

LABORATOIRE PROCÉDÉS, MATÉRIAUX et ENERGIE SOLAIRE .UPR 8521 du CNRS. conventionnée avec l'université de Perpignan PROCESSES, MATERIALS and SOLAR ENERGY LABORATORY

Site Félix Trombe d'Odeillo : PROMES-CNRS 7 rue du Four Solaire 66120 Odeillo-Font-Romeu, France Tel. 33 (0) 468 307 700 Fax. 33 (0) 468 302 940

Site Tecnosud : PROMES-CNRS Tecnosud Rambla de la Thermodynamique 66100 Perpignan, France Tel. 33 (0) 468 682 222 Fax. 33 (0) 468 682 213

Site campus UPVD : PROMES-CNRS Université de Perpignan via Domitia Bat. B, ELIAUS 52, avenue Paul Alduy 66860 Perpignan Cedex, France Tel. 33 (0) 468 662 064 Fax. 33 (0) 468 662 287 Provider: University of Perpignan Via Domitia and PROMES-CNRS

MODULE HANDBOOK

European Master in Renewable energy

SPECIALISATION "STARS"

Solar Thermal & Associated Renewable

Storage

June 2020

Module name:	Fundamentals
Section	EUREC spectialisation solar thermal
	Reminder
Classes	Heat transfer
	Materials
	Combined heat and mass transfer
	Conduction : Fundamental Equations ,Balance equations ,Examples
	Convection : Fundamental Equations
	Forced Convection (resolution of the Couette flow with temperature)
	Natural Convection (approximation of Boussinesq)
	Introduction to CFD
	Radiative heat transfer
	Fundamentals of Thermal Radiation
	Radiative Exchange between Surfaces
	Radiative properties of opaque surfaces
	View factors
	Radiative exchange between grey and diffuse surfaces
	Equation of Radiative Transfer in Participating Media
	Radiative Properties of Participating Media
	Radiative properties of molecular gases
	Radiative properties of particulate media
	Radiative Transfer through Participating Media

Module 1/:Solar Thermal: FUNDAMENTALS

Semester	2 nd Semester
Module Coodinator	Dr. Maxime Perier-Muzet
Lecturers	Dr. Maxime Perier-Muzet, Dr Quentin Falcoz, Occasional external lecturers,
Language	English

Classification within the curriculum	Specialization in Solar thermal			
Teaching format /	35 h	Lecture		
class hours during the		Tutorial		
semester	25 h	Laboratory		
Contact Hours/	60 h (Contac	t hours)		
Workload	200 h (total t	ime of studying)		
Credit points	6	6		
Requirements under				
the examination				
regulations				
Recommended	Basic Unders	standing in		
prerequisites (prior	• Ther	modynamics		
knowledge	• Ener	gy and Thermal Science		
	Elect	romagnetics		
	Mate	rials		
	Fluic	dynamics		
Target learning	The module j	The module <i>fundamentals</i> teaches the theoretical basis of radiation models to be used in solar engineering processes.		
outcomes	Objectives			
	1. To develop processes.	o the student's understanding of the principles and the modelling approaches of combined heat and mass transfer in solar		
	2. To develop	o the student's understanding of the effect of radiation in a solar process.		
	3. To develop the student's understanding of the radiative heat transfer methods of resolution to be used in solar applications.			
	4. To develop	4. To develop the student's understanding of the various assumptions and computing efficiency of radiation models.		
	5. To develop	o the student's understanding of the models limitations to practical uses.		
	6. To develop	o the student's knowledge of the main radiative properties of materials used in solar processes.		
	7. To develop	o the student's awareness of the important development in radiation measurement.		
	8. To develop	o the student's knowledge of the optical measurement issues.		
	Awareness/	Competences		
	1. The studer	it will have a critical understanding of the effect of radiation on fluid flows.		
	2. The studer	it will have a critical understanding of radiation modelling in solar processes.		
	3. The studer	it will have a critical understanding of the methodology that should be used in a practical situation where radiative heat		
	transfer is to	be solved, and coupled with other transfer modes.		
	4. The studer	It will be able to compare and evaluate radiation simulation results from different models.		

	5. The student will have a critical understanding of optical properties and their influences on radiation heat transfer.
	6. The student will have a critical understanding of optical measurements.
	On Relation to other Modules
	This module is strongly related with all the other modules
Content	Part 1: Radiative heat transfer
	Fundamentals of Thermal Radiation
	Radiative Exchange between Surfaces
	Radiative properties of opaque surfaces
	• View factors
	Radiative exchange between grey and diffuse surfaces
	Equation of Radiative Transfer in Participating Media
	• Equation of radiative transfer
	Formal solutions
	Boundary conditions
	Radiative Properties of Participating Media
	Radiative properties of molecular gases
	Radiative properties of particulate media
	Radiative Transfer through Participating Media
	Collimated irradiation
	• The Two-Flux method
	The method of Discrete Ordinates
	The Monte Carlo method
	The Rosseland approximation
	The Diffusion approximation
	High temperature measurements
	• Pyrometry
	Infrared thermography
	Part 2: Combined heat and mass transfer
	• Conduction
	Fundamental Equations
	Balance equations
	• Examples
	Convection

	 Fundamental Equations Forced Convection (resolution of the Couette flow with temperature) Natural Convection (approximation of Boussinesq) Adimensionnal equations CFD soffwares
Study/ exam achivements	Written examination on each part plus an extended laboratory report
Forms of media	Whiteboard, projector for PC, Blackboard electronic learning portal
Literature	Modest M. F., Radiative Heat Transfer (2003)
	Siegel R., Howell J.R. Thermal Radiation Heat Transfer (2002)
	Lesieur, Turbulence in Fluids, Kluwer Academic Publisher, 1997.
	James, Smith and Wolford, Applied numerical methods for digital computation, James, Smith and Wolford, Harper & Row, New-
	York.

Module 2/Solar thermal: SIMULATION AND SYSTEM OPTIMIZATION

Module name:	SIMULATION AND SYSTEM OPTIMIZATION					
Section	EUREC Specialisation Solar Thermal					
Classes	Part 1: Solar Conversion (solar heating/cooling, microgeneration)					
	Solar water heating					
	Solar air heating					
	Combined Solar System					
	Design softwares					
	Solar cooling :Liquid Absorption technology					
	Solar cooling :Solid sorption technology					
	Microgeneration system : ORC working at low temperature.					
	Part 2: Solar concentrating systems and receiver					
	The solar resource for concentrating systems: solar spectrum, solar constant and air mass					
	Introduction to concentration optics					
	Linear concentration: parabolic trough and linear Fresnel					
	Point concentration: Dish and Tower (Central receiver systems)					
	High concentration systems: solar furnace and compound parabolic concentrator (CPC)					
	Design and technology of radiative selective surfaces for solar receivers					
	Design and technology of solar receivers (absorbers) for linear concentrators					
	Design and technology of solar receivers for point focusing systems					

Semester	2 nd Semester		
Module Coordinator	Pr Pierre Neveu		
Lecturers	Pr. Pierre Neveu, Dr Arnaud Perona, Dr. Maxime Perier-Muzet		
	Occasional external speakers		
Language	English		
Classification within	Specialization in Solar thermal		
the curriculum	Specialization in Solar merinal		

Teaching format /	30 h	Lecture	All aspects of the module		
class hours during the	20 h	Tutorials			
semester	10 h	Laboratories			
	6 h total	Visits			
Contact Hours/	60 h (Conta	60 h (Contact hours)			
Workload	200 h (total	200 h (total time of studying)			
Credit points	6				
Requirements under					
the examination					
regulations					
Recommended	Basic Unde	erstanding in			
prerequisites (prior	• Hea	at Transfer			
knowledge	• The	ermodynamics			
	• Ene	Energy in buildings			
Target learning	Objectives				
outcomes	1. To devel	op the student's a	wareness of the potentialities of solar resource for energy saving in building		
	2. To devel	2. To develop the student's awareness of the solar heating and cooling technologies			
	3. To devel	3. To develop the student's understanding of the thermodynamics of energy conversion systems			
	4. To famil	4. To familiarize the student with the utilisation of different numeric tools for heating systems design, performance evaluation and			
	techno-eco	techno-economic viability			
	Awareness/Competences				
	1. The student will be able to compare the design and operation of solar heating and/or cooling systems in buildings				
	2. The student will have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation				
	On Relation	on to other Modu			
	This modul	e is related to the	modules Fundamentals		
Content	Part 2: Sol	ar Conversion (s	<u>olar heating/cooling, microgeneration)</u>		
	• Thermodynamics optimisation : exergy analysis				
	 Potentialities of low temperature solar energy for cooling 				
	Poter	ntialities of low te	mperature solar energy for electricity production		
	• Heat	driven cooling sy	stem theory and thechnologies		
		- Liquid absorp	ption system		

	- Solid sorption systems				
	Microgeneration : ORC and Stirling systems				
	 Part 2 : Solar concentrating systems and receiver The solar resource for concentrating systems Introduction to concentration optics Linear concentration: trough and linear Fresnel Point concentration: Dish and Tower (Central receiver systems) High concentration systems: solar furnace and compound parabolic concentrator (CPC) Selective surfaces for solar receiver Solar receivers (absorbers) for linear concentrators 				
Study/ exam achivements	Written examination on each part plus an extended laboratory report				
Forms of media	Whiteboard, projector for PC, Blackboard electronic learning portal				
Literature	Renewable Energy, B. Sorensen. Elsevier, 2004.				
	Applied thermodynamics,, Richard E. Sonntag, Gordon J. Van Wylen, ERPI, 2004				

Module 3/Solar thermal: ENERGY

Module name:	ENERGY			
Section	EUREC Specialisation Solar Thermal			
Classes	Part 1: Solar Collectors theory and technologies			
	Energy collection and heat transfer in solar collectors – characteristics of materials			
	Design and simulation			
	 Overview of the solar collectors technologies 			
	> Implementation			
	Design software			
	Part 2: Solar power plants			
	Introduction to Concentrating Solar Power (CSP): various options, plants in operation, industry			
	Numeric tools for CSP design and performance evaluation: Soltrace, Tonathiu and home-made codes			
	Case study and visit of solar power plants (Themis)			
	Cogeneration systems: electricity and heat, electricity and water			
	 Tools for CSP design and performance evaluation 			
	Techno-economics of CSP			
	Case study: Parabolic trough plant			
	Case study: Central receiver plant			
	Case study: Dish-engine plant			
	Cogeneration systems			

Semester	2 nd Semester			
Module Coordinator	Dr. Quentir	Dr. Quentin Falcoz		
Lecturers	Dr. Gilles F	Dr. Gilles Flamant, Dr. Alain Ferrière, Dr. Quentin Falcoz		
	Occasional	Occasional external speakers as appropriate		
Language	English			
Classification within the curriculum	Specialization in Solar thermal			
Teaching format /	35 h	Lecture	All aspects of the module	
class hours during the	15 h	Tutorials		
semester	10 h	Laboratories		

60 h (Contact hours)				
resource for electricity production				
15				
SP design, performance evaluation and techno-				
1. The student will have a critical understanding of the physical principles relating to the operation and design of concentrating				
2. The student will be able to compare the design and operation of concentrating systems, solar receivers and concentrated solar				
plants				
nd performance of concentrating systems on solar				
cy on the basis of sub-systems efficiency limitation.				
This module is strongly related to the Fundamentals				
• The solar resource				
- Mask effects				
Solar collectors theory				
- Plate collectors				

	- Evacuated collectors
	- Low concentrated collectors
	Solar collectors technologies and application
	• Design software for implantation in buildings.
	Part 2 : Solar power plant
	Introduction to Concentrating Solar Power (CSP): various options, plants in operation, industry
	Tools for CSP design and performance evaluation
	• Techno-economics of CSP
	Case study: Parabolic trough plant
	Case study: Central receiver plant
	• Case study: Dish-engine plant
	Cogeneration systems: electricity and heat, electricity and water
Study/ exam achivements	Written examination on each part plus an extended laboratory report
Forms of media	Whiteboard, projector for PC
Literature	Journal of Solar Energy Engineering
	Proceedings of SolarPACES
	Piatkowski N. et al. Energy and Environmental Science (2011), 4, 73
	Abanades S. et al. <i>Energy</i> (2006) 31, 2469
	W. Chueh et al. <i>Science</i> , (2010) 330, 1797
	Schunk L.O. et al. Chemical Engineering Journal (2009) 150, 502
	Maag G. et al. International Journal of Hydrogen Energy (2010), 35, 13232

Module 4/Solar thermal: RENEWABLE STORAGE

Module name:	RENEWABLE STORAGE
Section	EUREC specialisation in Solar Thermal
Classes	Part 1: Thermal Storage
	Overview of thermal storage (TS)
	Needs of TS in solar applications
	Available technologies (sensible, latent heat, thermochemical,)
	Related materials
	Heat transfer interfaces and fluids
	Implementation of TS
	Management and strategy of TS
	Related companies and products
	Part 2: Solar fuels
	General introduction, chemical routes to produce solar fuels from solar energy
	Thermodynamics of solar fuel production
	Hybrid thermochemical routes, solar and carbonaceous materials -NG, coal, wastes, biomass
	Renewable thermochemical route, the solar-biomass case study
	Solar-only thermochemical routes, Redox systems –thermodynamics and materials issues
	Solar-only thermochemical routes, Metal oxides case study
	Solar receivers-reactors

Semester	2 nd Semeste	2 nd Semester		
Module Coodinator	Dr Samuel	Dr Samuel Mer		
Lecturers	Dr Samuel	Mer, Dr Sylvain R	Rodat, Dr Gilles Flamant	
Language	English	English		
Classification within the curriculum	Specialization in Solar thermal			
Teaching format /	30 h	Lecture		
class hours during the	15 h	Tutorial		
semester	5 h	Laboratories		
Contact Hours/	60 h (Contact hours)			
Workload	200 h (total time of studying)			

Credit points	6
Requirements under	
the examination	
regulations	
Recommended	Basic Understanding in
prerequisites (prior	• thermodynamics
knowledge	• thermal and energy science and engineering
	• materials
	• chemistry
Target learning	From Part1, the student will be familiar with main storage materials and technologies and will be able to choose which one is the most
outcomes	adapted to a specific solar application. Part 2 teaches the principles of thermochemistry and process engineering to produce either
	gaseous or liquid fuels using concentrated solar energy and resource of C, H, O elements.
	Objectives
	1. To develop the student's understanding of the basic physical phenomena relevant to the principles of operation and design of
	thermal energy storages.
	2. To develop the student's understanding of the principles of operation and design of thermal energy storages.
	3. To develop the student's understanding of the need to define properly the functionalities of the TES.
	4. To develop the student's knowledge of the main technologies and materials used in TES.
	5. To develop the student's awareness of the importance of considering the relevant integration of TES in the whole process of
	application.
	6. To develop the student's linewide of the importance of strategy and management in the use of TES.
	7. To develop the student's understanding of the thermodynamics of chemical reactions that lead to fuel menduation from calar heat.
	A wave page / Compating of the thermodynamics of chemical reactions that lead to fuels production from solar heat.
	Awareness/Competences
	2. The student will be able to compare the design operation and performances of the main types of TES
	3. The student will be able to choose the relevant TFS for a particular application
	4 The student will be able to highlight the main limitations of a TES
	5. The student will be able to avoid the usual mistakes encountered in TES.
	6. The student will be able to propose companies providing the various components of TES.
	7. The student will have a critical understanding of the thermodynamic limitation of solar fuels production
	8. The student will have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation.
	9. The student will be able to compare and evaluate different chemical pathways with respect to solar energy stored in the chemicals
	and to CO ₂ mitigation impact.

	10. The student will have a critical understanding of the principles of solar thermochemical reactor design and modeling.
	11. The student will be able to compare and evaluate various solar thermochemical and thermodynamical processes.
	On Relation to other Modules
	This module is in direct relations with the 3 first ones.
Content	
	Part1 Thermal Storage
	Overview on Thermal Energy Sterroge (TES)
	TES definitions
	 TES definitions TES functionalities
	TES hasia principlas
	TES tashpologias
	FS hybridations
	 ES hybridations ES bottle necks and current research areas
	Needs of TFS in solar applications
	Resource/demand shift management
	 Thermal protection
	Thermal regulation
	 Production optimisation
	 Process design optimisation
	 Process management
	A vailable technologies (sensible latent heat thermochemical)
	 Sensible heat based TES_direct mode
	 Sensible heat based TES, indirect mode. Sensible heat based TES indirect mode.
	 Latent heat based TES (organic inorganic)
	 Thermochemical based TES
	Related materials
	Low temperature TES materials
	Sensible heat, latent heat, thermochemical
	Classifications and properties, characterizations
	> High temperature TES materials
	Sensible heat, latent heat, thermochemical
	Classifications and properties, characterizations
	Heat transfer interfaces and fluids

Envelops for TES units
Insulating materials for TES units
Heat transfer fluids for TES
Implementation of TS
TES integration
TES instrumentation
TES charge/discharge assessments
Management and strategy of TS
TES management
TES strategy
LTA of TES in Solar Applications
Related companies and products
Companies and products for sensible heat based TES
Companies and products for latent heat based TES
Companies and products for thermochemical TES
Companies and products for envelopes and connections
Part 3 : Solar fuels
Thermodynamics of chemical reactions
Chemical pathways to hydrogen, methanol and hydrocarbons from water, carbon dioxide and carbonaceous materials
Energy and exergy balances
 Energy and material balances when using natural gas, coal and biomass as Carbon resource
• Principle of Redox reaction to split H ₂ O and CO ₂
Various options for redox reactions
• Material and separation issues of the various options
• Thermodynamics and kinetics of the various redox reactions
• Principles of solar reactors
Material issues in solar reactors
• Concentrating systems for high temperature solar thermochemistry
• Efficiency of a solar thermochemical process
 Case study as a function of the reaction temperature
• I ab-scale and pilot scale development state of the art
 Solar thermochemitsry for industry
- Solar anomountary for industry

Study/ exam achivements	Written examination
Forms of media	Power point files
Literature	Fundamentals of Heat and Mass Transfer, F. P. Incropera, D.P. DeWitt ed., ISBN 0-471-30460-3.
	Fundamentals of renewable Energy Processes, A. V. Da Rosa, Elsevier ed., 2005, ISBN 0-12-088510-7.
	Thermal Energy Storage, I. Dincer, M.A. Rosen, Wiley ed., 2002, ISBN 0-471-49573-5.
	Solar Engineering of Thermal Processes, J.A. Duffie, W.A. Beckman, Wiley ed., 2006, ISBN 100-471-69867-9.
	Renewable Energy, B. Sorensen, Elsevier ed., 2004, ISBN 0-12-656153-2.
	Gil, A., Medrano, M., Martorell, I., Lazaro, A., Dolado, P., Zalba, B., and Cabeza, L.F., 2010, "State of the art on high temperature
	thermal energy storage for power generation. Part 1-Concepts, materials and modelization", Renew. and Sust. Energy Reviews, 14, pp.
	31-55.
	Medrano, M., Gil, A., Martorell, I., Potau, X., and Cabeza, L.F., "State of the art on high temperature thermal energy storage for power
	generation. Part 2- Case studies", Renew. and Sust. Energy Reviews, 14, pp. 56-72.
	Journal of Solar Energy Engineering
	Proceedings of SolarPACES
	Piatkowski N. et al. Energy and Environmental Science (2011), 4, 73
	Abanades S. et al. <i>Energy</i> (2006) 31, 2469
	W. Chueh et al. <i>Science</i> , (2010) 330, 1797
	Schunk L.O. et al. Chemical Engineering Journal (2009) 150, 502
	Maag G. et al. International Journal of Hydrogen Energy (2010), 35, 13232

Module 5/Solar thermal: PROJECT, CASE STUDY AND INNOVATION

Module name:	PROJECT, CASE STUDY AND INNOVATION
Section	EUREC specialisation in Solar Thermal
Classes	Part 1: Innovative materials for energy conversion
	 Selective surfaces for solar receiver Materials for low temperature solar application Thermos optical properties of materials for solar thermal applications

Part 2: Project, case study
• Project
Case study: Parabolic trough plant
Case study: Central receiver plant
• Case study: Dish-engine plant

Semester	2 nd Semester	
Module Coodinator	Dr Audrey Soum-Glaude	
Lecturers	Dr Audrey Soum-Glaude, Prof Pierre Neveu, Dr Quentin Falcoz	
Language	English	
Classification within the curriculum	Specialization in Solar thermal	
Teaching format /	15 h Lecture	
class hours per week	20 h Tutorial	
during the semester	5 h Laboratories	
Contact Hours/	40 h (Contact hours)	
Workload	200 h (total time of studying)	
Credit points	6	
Requirements under		
the examination		
regulations		
Recommended	Basic Understanding in	
prerequisites (prior	• thermodynamics	
knowledge	• thermal and energy science and engineering	
	• materials	
Target learning	The student will be familiar with innovative materials for energy conversion and able to choose which one is the most adapted for a	
outcomes	specific solar application. He will be able to analyse different case study related to CSP technologies.	
	After part 1 course, student will mainly be able to:	
	• Identify the types of materials used in solar components and understand why they are selected;	
	• Appreciate the key impact of the optical properties of these materials on the efficiency of solar applications, and how to	
	improve the latter;	
	• Understand how optical properties can be measured;	
	• Calculate optical properties using standard software;	

	• Assist and counsel in the optical design of components for solar thermal, in terms of optimizing their surface properties.
	Objectives
	1. To develop the student's understanding of the basic physical phenomena relevant to the principles of thermos optical materials
	properties.
	2. To develop the student's understanding of the principles of selective materials.
	3. To develop the student's understanding of receiver materials under concentrated radiation.
	4. To develop the student's knowledge of the main elaboration technologies and materials used in CSP.
	5. To develop the student's awareness of the importance of materials constraints.
	6. To develop the student's awareness about scale of the system.
	7. To develop the student's awareness of the importance of case study.
	8. To develop the student's awareness about real power plant.
	o. To develop the student's skills about team working
	Awareness/Competences
	1. The student will have a critical understanding of the physical principles involved materials used for solar receiver.
	2. The student will be able to compare the design, operation and performances of the main types of selective coatings.
	3. The student will be able to choose the relevant materials for a particular application.
	4. The student will be able to highlight the main limitations of selective materials.
	5. The student will be able to avoid the usual mistakes encountered in high temperature materials under high flux.
	6. The student will be able to manage a small project.
	7. The student will be able to understand main constraints related to a system scale analysis.
	8. The student will be able to understand the main difficulties encountered in a real case of CSP power plant.
	Or Deletter to other Medeler
	On Kelation to other Modules
Content	Part 1 Innovative materials for energy conversion
Content	
	• Selective surfaces for solar receiver
	Materials for low temperature solar application
	Thermos optical properties of materials for solar thermal applications
	richtige op dem properties of indefinits for solar dieffinit applieditons
	Part 2 : Project, case study
	• Project

	 Case study: Parabolic trough plant Case study: Central receiver plant Case study: Dish-engine plant
Study/ exam	
achivements	Written examination, project report, oral presentation
Forms of media	Power point files
Literature	C. Atkinson, C.L. Sansom, H.J. Almond, C.P. Shaw, Coatings for concentrating solar systems – A review, Renewable and Sustainable Energy Reviews. 45 (2015) 113–122. https://doi.org/10.1016/j.rser.2015.01.015.
	C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, National Renewable Energy Lab., Golden,
	CO. (US), 2002. https://doi.org/10.2172/15000706.
	K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, S. Li, A review of high-temperature selective absorbing coatings for solar thermal applications,
	Journal of Materiomics. 6 (2020) 167–182. https://doi.org/10.1016/j.jmat.2019.12.012.
	ESTELA (European Solar Thermal Electricity Association), www.estelasolar.org