . . . . . . . . . . . .  

 1.2 Hyposmia and Smell Tests . . . . . . .  

 1.3 Olfaction Basics . . . . . . . . . . . . . . .  

 1.4 Resting-state fMRI . . . . . . . . . . . . .  

 1.5 Brain Morphometry . . . . . . . . . . . .  

  1.5.1 Cortical Measurements . . . .  

  1.5.2 Subcortical Measurements. .    

 1.6 PD and Hyposmia . . . . . . . . . . . . . . 

  1.6.1 Yoneyama Study. . . . . . . . .   

1.6.2 Hypotheses . . . . . . . . . . . . .  

2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 2.1 Dataset . . . . . . . . . . . . . . . . . . . . . .  

  2.1.1 Participants . . . . . . . . . . . . .  

  2.1.2 Neurocognitive Tests . . . . .  

  2.1.3 PD Evaluations . . . . . . . . . .  

  2.1.4 MRI Data Acquisition . . . .  

 2.2 Resting-state Analysis . . . . . . . . . .  

  2.2.1 Preprocessing . . . . . . . . . . .  

  2.2.2 ICA-AROMA . . . . . . . . . . .  

  2.2.3 GICA and Dual-Regression.  

 2.3 Brain Morphometry . . . . . . . . . . . .  

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 3.1 GICA – Dual-Regression Results. .  

 3.2 Subcortical Volume Results . . . . . .  

 3.3 Cortical Thickness Results . . . . . . .  

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . .  

 4.1 Summary of Results . . . . . . . . . . . .  

 4.2 Preservation of RSNs . . . . . . . . . . .  

4.3 GICA Methodology . . . . . . . . . . . .  

 4.4 Preservation of Brain Structure. . . .  

 4.5 Freesurfer Methodology . . . . . . . . .  

 4.6 Conclusion . . . . . . . . . . . . . . . . . . . 

 

 
 

 

 
i 

ii 

 

. . . . . . . . . . . . . . . . . . .  . .  1 

. . . . . . . . . . . . . . . . . . . . . . 1 

. . . . . . . . . . . . . . . . . . . . . . 3 

. . . . . . . . . . . . . . . . . . . . . . 5 

. . . . . . . . . . . . . . . . . . . . . . 7 

. . . . . . . . . . . . . . . . . . . . . . 9 

. . . . . . . . . . . . . . . . . . . . . . 9 

. . . . . . . . . . . . . . . . . . . . . 11 

. . . . . . . . . . . . . . . . . . . . . 12 

. . . . . . . . . . . . . . . . . . . . . 13 

. . . . . . . . . . . . . . . . . . . . . 16 

. . . . . . . . . . . . . . . . . . . . . 16 

. . . . . . . . . . . . . . . . . . . . . 16 

. . . . . . . . . . . . . . . . . . . . . 17 

. . . . . . . . . . . . . . . . . . . . . 17 

. . . . . . . . . . . . . . . . . . . . . 18 

. . . . . . . . . . . . . . . . . . . . . 19 

. . . . . . . . . . . . . . . . . . . . . 19 

. . . . . . . . . . . . . . . . . . . . . 19 

. . . . . . . . . . . . . . . . . . . . . 20 

. . . . . . . . . . . . . . . . . . . . . 21 

. . . . . . . . . . . . . . . . . . . . . 24 

. . . . . . . . . . . . . . . . . . . . . 25 

. . . . . . . . . . . . . . . . . . . . . 27 

. . . . . . . . . . . . . . . . . . . . . 27 

. . . . . . . . . . . . . . . . . . . . . 27 

. . . . . . . . . . . . . . . . . . . . . 27 

. . . . . . . . . . . . . . . . . . . . . 27 

. . . . . . . . . . . . . . . . . . . . . 28 

. . . . . . . . . . . . . . . . . . . . . 28 

. . . . . . . . . . . . . . . . . . . . . 31 

. . . . . . . . . . . . . . . . . . . . . 32 

. . . . . . . . . . . . . . . . . . . . . 33 

 

References 

Appendices 

 

  

 

 

 



 

ii 
 

Abbreviations List 

 
ACE-R  Addenbrooke’s Cognitive Examination- revised 

AD   Alzheimer’s Disease 

ADHD   Attention deficit hyperactivity disorder 

ANCOVA  Analysis of covariance 

ANOVA  Analysis of variance 

ANTs   Advanced Normalization Tools software 

AON   Anterior olfactory nucleus 

BET   Brain extraction tool 

BOLD   Blood-oxygen-level dependent 

CSF   Cerebrospinal fluid 

CNS   Central nervous system 

DA   Dopamine 

DAN   Dorsal attentional network 

DMN   Default mode network 

FC   Functional connectivity 

fMRI   Functional magnetic resonance imaging 

FOV   Field of view 

GICA-DR  Group independent component analysis- dual regression 

GLM   General linear model 

HC   Healthy control 

ICA   Independent component analysis 

IC   Independent component 

L-Dopa  Levodopa 

LEDD   Levodopa equivalent daily dose 

MDS   Movement Disorder Society 

MDSUPDRS Movement Disorder Society-Sponsored Revision of the 

Unified Parkinson’s Disease Rating Scale 

MMSE Mini Mental State Exam 

MNI Montreal Neurological Institute  

MRI Magnetic resonance imaging  

MS Multiple Sclerosis 

OASIS Open access series of imaging studies 

OSIT-J Odor stick identification test for the Japanese 

PD Parkinson’s Disease 

PD/MH Parkinson’s Disease with mild or no hyposmia 

PD/SH  Parkinson’s Disease with severe hyposmia 

PET Positron-emission tomography   

rsfMRI   Resting-state functional magnetic resonance imaging 

RSN   Resting-state network 

SCA   Seed-based correlation analysis 

SD   Standard deviation 

SPM   Statistical parametric mapping 

TDI   Odor threshold, discrimination, and identification 

TE   Echo time 

TR   Repetition time 

UPSIT   University of Pennsylvania smelling identification test 

 



 

1 
 

1 Introduction 

1.1  Parkinson’s Disease 

 James Parkinson is the man regarded for coherently categorizing and 

describing the deadly and prevalent disease that is now his namesake. It is quite 

remarkable that even in 1817 Parkinson felt the unyielding need to differentiate 

between certain types of tremor. In doing so, he discovered a vigorous method 

for discriminating between his illness of interest, the “Shaking Palsy”, and other 

ailments that can cause trembling. His writings elaborately describe symptoms 

and other observations relative to the pathognomy; additionally, Parkinson even 

makes a prediction that the disease is a dysfunction of the CNS rather than the 

PNS. His suggestion about the specific anatomical regions underling the disease 

pathology is now understood to be false, however, with regard to the time 

period and lack of noninvasive imaging technology his prediction is still highly 

respected. His groundbreaking essay on the shaking palsy paved the way for 

over 200 years’ worth of research on this debilitating malady. It was James 

Parkinson’s demand that the disease’s “real nature may be ascertained, 

appropriate modes of relief, or even a cure, pointed out.” (Parkinson, 

1817/2002, pp. 236).  

 These many years of follow up research have only partially satisfied the 

ambitions of James Parkinson. To date, Parkinson’s Disease (PD) is categorized 

as a chronic, progressive, adult-onset neurodegenerative disease that has no 

cure. The cause of the disease is also unknown in most cases. There have been 

several reported genetic and environmental risk factors; nonetheless the disease 

still remains overwhelmingly idiopathic. PD affects around 1% of the 

population over 60-years-old and roughly 4% of those over the age of 80. The 

duration of the disease can last between 7-14 years on average; symptoms 

increasing in severity lead to death indirectly (Sveinbjornsdottir, 2016). 

Fortunately, dedicated researchers have been able to shed light on the specifics 

of the disease’s pathology, motor and non-motor symptoms, as well as possible 

treatment methods. 

 The symptoms of PD are divided into two main categories: motor and 

non-motor. The motor symptoms are generally the hallmark indications of the 
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disease. The Movement Disorder Society (MDS) provides specific diagnostic 

guidelines for identification of these motor symptoms that are described as: 

Bradykinesia in combination with rigidity, resting tremor, or both. Bradykinesia 

is defined specifically as slowness in initiating movement accompanied by 

progressively diminished speed/amplitude with each motor repetition (Postuma 

et al., 2015). These motor symptoms also progressively become worse but can 

be treated. Most commonly, motor symptoms are treated with L-Dopa, which is 

a precursor to the neurotransmitter dopamine (Emamzadeh & Surguchov, 2018) 

 The etiology of these motor symptoms related to PD can be thoroughly 

explained as the direct result of dopaminergic neuron death within the 

substantia nigra. The substantia nigra is a collection of subcortical nuclei, part 

of the basal ganglia, located in the midbrain. It contains two parts, the pars 

reticulata and the pars compacta, each with different functions and connections. 

The pars reticulata receives projections from the striatum and sends inhibitory 

signals to the thalamus via GABAergic neurons. The pars compacta, the region 

affected most in PD, contains mostly dopaminergic neurons that project 

excitatory signals onto the striatum. When PD related cell death occurs in this 

region, it disrupts the nigrostriatal pathway which is responsible for initiating 

and calibrating movements. This disruption of a major motor pathway directly 

explains why the motor dysfunctions occur. However, the cause underlying the 

substantial death of these DA neurons is not directly known (Schapira, 2006). 

Histopathologists have consistently observed infestations of Lewy bodies 

within the substantia nigra and other brain regions of PD patients. The role of 

these Lewy bodies, which are tangles made up of mainly alpha-synuclein 

proteins, are still very much unclear (Gibb et al., 1988; Schapira, 2006; Doty, 

2012).    

 The non-motor symptoms of PD tend to be somewhat overshadowed by 

the more obvious motor symptoms, although by some they are considered to be 

equally as debilitating. These non-motor manifestations are numerous, and 

broadly categorized as: sleep dysfunction, autonomic dysfunction, psychiatric 

dysfunction, and hyposmia. Autonomic problems tend to be mainly 

gastrointestinal, however drops in blood pressure, sexual dysfunction, excessive 

sweating, and other symptoms are also reported. Sleep cycle abnormalities are 
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also observed in two thirds of PD patients, along with chronic daytime 

sleepiness. The psychiatric problems that arise as a result of PD, independent of 

the medication induced side effects are: visual hallucinations, depression, 

anxiety, and dementia. Some of these non-motor symptoms make an 

appearance long before the first noticeable tremors reveal themselves 

(Sveinbjornsdottir, 2016). This means that understanding that the pathological 

changes pertaining to these non-motor occurrences, is of clinical importance. 

Diagnostic procedures rely on such research. The last category of non-motor 

symptoms that can present up to 10 years before motor symptoms is hyposmia 

(Baba et al. 2011). 

1.2  Hyposmia and Smell Tests 

 The partial to complete loss of smelling capabilities, hyposmia, is a 

relatively common sensory disorder that tends to worsen with age (Murphy et 

al., 2002). Hyposmia also decreases taste perception, can be an issue of safety, 

and can be brief or permanent depending on the specific cause. The causes of 

hyposmia are most commonly a result of direct problems with the nose or 

sinuses, such as severe allergies, influenza, nasal polyps, exposure to chemicals, 

or injury to the head/nose. Medications can sometimes also cause a loss of 

smell. These factors are usually responsible for a brief loss of smell that 

eventually returns to normal. There are some cases though, where hyposmia 

occurs in combination with more serious, long-term conditions. Several studies 

have shown a relationship between hyposmia and dementia, frontotemporal 

dementia, Alzheimer’s disease (Franks et al., 2015), PD (Yoneyama et al., 

2018; Baba et al., 2011; Bohnen et al., 2008; Doty, 2012), multiple sclerosis, 

type 1 diabetes, and Lewy Body disease. When hyposmia occurs suddenly and 

without an obvious cause, it could very well be an ominous sign of neurological 

malfunction (Goncalves & Goldstein, 2016). Hyposmia is diagnosed first by a 

physician’s physical examination in combination with medical history, and if 

no obvious source can be established, a diagnosis can be made using MRI 

(Yousem et al., 1996), a smell stick test (Kobal et al. 1996; Hummel et al., 

1997/2007), or a scratch and smell test (Doty et al., 1984).    
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A smell stick test is conducted with a pen-like device that can release a 

certain smell at varied amounts. A scratch and smell test on the other hand, is a 

paper test where odors are exposed after scratching off a microencapsulated 

seal. These types of tests are also efficacious for collecting a smelling score in 

experimental settings, including the study that provided their data for the 

present investigation. These nasal chemosensory odor identification batteries, 

which have additionally been developed for different countries with different 

familiar odors, can reliably provide an overview of an individual’s ability to 

identify familiar smells, ability to discriminate between different smells, and at 

which threshold odors are first perceived. The smell stick measures compile to 

provide a TDI score. The modern “Sniffin’ Sticks” test battery developed by 

Kobal, Hummel, and colleagues in 1996 is commonly used to diagnose 

hyposmia, anosmia, or normosmia based on a collection of normative data from 

well over 3000 participants (Kobal et al., 1996). The UPSIT, or the University 

of Pennsylvania Smell Identification Test, was developed in 1984 by Doty and 

colleagues and is currently the most widely used tool for olfaction sensory 

measurements in the world. It is available in 28 languages with several 

international variations and can be self-administered. This test is also 

considered to be very valid with test-retest reliability of 0.94 (Doty, 2012).  

These smell tests are considered quite reliable in the diagnosis of 

hyposmia and other dysfunctions of smelling within healthy populations. 

However, in recent years there has also been some criticism over whether or not 

the tests accurately measure odor sensation and perception as well as previously 

reported in clinical populations. In recent publications, the sensitivity and 

specificity measures regarding the UPSIT and similar brief international tests’ 

abilities to diagnose PD have been lower than expected. Rodriguez-Violante et 

al. (2014) reported the UPSIT sensitivity to be 79.7% and sensitivity to be 

68.5% using a cut off score of >=25 for Mexican participants. The ability for 

the test to diagnose PD patients was calculated to be with 75.3%. These lower 

than expected findings may be due either to cultural limitations, or something 

physiological (Rodriguez-Violante et al., 2014).  

Another method being used to potentially identify the presence of 

hyposmia or smell dysfunction is MRI analysis, in both task and resting 
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conditions. Yousem et al. (1996) found that those with hyposmia or anosmia 

from birth, 68-84% showed a nearly compete loss of the olfactory bulb and 

tract. In addition to some observable subcortical biomarkers, in 2010 Bitter and 

colleagues used neuroimaging to observe gray matter and white matter 

morphometric differences. Astoundingly they report significant loss of both 

gray and white matter volume in the brains of hyposmic/anosmic patients as 

compared to age-matched controls; the following regions with significant gray 

matter differences were: insular cortex, anterior cingulate cortex, orbitofrontal 

cortex, cerebellum, fusiform gyrus, precuneus, middle temporal gyrus and 

piriform cortex. The regions of the brain that displayed white matter volume 

loss were under the insular cortex and middle frontal gyrus, as well as in the 

cerebellum (Bitter et al., 2010). To better understand these changes, a brief 

background on olfactory cortical and subcortical neuroanatomy and pathways is 

provided in the following section. 

1.3  Olfaction Basics    

 The human chemosensory sense of smell is astonishing to say the very 

least, for our smelling capabilities possess the potential to discriminate between 

trillions of tiny molecular combinations. A review article written by biologist 

Stuart Firestein (2001) outlines the basics of the olfactory system in humans 

and similar mammals. Firestein states firstly that there are two different 

olfactory systems at play in most animals: the first primary system is mostly 

conscious and consists of detecting food smells, rot, danger, and other scents 

necessary to stay alive; the other secondary system that is less conscious in 

humans is for smelling out a potential receptive mate. In relevant reference to 

the present study, the overview of the anatomical organization of the olfactory 

system will be strictly limited to the primary sense of smell within humans.  

 The first noteworthy peripheral structure is the olfactory 

neuroepithelium, which is a patch of mucus covered skin about 10cm2 located 

at the uppermost part of the nasal cavity. This epithelium is covered with 10 to 

20 million olfactory sensory cells that come in an estimated six different types. 

These bipolar neurons detect and respond to molecular combinations present in 

odor molecules, with the purpose of sending along these unique molecular 
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codes through a thin part of the skull (cribriform plate) to the outer layer of the 

olfactory bulb. This olfactory bulb and its tract are some of the most 

anatomically recognizable structures located bilaterally on the inferior 

forebrain. The olfactory bulb is the transduction hub, where olfactory sensory 

cells send their complex chemical codes of detected molecules to converge, 

firstly, on round glomeruli cells. These cells are spatially organized to integrate 

and simplify the sensory input, that is then passed on through a layer of mostly 

interneuron, to mitral cells, and then to the olfactory tract. These mitral cells are 

few, but their function within the olfactory bulb and tract are highly complex 

and essentially, they integrate the odor sensations in order to transport them for 

quick perception (Blumenfeld, 2010; Firestein, 2001).  

The olfactory tract transports signals to a number of other cortical and 

subcortical regions. The five main ones being: the anterior olfactory nucleus 

(AON), olfactory tubercle, amygdala, piriform cortex, and entorhinal cortex. 

The AON projects inhibitory signals back onto the olfactory bulb, while the 

piriform cortex is responsible for identifying characteristics of the odor in terms 

of both its chemical structure and similar categorical properties. The piriform 

cortex sends projections to a number of different regions, including: thalamus, 

hypothalamus, amygdala, hippocampus, and orbitofrontal cortex. One particular 

pathway sends signals from the piriform cortex to the mediodorsal nucleus of 

the thalamus, and then to the orbitofrontal cortex for conscious processing. The 

entorhinal cortex’s projections of odor signals on the amygdala and 

hippocampus are well-known for providing us with emotional, memory, and 

autonomic responses to smells. The olfactory system is anatomically close to to 

the limbic system, which could explain why smells can sometimes evoke strong 

emotional memories (Blumenfeld, 2010).   

         These complex inner workings of olfaction make it sometimes difficult to 

understand the root and pathology of olfactory dysfunctions. With the puzzling 

connection between smell dysfunction and neurodegenerative disease, it is of 

great importance to understand the olfactory system’s healthy characteristics 

and functions. Then we may better be equipped to find neurophysiological 

warning signs in the future. One hope that researchers have is the availability 
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and growing popularity of clinical MRI research, such as resting state and brain 

morphometry. 

1.4 Resting-State fMRI 

 Functional magnetic resonance imaging of the brain has completely 

revolutionized the way medical professionals and researchers understand both 

the normal and abnormal structure and functioning of the human brain. Since 

the beginning of the 1990’s, the use of fMRI in experiments has exploded and 

today there are now well over 5,000 studies published mentioning fMRI in the 

title. This popularity is due to its non-invasive and relatively quick data 

acquisition which produces results of excellent spatial resolution. The temporal 

(time) resolution is also not awful, and data analysis can also be completed 

rather effortlessly with the current array of available fMRI analysis software 

packages (Poldrack et al., 2009). These software packages, such as FSL 

(FMRIB’s Software Library) and SPM (Statistical Parametric Mapping), allow 

raw fMRI data to be preprocessed and statistically analyzed, so that the changes 

in the brain’s blood oxygenation levels may be visualized and statistically 

interpreted as changes in localized brain activation.    

 The result of fMRI studies is either a spatial map statistically 

representing localization of brain function in response to stimuli or a spatial 

map of intrinsic connectivity. Resting-state fMRI (rsfMRI) is a subfield of 

fMRI analysis that focuses exclusively on what happens in the brain 

independent of performing tasks, during “rest”. Therefore, rsfMRI can provide 

images reflective of brain connectivity, which can be measured with the 

assumption that: brain regions that spontaneously activate with similar signals 

at different spatial locations at around the same time are functionally connected. 

At times interpretation may be difficult because connected brain regions may 

not always influence each other directly, but rather indirectly, or there may be 

another brain region that has an unnoticed influence. Nonetheless, fMRI 

analysis of human participants and patients at rest is very important for 

establishing a baseline of brain functioning.  

 The past years of rsfMRI have provided a more comprehensive list of 

different brain connectivity networks, called resting state networks (RSN), 
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which are observably active during rest and lessen in activation during task 

performance. The most notable RSN in terms of its consistent reproducibility is 

the default mode network (DMN) which includes the connected brain areas: 

posterior cingulate cortex, precuneus, medial prefrontal cortex, inferior parietal 

lobule, and lateral temporal cortex. In contrast, a task related network called the 

dorsal attention network (DAN), correlates negatively with the DMN and it 

contains regions associated with goal-oriented behavior. Utilizing rsfMRI as a 

tool to observe reproducible maps of activation has several potential clinical 

implications as well, because changes in these “baseline” networks could signal 

a potential neurological and/or psychological dysfunction (Bijsterbosch et at., 

2017; Yeo et al., 2011). 

 The usage of rsfMRI in clinical practice has the promising potential to 

provide biomarkers for certain neuropsychological diseases and disorders. 

Biomarkers are consistent observable measures of a normal medical state, and 

with these it is possible to compare and categorize different states as 

pathological. In the realm of neuropsychology, comparing normal RSNs to 

seemingly abnormal RSNs could help medical professionals to accurately and 

swiftly identify indications of diseases and disorders such as: Alzheimer’s 

disease (AD), PD, dementia, schizophrenia, anxiety, post-traumatic stress, 

ADHD, autism, and many more. A prime example of this was found by 

researcher Koch and colleagues (2010), in a study they conducted attempting to 

find a good analysis method for accurately diagnosing AD using resting state 

fMRI data. The researchers found that using a combination of Independent 

Component Analysis (ICA) -based techniques with time course correlation 

analyses enabled the categorical separation of healthy controls from AD 

patients; the reported accuracy was 97.2%, with sensitivity 100% and 

specificity 95.2% (Koch et al. 2010).   

 When rsfMRI is utilized to examine the brains of PD patients, 

interesting findings have been reported. Ghahremani et al. published research in 

2018 reporting differences in connectivity outside of the motor networks. Motor 

network alterations in PD patients compared to controls are commonly 

observed and also unsurprising (Wu et al., 2009), however changes in the 

DMN, for example, are very intriguing to find. Ghahremani and colleagues 
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used a seed-based correlation analysis as well as a novel persistent homology 

method to observe decreased global connectivity in PD patients off medication 

compared to controls both within and outside of the DMN. They also reported 

an increase in local brain connectivity in PD patients, and they concluded that 

these widespread connectivity differences are an indication that PD impacts the 

functioning and connectivity of the entire brain (Ghahremani et al., 2018). The 

following section overviews another method of MRI analysis used in the 

present study, brain matter morphometry.  

1.5 Brain Morphometry 

 The human brain is nearly as individual to every person as their own 

finger print, with varying sulci, gyri, and subcortical structures. Today is it 

actually relatively easy to observe every different brain’s architecture with 

sharp detail. MRI machines of 3-Tesla and higher provide detailed anatomical 

brain images, which in turn makes it possible for researchers to study the size 

and shape of the brain as a whole or in segregated parts. This computational 

method of measuring brain tissue is called brain morphometry, and today it is 

widely used as a tool for finding abnormal anatomical differences that 

consistently reflect the effects of aging, gender, the environment, disease, 

disorder, genetics, and more. MRI brain tissue measurements can be produced 

for both cortical and subcortical regions by utilizing one of two major modern 

methods: voxel-based or surface-based morphometry (Clarkson et al., 2011). 

There are other methods such as deformation and tensor-based morphometry, 

however they will not be further mentioned in this paper.  

 1.5.1  Cortical Measures 

 Voxel-based morphometry is the slightly older method of the two, first 

mentioned in 1995 (Wright et al.) and then the methods were updated and 

coherently standardized in 2000 (Ashburner & Friston). Surface-based 

morphometry is a more complex computational method that arose to combat 

some limitations of the voxel-based methods. Both measurement strategies 

involve a segmentation algorithm that separates the white matter, gray matter, 

and cerebrospinal fluid (CBF) using brightness/intensity values, as well as some 

form of image registration/normalization. Voxel-based methods use 
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preprocessed anatomical images and each individual voxel within a subject’s 

brain, to allow a statistical comparison of cortical size, thickness, volume, 

density etc. Voxel-based morphometry is straightforward and simple; however, 

voxels are geometric cubes with rather indirect biological interpretability, thus 

the method can be vulnerable to inaccuracies in terms of localization (Clarkson 

et al., 2011; Tucholka et al., 2012). Surface-based morphology on the other 

hand is more complex computationally. Essentially the method and algorithms 

produce cortical volume, thickness, and surface area measures by applying a 

triangular mesh surface model to both the pial and white matter cortical 

boundaries based on within-subject co-registration of common cortical folding 

patterns (Fischl, 2012; Tucholka et al. 2012).  

 Full, coherent comparisons and explanations of voxel/surface-based 

cortical morphometry methods are rather lengthy, but the main concept is that 

surface-based methods are more complex and have been consistently reported 

to be more sensitive and reliable than voxel-based methods (Clarkson et al., 

2011; Greve, 2011; Fischl, 2012; Tucholka et al. 2012). Surface-based methods 

are used in the present investigation to produce cortical thickness values and 

will therefore be further explained. The most popular software for completing 

surface-based cortical morphometry is Freesurfer (Fischl, 2012), which was 

developed in order to easily apply necessary algorisms and deformations to 

several input T1-weighted anitomical images. Freesurfer has been used to 

observe morphometrical differences between subjects and groups for the last 

decade with high reliability and spatial accuracy. Diseases and ageing are 

generally responsible for most of the noticeable cortical thickness changes in 

humans, and Freesurfer cortical analysis has been reported to be very useful in 

detecting such changes (Fischl, 2012; Fjell et al., 2006; Righart et al., 2017). A 

recent 2018 study by Radziunas and colleagues used the software to find 

significant cortical thickness differences in PD patients relative to their specific 

manifestations of sleep disturbances. A study in 2016 by Geritts and researches 

reported cortical thickness and surface area changes in PD patients compared to 

controls both in general and in relation to cognition. These are just two 

examples, but the point remains that Freesurfer is a widely used cortical and 
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valid measurement tool with several clinical applications (Geritts et al., 2016; 

Radziunas et al., 2018).    

 1.5.2  Subcortical Measurements 

 The process of quantifying the brain in terms of volume becomes more 

complicated below the cortex. Subcortical brain regions such as parts of the 

basal ganglia, the amygdala, thalamus, hippocampus, etc. can be varying in 

density with tissue borders seeming rather arbitrary. Segmentation and 

categorization of subcortical structures may be done manually or automatically. 

Scan-rescan reliability measures based on automatic segmentation tend to be 

much lower for subcortical structures, but manual segmentation is unfortunately 

very time consuming and impractical (Morey et al., 2010). Freesurfer 

developers decided to program the segregation of the subcortical brain into 40 

interpretable structures by designing an automatic process in which every single 

voxel in the individual’s normalized brain is categorized based on a probability 

atlas they constructed. This voxel-based method is very pragmatic and 

interpretable, and like cortical methods, has several clinical and applied benefits 

(Fischl, 2012).  

 Changes in subcortical volumes have been reported in several clinical 

populations such as AD patients, schizophrenic patients, severely depressed 

individuals, and many additional groups. A 2015 article published in Nature: 

Molecular Psychiatry reported findings by van Erp et al., which were a 

comprehensive list of subcortical regions affected by schizophrenia, based on a 

sample size of over 2,028 patients and 2,540 healthy controls. This study used 

Freesurfer’s automatic segmentation to find that schizophrenic patients display 

decreased volume in the amygdala, hippocampus, thalamus, and accumbens as 

well as increased volumes in the ventricles and pallidum (van Erp et al., 2015). 

Subcortical changes in PD, however, are less prominent with some studies 

reporting no significant findings. Messina and colleagues (2011) used 

Freesurfer’s segmentation to search for subcortical differences between PD 

patients, multiple system atrophy patients, progressive supranuclear palsy 

patients, and healthy controls. The researchers found several subcortical 
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atrophies in all clinical groups except for the PD group, which produced no 

significant differences at all (Messina et al., 2011).                            

1.6 Parkinson’s Disease and Olfaction 

The puzzling connection between PD and its common and early-onset 

olfactory symptom is one that should be investigated thoroughly. However, 

brain activity and structural changes due to the non-motor symptoms of PD, 

specifically hyposmia, can be rather complicated to observe with MRI. Very 

few studies have attempted to find an observable relationship between the 

hyposmia and PD, regardless of the potential clinical benefits, because imaging 

studies already have been reporting inconsistent results when imaging PD 

pathology alone. A meta-analysis published in 2017 assembled brain imaging 

attempts to find PD biomarkers, and the results were quite direct: 

rsMRI/structural MRI studies aiming to successfully distinguish PD patients 

from healthy controls, rarely produce significant findings unless the PD patients 

are already further along in disease progression and/or off medication at the 

time of scanning. Unfortunately, if PD cannot be consistently imaged and 

identified in the early pre-motor stages, the opportunity to utilize rsMRI or 

brain morphometry as a diagnostic tool diminishes (Tuite, 2017). By all means, 

there are a few task-based fMRI and PET studies reporting significant findings 

related to olfaction and PD, but they are few indeed (Hummel et al., 2010; Su et 

al., 2015; & Westermann et al., 2008). Hummel et al. (2010) for example, found 

significant activity decreases in the amygdala, hippocampus, and ventral 

striatum in PD patients compared to controls when introduced to odors in the 

scanner. Even though there are limited publications exhibiting notable brain 

changes in PD patients with hyposmia, there is still optimism for future findings 

as MRI technology and analysis methods consistently evolve.   

Some structural and functional MRI research in recent years has been 

able to display some results identifying brain changes related to cognitive 

decline in PD patients (Doty, 2012). Other studies have also reliably reported 

that severely hyposmic PD patients have a much greater chance to also develop 

or possess cognitive and psychotic symptoms. Morley et al. in 2011, found a 

strong correlation between PD patients with hyposmia and executive 
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functioning deficits, memory deficits, and psychostic symptoms. They then 

concluded that hyposmia is pathognomonic of other nonmotor symptoms, and it 

may not only serve as a pre-diagnostic biomarker for PD, but also as an 

indication for disease progression and development of more debilitating 

nonmotor symptoms. (Morley et al., 2011). Since the nature of olfactory 

dysfunction is both a failure of sensory and cognitive systems, with very strong 

correlations to other aspects of cognition, imaging hyposmia in PD patients 

could yield groundbreaking clinical interpretations. For example, MRI as a tool 

to calculate the potential risk of PD patients developing mild cognitive 

impairments or even dementia (Baba et al., 2012; Fullard et al., 2016; Morley et 

al., 2011). 

1.6.1 Yoneyama et al. 2018 study 

The rapidly growing clinical attention to resting state fMRI and 

structural brain morphometry sparks hope to an approaching revelation of clear 

understanding about the manifestation of neurological and psychological 

disease in greater detail. To date, the olfactory functioning in PD patients has 

rarely demonstrated observable significant alterations in brain connectivity or 

tissue atrophy. One exception is the paper that provided the data for the present 

study. Yoneyama and colleagues performed three types of analyses on the brain 

scans of 45 cognitively normal participants, a third of which were healthy age-

matched controls, a third were PD patients with mild or no hyposmia, and 

finally a third of the group were PD patients with severe hyposmia. More 

information on the patient demographics and categorization methods can be 

found in the methods section 2.1. The analysis methods selected by Yoneyama 

et al. were a cortical grey matter volume analysis and both a seed-based 

correlation connectivity analysis as well as a whole brain canonical resting state 

fMRI connectivity analysis (Yoneyama et al., 2018). 

The results of the voxel-based grey matter volume comparison 

displayed significant increases and decreases in grey matter between controls 

and the PD group with severe hyposmia. The decreases were observed in the 

PD hyposmia group in the following regions: “the bilateral cuneus, right 

associative visual area, precuneus, middle temporal gyrus, superior frontal 
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gyrus, middle frontal gyrus, inferior frontal gyrus corresponding to the 

operculum, superior temporal gyrus, precentral gyrus, and middle temporal 

gyrus” (Yoneyama et al. 2018, pp. 6). The grey matter volume increases were 

reported in the posterior insula and surrounding regions in the brains of the PD 

severe hyposmia patients, and the changes were also significantly correlated to 

their smelling scores. These increase volume findings were also significant 

when compared to the PD group with hyposmia. Figure 1 is a visual 

representation of the significantly different clusters. The interpretation provided 

by Yoneyama and colleagues for these decreases were that these affected brain 

regions correlate to higher level olfactory functioning in terms of odor intensity 

and quality discrimination, odor recognition, and passive smelling. The reported 

increase in grey matter, however, is a bit more abstract and difficult to explain 

(Yoneyama et al., 2018).    

  

 

 

 

 

 

 

 

 

 

 

 

 

The results of Yoneyama’s seed-based correlation analysis (SCA) were quite 

notable, with significant and widespread changes in connectivity between the 

Figure 1: the grey matter volume decreases and increases reported by 

Yoneyama et al. (2018) can be observed above. The yellow clusters are 

significantly different in size between groups (p < 0.05) after the family-

wise-error correction for multiple comparisons, and the cluster significance 

threshold is set to p < 0.001. (Yoneyama et al. 2018, pp. 7; Fig 1)  



 

15 
 

three nuclei of the amygdala “seeds” and several other brain regions. These 

differences of decreases and increased functional connectivity were observed 

between the PD patients with severe hyposmia and the healthy control group. 

There were also mild significant connectivity decreases between the PD group 

with severe hyposmia and the PD group without. These findings were also 

examined with dual-regression and were significantly correlated with individual 

smelling and cognitive performance scores (Yoneyama et al., 2018). 

 Finally, Yoneyama et al. applied a data-driven ICA analysis paired with 

dual-regression to search for and discover changes in canonical resting state 

brain network connectivity. They uncovered a decrease in connectivity between 

controls and PD Patients with severe hyposmia within the precuneus network, 

as well as an increase in connectivity within the high and primary visual 

networks. Both of these findings were significant (p < 0.05). Significant 

changes between controls and PD hyposmic patients were also reported 

between several canonical networks and brain regions outside of these networks 

(Yoneyama et al., 2018). These significant results will be presented in Figure 2.   

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2: These are the GICA-DR rs-fMRI results reported from the 

Yoneyama et al. 2018 paper. In section a, above, the within network 

functional connectivity changes can be observed, both increases and 

decreases. In section b the between network connectivity alterations are also 

presented. The significant between group differences (p < 0.05) are only 

between the HC and PD/SH, and are corrected for multiple comparisons 

(Yoneyama et al., 2018, pp. 10).  
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1.6.2 Hypotheses 

 The study by Yoneyama et al. (2018) published novel and astonishing 

significant differences between control participants, and cognitively normal PD 

patients with and without severe olfactory deficits. The authors were helpful in 

providing public access to their study data that is analyzed in the present study. 

Lack of prior, consistent results in the search for seemingly elusive statistical 

differences in brain structure and connectivity in PD patients with and without 

olfactory deficits, make the task of choosing analysis methods and forming 

hypotheses rather daunting. It must first be noted, that the present study is by no 

means an exact/direct replication study, conversely it is a conceptual replication 

study with contrasting methodological decisions with the goal of producing 

similar results.  

 A group ICA-based data analysis paired with dual-regression was 

selected to search for rsfMRI connectivity between-group differences and 

additionally within-group differences relative to smelling scores. It is 

hypothesized that there will be significant differences in resting state networks 

between the healthy control group and PD group with severe hyposmia. An 

analysis of both subcortical and cortical brain volume morphometry was also 

performed with the intention of discovering brain volume discrepancies 

between groups. The hypothesis is that there will be significant cortical 

differences between groups, specifically the severely hyposmic PD group and 

controls. Hypothesized changes in subcortical volumes as well as overall 

specifically defined brain regions or networks affected by PD and hyposmia 

cannot be hypothesized due to lack of available and reliable published results. 

        

2 Methods 

2.1 Dataset 

 The dataset used for the present investigation was downloaded from a 

previous study published in 2018 by Yoneyama and colleagues. The data zip 

file was downloaded from a website called OpenNeuro.org (Access number: 

ds000245), and contained the structural and functional, raw fMRI data from 45 
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participants. Also provided in the file was a list of the participants’ age, OSIT-J 

scores, ACE-R scores, and PD participants’ respective disease duration time in 

months as well as their diagnosis age. The MRI scanning specifics were also 

made available and will be stated in the MRI acquisition section 2.1.4 on page 

19.  

2.1.1 Participants  

 The 45 (N = 45) included participants were recruited and scanned by 

researchers at the Nagoya University Department of Neurology. All participants 

were between the ages of 55-75 years old, 25 females and 20 males (female: n = 

25; male: n = 20). All participants that reported having a history of other 

neurological/psychological diseases and/or a family history of Parkinsonism 

were excluded. To help minimize the potential for motion artifacts, tremor 

dominant PD patients as well as patients with focal deep white matter 

abnormalities, characterized by severe hyperintensities in the T2-weighted MRI 

images, were also excluded. The clinical PD participants were diagnosed after 

the age of 40 and diagnosed according the UK Brain Bank criteria; their disease 

progressions were categorized based on the Hoehn Yahr (HY) stages. Informed 

consent signed by all participants and ethical approval procedures were carried 

out by Yoneyama (2018) and colleagues in collaboration with the Nagoya 

University Graduate School of Medicine ethics committee. A table of 

participant’s demographics is provided in Appendix A.       

 2.1.2 Neurocognitive Tests  

 All 45 participants were tested with the Odor Stick Identification Test 

for the Japanese (OSIT-J)(Kobayashi, 2015). This smell test is one comprised 

of 12 different odors that are familiar to Japanese people, and it is used 

clinically in Japan quite often. The smell is presented from a pen-like device 

and participants must select one of six possible answers; four main answers 

contain the one correct answer and the three other incorrect answers, and the 

last two possible answers are either that they do not know what they are 

smelling or that they cannot smell anything at all. Based on the final scores of 

the healthy controls (0-12 possible), all PD participants were categorized into 

two separate groups. The healthy control group had a mean OSIT-J score of 
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8.3/12 with a standard deviation (SD) of 2.2, which is within the normative 

range for the age group. PD patients with scores at least 1 SD below the control 

groups (>6/12) were categorized as having mild/moderate hyposmia (PD/MH) 

and patients scoring more than 2 SDs below the controls (>4/12) were 

categorized as having severe hyposmia (PD/SH). Scoring divided the PD 

patients into two groups of 15 people, coincidentally creating three equally 

sized groups: HC (n = 15), PD/MH (n = 15), and PD/SH (n = 15). It is 

important to note that the mean age between the HC group (M = 63.3 years, SD 

= 5.2 years) and PD/SH group (M = 70.7 years, SD = 4.8 years) differs 

significantly (p < .001) (Yoneyama et al., 2018).  

 All participants were also tested for potential cognitive impairments 

with the Addenbrooke’s Cognitive Examination Revised (ACE-R). The ACE-R 

is a test battery for evaluation of cognition within five different categories: 

orientation and attention, memory, verbal fluency, language, and visuospatial 

ability. The ACE-R has an overall maximum score of 100, and the test also 

provides a Mini Mental State Exam (MMSE) score (0-30 possible). All 

participants scoring below or equal to 88 on the ACE-R were considered to 

have some cognitive impairment, and therefore were excluded from the study 

(Yoneyama et al. 2018). 

 2.1.3 PD Evaluations 

 Prior to Neurocognitive testing, all PD participants were thoroughly 

examined and categorized. The stage of the disease progression for each patient 

was calculated utilizing the modified Hoehn and Yahr scale containing stages 

0-5 (modified version contains additional stages 1.5 and 2.5). All patients 

included in the present study were between stages 1 and 3, most were in stage 2 

(M = 2.0). Whether or not PD patients’ disease manifestations were right side 

dominant, left side dominant or bilateral was also recorded. Every PD patient 

was on medication, and a calculated Levadopa Equivalent Daily Dose (LEDD) 

score is provided. Finally, all PD patients were evaluated and scored with the 

Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s 

Disease Rating Scale (MDSUPDRS) parts one through four. Part one rates non-

motor symptoms in everyday life, part two rates motor symptoms in everyday 
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life, part three scores a motor examination, and part four rates motor 

complications on a 0 – 4 scale. PD patients who reported experiencing 

hallucinations, anxiety, depression, dopamine dysregulation syndrome, apathy, 

and/or psychotic behaviors were also excluded (Yoneyma et al. 2018).  

 2.1.4 MRI Data Acquisition  

All MRI scans were acquired at the Nagoya University, Brain and Mind 

Research Center with a Siemens Magnetom Verio 3.0 Tesla scanner. A 34-

channel head coil was used, and PD patients scanned “ON” medication. The 

scan specifics are as follows: “T1-weighted images (repetition time [TR] = 2.5 

s, echo time [TE] = 2.48 ms, 192 sagittal slices with 1-mm thickness, field of 

view [FOV] = 256 mm, 256 × 256 matrix size) were acquired for anatomical 

reference. Total scanning time for the T1-weighted images was 349 seconds. 

rsfMRI scans (8 min, eyes closed) were also acquired (TR = 2.5 s, TE = 30 ms, 

39 transverse slices with a 0.5-mm inter-slice interval and 3-mm thickness, 

FOV = 192 mm, 64 × 64 matrix dimension, flip angle = 80 degrees)” 

(Yoneyama et al., 2018, pp. 4). 

2.2 Resting-State Analysis 

2.2.1 Preprocessing 

 Before preprocessing, the brain images of each subject were visually 

inspected for potential problems or artifacts. The raw T1-weighted images were 

then preprocessed initially with FMRIB’s Software Library (FSL, version 5.09) 

(FMRIB’s Software Library, Oxford, UK; Smith et al., 2004) anatomical 

preprocessing script, fsl_anat. This script runs the images through its standard 

preprocessing pipeline of reorientation to the MNI152 template (Evans et al., 

1993), cropping, bias field correction, registration, brain extraction, tissue 

segmentation, and subcortical structure segmentation. However, a follow-up 

visual inspection of the output preprocessed anatomical brain images revealed 

obvious technical issues with the brain extraction step, which uses brightness 

values to discriminate the skull from the brain, and then remove the skull and 

everything outside of it from the image. The threshold determining which 

tissues are classified as brain matter or skull was then altered several times, 

with only slight improvements. Therefore, the anatomical preprocessing was 
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redone using the Advanced Normalization Tools Software package (ANTs) 

(Avants et al., 2011), which has very different methods of brain extraction, 

registration, and segmentation. The brain extraction is done by using a hybrid 

segmentation/template-based strategy, and the ANTs compatible T1-template 

selected was the available OASIS brain template created from a sample of 

adults with a wider range of age (Avants et al., 2010). The resulting output 

preprocessed T1-weighted images were much more accurately extracted and 

usable, in contrast.  

T2-weighted BOLD functional images were preprocessed using FSLs 

FEAT (FMRI Expert Analysis Tool, FMRIB’s Software Library, Oxford, UK; 

Smith et al., 2004; Jenkinson et al. 2012). The first four volumes were removed 

to correct for artifacts relative to the time in which the MRI scanner’s magnetic 

field reaches equilibrium. The BOLD images from each subject were then 

motion corrected with MCFLIRT (Jenkinson et al., 2001;2002) and brain 

extracted was completed with BET. A spatial smoothing with a 6 mm Gaussian 

kernel (FWHM) was applied and the images were then registered with their 

corresponding structural images produced by ANTs. Both structural and 

functional images were normalized to the MNI152 standard space with an 

isotropic voxel resolution of approximately 2 x 2 x 2 cubic mm. The high-pass 

filter was not used, to prepare for the following noise reduction.   

 2.2.2 ICA-AROMA 

To prepare for the ICA-based group analysis, the preprocessed T2 scans 

underwent an individual ICA-based stochastic noise reduction strategy called 

ICA-AROMA (ICA-based Automatic Removal of Motion Artifacts; Pruim et 

al., 2015). This robust, FSL compatible, nonparametric method statistically 

divides BOLD data into independent and spatially structured components. 

These components can then be categorized as “real” activation components 

reflective of a BOLD signal influx or conversely noise components reflective of 

biological or hardware related artifacts. The resulting ICA-AROMA spatial 

map components and accompanying frequency spectra values were first 

checked for quality, and then the automatically and corrected (denoised) output 

images were deemed suitable for the following analysis. ICA-AROMA’s 
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automated classification system works by employing dual-regression and 

regressing out the noise components, the corrected data used in the group 

analysis were corrected non-aggressively. This nonaggressive categorization 

means the algorithm only removes components uniquely uncorrelated with 

obvious BOLD activity components. Conversely, strict aggressive regression 

techniques remove all components with unexplained variance even if some of 

the variance is shared with the real signal components (Prium et al. 2015). 

The advantage to using this ICA-AROMA is mainly that it is an 

extremely data-driven method that requires no prior hypotheses about what 

constitutes noise artifacts. This method simply analyzes brain signals in their 

entirety at every voxel, and then provides a clear categorization of these signals. 

The other benefit to this method is that it preserves the temporal characteristics 

and degrees of freedom (tDoF) in the data. This consequently improves the 

statistical power of further comparisons, as well as overall reproducibility. ICA-

AROMA has been evaluated in comparison to other “denoising” techniques, 

such as motion scrubbing, nuisance regression with 6 or 24 motion parameters, 

spike regression, and ICA-FIX. The ICA-AROMA method has consistently 

been reported to perform very accurately in comparison. ICA-AROMA also 

doesn’t require a retraining-classifier like the alternative ICA-FIX (Salimi-

Khorshidi et al., 2014; Graffanti et al., 2014) method (Pruim et al., 2015).   

 2.2.3 GICA and Dual-Regression 

FSL’s MELODIC (Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components, FMRIB’s Software Library, 

Oxford, UK) function decomposes the noise-corrected BOLD images from each 

individual subject, temporally concatenates them, analyzes the temporal and 

spatial patterns of activation signals, and finally separates these patterns into 

statistically independent components reflective of the entire or partial canonical 

resting state networks. The dimensions, or number of output components, can 

be either automatically generated or set prior. A standard image for 

normalization can be either a standard template, such as one generated using the 

MNI, or a template created from the participants’ data. For the present study, a 

template for the GICA was generated using the data from the 15 HCs. This 
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template created in MELODIC was also 2 x 2 x 2 cubic mm in resolution with 

12 DoF. The ICA analysis was run twice, both with 20 and 30 components to 

examine the differences in resulting interpretability of resting-state networks 

relative to the dimensionality choices. 20 – 30 components are highly 

recommended as the proper dimensionality for the model to be an optimal fit.  

Functional images were high pass-filtered with a cutoff value of 150 seconds 

(0.007 Hz), each subject’s functional data was registered to their corresponding 

structural images and normalized to the HC template created. Time courses 

were also variance-normalized (Bijsterbosch et al., 2017; FMRIB’s Software 

Library, Oxford, UK).   

 For the 20 and 30 component ICA results, dual-regression was applied 

using a simple dual-regression shell script and group comparison contrast files 

created in FSL’s GLM setup. Dual-regression analysis of the ICA components 

operates, and outputs results in three stages: the first stage finds and outputs the 

subject-specific time courses using group-ICA spatial maps. The second locates 

subject-specific spatial maps using the time courses from stage one. Finally, the 

third stage performs a group analysis using the stage two spatial maps together 

with contrast files. The permutation number to correct for multiple comparisons 

was set to 5000 and the statistical values were calculated with an FSL function, 

randomize (Winkler et al., 2014), which employs a useful cluster-wise 

threshold enhancement technique (TFCE) (Smith & Nichols, 2009).  

The main design files and contrasts were set up to run an ANOVA 

statistically comparing the components of all three groups, and three additional 

design files were created with age, smelling scores, and cognition scores as 

additional regressors (ANCOVA). No significant effects within-groups could 

be observed as a result of the covariate age; therefore, the effects of age were 

not regressed out. The final output was both 20 and 30 component statistical 

maps containing clusters of activation differences between the three groups, 

every component and accompanying significance values. Artifact components 

not reflective of interpretable brain activity were manually identified and 

removed from further interpretation. The concept of this group ICA in 

combination with dual-regression can be visualized in figure 3. 
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Figure 3: Group ICA (Nickerson et al., 2017) 

 

 

 

 

 

 

 

 

 

Dual-regression paired with the ICA-based analysis produces a method 

that has consistently performed well in comparison to other techniques for 

resting-state network comparison. The advantage to this method is that it is 

data-driven, thus requiring no hypotheses or regions of interest selected 

beforehand like in seed-based rsfMRI methods. Every voxel is analyzed and 

there is a diminished potential of missing a significant difference in BOLD 

signal between subjects or groups. Alternative ICA-based methods commonly 

utilize “back-projection” for between subject statistical maps. The multiple 

linear regression approach presented here “estimates spatial and temporal 

dynamics at the subject level based on regression against the original data rather 

than estimating subject-specific maps by means of ‘back-projection’. In the 

back-projection approach the estimated spatial maps necessarily lie within the 

space defined by (the pseudoinverse of) the initial subject-specific major 

Eigenspaces (PCA). As such, the final between-subject comparison (e.g. 

inference on the between-group difference) becomes dependent on the initial 

subject-specific reduction stages.” (Beckmann et al., 2009, pp. 1). This 

alternative method is quite efficient, in terms of computation, but the statistical 

comparison interpreted from these back-projection maps tend to present a lot of 

Type one and two errors (Beckmann et al. 2009, Zuo et al., 2010). Nickerson et 

al. (2017) provides a comprehensive explanation and evaluation of this group 
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ICA-dual-regression (GICA-DR) approach, and also reports that this method is 

excellent in terms of validity, reliability, and overall reproducibility.          

2.3  Brain Morphometry 

Both cortical thickness values and subcortical brain tissue volumes were 

extracted with the popular automated Freesurfer software (Martinos Imaging 

Centre). Freesurfer requires no prior preprocessing and works automatically by: 

removing all non-brain tissue using a “hybrid watershed algorithm” (Segonne et 

al., 2004), a custom bias field correction, transforming the images to the 

Talairach standardized brain (Lancaster et al., 200), segmenting most visual 

brain structures, preforming an intensity normalization, aligning and 

parcellating images based on cortical folding patterns (Desikan et al., 2006; 

Fischl et al., 2004), estimating architectonic boundaries from training data, 

mapping cortical thickness/volume/surface area measures, and constructing 

surface models of the cerebrum one hemisphere at a time (Fischl & Dale, 

2000). For all 45 subjects, a directory containing all T1-weighted structural 

images was input with a script, and automatically processed by Freesurfer.    

The following comparison of cortical gray matter median thickness 

values and median subcortical structure volumes was independently conducted. 

The cortical regions and their accompanying labels were parcellated based on 

the Destrieux et al. (2010) atlas. The cortical atlas is based on a parcellation 

scheme that essentially divides the cortex based on patterns of cortical folding. 

The gyri and sulci are categorized by a curvature value threshold, with a gyrus 

including cortex visible on the pial surface and a sulcus is marked as nonvisible 

tissue (Fischl et al., 2004; Destrieux et al., 2010). The 40 subcortical regions 

were segmented and labeled with Freesurfer’s automated Aseg atlas (Fischl et 

al., 2002).  Both the median values for the subcortical volume as well as median 

thickness values of the cortex were extracted into a table. From the 40 

subcortical regions the ventricles, CSF, white matter, brain stem, etc. values 

were deleted from further analysis. The remaining 32 subcortical volumes for 

each participant were analyzed in SPSS version 25.0 for Macintosh (IMB 

Corp.), where they were determined to be abnormally distributed; therefore, a 

Kruskal-Wallis nonparametric H-test was performed. The 72 median cortical 
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thickness values for each hemisphere were also compared in SPSS; however, 

the values were more normally distributed. Therefore, between groups 

comparisons were made with an ANCOVA.  

 

3 Results   

3.1 GICA – Dual-Regression Results 

 The ICA-based group analysis was run with 20 and 30, figure 4 is an  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: the spatial images to 

the left are the output 

independent components (IC) 

from the initial ICA analysis, 

after the denoising and before 

dual-regression. These are 12 of 

the 20 total components, 8 

components were removed and 

considered to be artifact 

components. The 4 brain images 

selected for each component 

were chosen because they 

provide the best spatial 

interpretability. The horizontal 

plane image sequences go 

dorsally; from the bottom of the 

brain (left) to the top (right). 

The left hemisphere is pictured 

on the top part on the images, 

right hemisphere on the bottom. 

These images provide an insight 

into the robust gICA method for 

resting state analysis. This data-

driven method is exploratory, 

and all components were 

generated based on temporal 

and spatial patterns within the 

dataset.   
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image of 12 out of the 20 ICs that were deemed representative of partial or 

complete canonical resting state networks, and the remaining eight artifact 

components were excluded. The dual-regression comparison of components 

between all three groups (ANOVA) yielded no significant differences in the IC 

networks. The same analysis was completed two additional times with each 

individual’s smelling scores and ACE-R overall cognition scores as regressors, 

the resulting differentiating clusters were also nonsignificant.  

The same ANOVA was completed on the second ICA-output with 30 

components, 16 of which were considered to be “real” BOLD activation 

components (figure 5). The group comparison revealed a cluster of activation in  
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Figure 5: Above are the spatial maps of the 16 ICs selected from the 30 ICs, rather 

than 20. Some ICs look identical to the ICs in Figure 4, while some IC maps seem 

to be less interpretable and split. For example, IC8 in Figure 4 seems to be a 

combination of IC9 and IC22 in this figure. These images were produced before 

the dual-regression analysis and do not represent changes between groups. The 4 

images per IC are going ventrally in this figure (top to bottom), and the images are 

mirrored with the right hemisphere visualized on the left side.   
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the cerebellar component, more activated within the control group than the 

PD/SD (p = 0.019). This cluster was relatively small, made up of approximately 

176 voxels. In addition, applying a Bonferroni correction for multiple 

comparisons (0.05/# of usable components) would set the significance threshold 

to p < 0.003. Therefore, this result is not considered significant. The smelling 

scores and cognition scores were also added as additional regressors in the 

group comparison, once again with no significant findings. 

3.2 Subcortical Volume Results 

 A nonparametric, independent-samples Kruskal-Wallis H-test was 

performed in SPSS (IBM Corp.; version 25.0) to find significant group effects 

in the medium volumes of 16 subcortical segments in each hemisphere. No 

significant differences can be reported. The 32 overall subcortical regions, 

separated by hemisphere, and their corresponding p-values, ranging from p < 

0.073 – 0.915 are available in Appendix B. 

3.3 Cortical Thickness Results 

 Median thickness values calculated for all participants by Freesurfer, 

across all cortical regions were automatically parcellated utilizing the Destrieux 

Atlas (Destrieux et al., 2010). These values were then analyzed in SPSS version 

25.0 (IMB Corp.) and were determined to be normally distributed (p = 0.003). 

Therefore, an ANCOVA was selected to identify the potential group effect with 

total intercranial volume and age as regressors of no interest. The results of the 

ANCOVA produced no significant findings comparing HCs, PD/MHs, and 

PD/SHs. 

 

4 Discussion 

4.1 Summary of Results 

 There were no significant results observed in the comparison of 

canonical resting state networks between the HC group, PD/MH group, and 

PD/SH group. There were also no reportable differences in subcortical brain 
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volume in 32 predefined structures as a result of PD or hyposmia. Nor were 

there significant changes in cortical thickness between groups.   

4.2 Preservation of RSNs 

 The results support the null hypothesis, that PD patients on Levedopa 

have relatively preserved resting-state networks completely independent of the 

non-motor symptom hyposmia. There are very few studies reporting a severe 

change in the FC of PD patients in the “on” medication state (Yoneyama et al. 

2018). The contradictory result of significantly unaltered resting connectivity in 

earlier-stage PD patients on medication is one that has been more often 

reported. Baggio and colleagues released a study this year (2019) comparing 

resting-state networks of PD patients on medication, MS patients on 

medication, and healthy controls with almost the exact same ICA and dual-

regression methods in the present study. Their findings were the same: they 

only reported significant resting-state network alterations in the cerebellar 

component between PD patients and MS patients, and none between the PD 

patients and the healthy control group (Baggio et al., 2019). 

 Baggio et al. also released a study in 2015 comparing PD patients on 

medication with and without measurable cognitive decline to healthy controls 

using the same methodology, and only found significant resting-state network 

changes correlated with cognitive decline; not PD pathology. Bell et al. (2015) 

also report a medication induced preservation of brain connectivity when 

comparing PD patients both on and off their Levedopa medicine with HC. 

Therefore, the strong assumption can be made that the absence of significant 

differences in FC between PD patients and controls in the present study is a 

direct consequence of the PD patients being scanned on medication (Baggio et 

al., 2015;2019 & Bell et al. 2015).       

4.3 GICA-DR Methodology  

 The completely conflicting results of the ICA/dual-regression analysis 

presented here, in comparison to Yoneyama et al.’s 2019 published results, 

illuminate a widespread issue in fMRI research. fMRI study results are often 

unreproducible even with the exact same data set and similar methodology. 

This study was a conceptual replication; therefore, methodological choices must 
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be compared and rightfully criticized. To begin, Yoneyama and colleagues 

regressed out effects of age and gender, using the data from the HC, before each 

analysis was ever performed. This was a rather unnecessary step, because in the 

present analysis the GICA-DR was completed with age as a regressor only to 

discover that age had no significant effect on FC. Regressing out variables prior 

to normalization that don’t have an obvious and measurable effect on the data is 

not recommended because it could unnecessarily disrupt the data, potentially 

causing more type 1 errors (Pain et al. 2018). 

 The next methodological limitation in the Yoneyame et al. (2018) study 

was that they preprocessed their anatomical images using FSL FEAT (FMRIB’s 

Software Library, Oxford, UK; Smith et al., 2004; Jenkinson et al. 2012), which 

of course included the BET brain extraction function. This is problematic, 

because when this same preprocessing step was performed in the current study 

the resulting T1- weighted images were extracted incorrectly and not in anyway 

usable. This resulted in the switch to ANTs (Avants et al., 2010) for structural 

image preprocessing and brain extraction. The following image in Figure 6 

shows the difference in performance between FSL’s BET brain extraction and 

ANTs in one of the healthy control subjects.  

 

 

 

 

 

 

 

 

 

 

BET BRAIN EXTRACTION 

ANTs BRAIN EXTRACTION 

Figure 6: Above are two examples of structural T1-weighted brain images, preprocessed and 

extracted with two different software packages and skull stripping methods. The images are from 

the same subject (HC 6). The ANTs brain extraction default settings outperformed FSL’s BET 

tool default settings.  
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It is unclear whether or not the researchers in the previous study used the 

default settings for the brain extraction, which produced the result pictured 

below. It is also not known why FSL’s normally very accurate program 

performed so poorly on this dataset.  

The remaining choices in methodology that differ between the current 

investigation and the prior will not be criticized, only stated. The denoising 

technique chosen by Yoneyama et al. (2018) was a nuisance regression of brain 

signals correlated with head motion, as well as the mean and temporally shifted 

signals from the CSF and white matter. This method is relatively good; 

however, ICA-based noise reduction methods have been reportedly more 

accurate and reproducible due to their data-driven complexity (Prium et al., 

2015; Carone et al. 2017). The final GICA-DR analysis performed was 

essentially the same, except Yoneyama and researchers (2018) used the MNI 

standard brain template as opposed to a custom one, and they only ran the 

analysis with 30 components. Therefore, it can be reasonably inferred that the 

drastic differences in FC results are due to differences in preprocessing, 

denoising methods, and/or the choice to use a custom ICA-based templated for 

the dual-regression rather than a standard one.  

One limitation to GICA itself, is that the selection of components is 

typically done manually, which leaves room for human error. Most of the 

components and their respective time-frequency spectra were rather easy to 

interpret, but there were still a few components that were more difficult to 

categorize. GICA also presents another reproducibility issue, and it is apparent 

when the same analysis is run more than once. Each run through of the GICA 

(as well as the single subject ICA denoising) produces components in a 

different order and maybe even slightly varied. These variances may be slight, 

but it is not feasible to ever expect the same exact output component. 

Nonetheless, the trade-off is that this method is completely exploratory and 

requires no prior assumptions about the temporal/spatial patterns or RSNs 

(Bijsterbosch et al. 2017). One additional limitation to the present GICA 

analysis would be that the GICA template for the dual-regression analysis was 

created with the HC group, and this is not recommended. This decision was 

made with the assumption that RSNs probably don’t differ too much between 
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subjects, but it still may have caused some statistical biases. ICA-based analysis 

methods also tend to perform poorer on small sample sizes and noisy data 

(Bijsterbosch et al., 2017). The number of participants in the present study isn’t 

too small, but the data quality for some subjects was rather noisy.     

4.4 Preservation of Brain Structure 

No statistically significant changes in subcortical or cortical regions 

consequent of PD or hyposmia can be reported. Brain atrophy observations play 

a notable role in the detection of disease or disease progression. A few studies 

report being able to use brain morphometry techniques to accurately 

discriminate between PD patients without dementia or other non-motor 

symptoms and HCs (Adeli et al., 2016; Bowman et al., 2016; Peng et al., 2017; 

& Nemmi et al., 2019). Though, most brain morphometry research only 

suggests atrophic changes in brain matter relative to PD with other non-motor 

symptoms, such as: dementia (Pan et al., 2013), visual-hallucinations (Ibarretxe-

Bilbao et al., 2010), or depression (Kostic et al., 2010). Wattendorf et al. (2009) 

even reported significant differences in brain volume in both the piriform cortex 

and amygdala in PD patients with hyposmia.  

On the other hand, there are a multitude of studies reporting the 

opposite, and stating that atrophic changes in brain volume or cortical thickness 

in cognitively normal PD patients are incredibly subtle and nearly impossible to 

image in the early stages (Messina et al., 2011; Peran et al., 2018; Pitcher et al., 

2012). Messina and colleagues, for example, observed the brain’s volumetric 

characteristics in HCs, progressive supranuclear palsy patients, multiple system 

atrophy patients, and PD patients. The researchers only reported significant 

differences in volume between the PD group and other clinical groups, and PD 

brains were indistinguishable from the brains imaged from the HC group. In 

addition, a meta-analysis of techniques to image PD pointed out that: “Atrophy 

ultimately occurs in PD; however, in previous studies of those with mild PD it 

is rather controversial as to whether there is atrophy, no change or an increase 

in brain volume.” (Tuite, 2017, pp. 2). Therefore, it is assumed that the findings 

in this present study highlights the controversy of whether or not it’s possible to 

use structural brain images and morphometry to consistently discriminate 
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between mild PD patients categorized as cognitively normal and healthy 

controls.  

4.5  Freesurfer Methodology  

Yoneyama and colleagues reported a number of gray matter volume 

changes in the PD/SH group compared to HC, and the present study reports 

none. Yoneyama et al. performed their voxel-based gray matter volume analysis 

manually with SPM. Freesurfer (Martinos Imaging Centre) automatically 

produced the cortical thickness values and subcortical volumes for all 

participants in this current study, and it has even been reported that Freesurfer 

performs very similarly to manual voxel-based methods in clinical populations 

(Lehmann et al., 2009). So, the inability to reproduce these results is somewhat 

puzzling. An assumption can be made that the Yoneyama et al. researchers 

regressed out effects of age and gender before the analysis, and that step was 

skipped in this study. Another limitation in the present study is that the images 

and values produced by Freesurfer were completely automated, and it would 

have been preferable and wise to apply a quality control on the data to correct 

for any problems.    

  Another potential reason for the lack of several morphological changes 

might be that Freesurfer performed poorer due to the asian ethnicity of the 

participants and their statistically different volumes, thicknesses, and surface 

areas in comparison to Caucasian brains (Chee et al., 2011; Tang et al., 2018). 

Tang et al. (2018) have reported several reproducible differences in brain 

structure between Chinese (East Asian) brains and Caucasian brains in all four 

lobes. The commonly used brain templates and automated software pipelines, 

including Freesurfer, were contracted from mostly western brains. To the best 

of my knowledge, it has not been proven that these atlases or software packages 

perform worse on brains of different ethnicities, however it is a reasonable 

speculation considering corrections are often made based on age and gender 

differences. A more likely explanation that may have caused a null finding, 

would be that the images had too many artifacts for Freesurfer’s automated 

preprocessing to overcome. The raw data in this study was observed, and once 
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again in some participants the data was relatively noisy (Martinos Imaging 

Centre).        

4.5 Conclusion 

The results of this study were in no way as groundbreaking or 

significant as the results published by Yoneyama et al. (2018). Methodology 

changes with the same dataset should have, supposedly, reproduced slightly 

altered results, but alternatively the significant results were nonexistent. This is 

not an issue to take lightly, because it is unfortunately very reflective of the 

common credibility criticisms that exist within fMRI research. Credible results 

should in turn be reproducible, but with the increasing number of analysis 

pipelines and method techniques there are more opportunities to find a desired 

result rather than a valid one. Fortunately, Yoneyama and research associates 

are responsible for this current study existing by their decision to make their 

data public, which should be applauded. This is one way that the fields of 

cognitive neuroscience and psychology can evolve in terms of validity, along 

with researchers choosing to publish their analysis methods with excruciating 

detail. Another step in the right direction would be the development of 

standardized brain templates for an array of different ethnicities that are 

compatible with the major fMRI analysis software packages. Whether or not 

hyposmic related brain changes will be observed consistently enough with 

fMRI to serve as a biomarker for Parkinson’s Disease or its pathological 

cognitive symptoms is a topic that requires further investigation. Nonetheless, 

advancements in technology and ethical good-practice shine hope for a better 

future of reproducible neuroscience and psychology research. 
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Appendices 

Appendix A: Participant Demographics (Yoneyama et al., 2018, table 1) 
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Appendix B: Subcortical volumes; SPSS output  
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