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ABSTRACT

Excitonic and spin excitations of single semiconductor quantum dots currently attract attention as possible
candidates for solid state based implementations of quantum logic devices. Due to their rather short decoherence
times in the picosecond to nanosecond range, such implementations rely on using ultrafast optical pulses to probe
and control coherent polarizations. In this article, we review our recent work on combining ultrafast spectroscopy
and near-field microscopy to probe the nonlinear optical response of a single quantum dot and of a pair of dipole-
coupled quantum dots on a femtosecond time scale. We demonstrate coherent control of both amplitude and
phase of the coherent quantum dot polarization by studying Rabi oscillations and the optical Stark effect in an
individual dot. By probing Rabi oscillations in a pair of dots, we identify couplings between permanent excitonic
dipole moments. Our results show that although semiconductor quantum dots resemble in many respects atomic
systems, Coulomb many-body interactions can contribute significantly to their optical nonlinearities on ultrashort
time scales. This paves the way towards the realization of potentially scalable nonlocal quantum gates in chains
of dipole-coupled dots, but also means that decoherence phenomena induced by many-body interactions need to
be carefully controlled.

1. INTRODUCTION

The experimental implementation of quantum information processing (QIP) relies on identifying, coherently
manipulating, coupling and detecting elementary excitations of individual quantum systems. All these operations
need to be performed on a time scale much shorter than the decoherence time of the quantum system. This
extremely challenging task has attracted the interest of an increasing number of experimentalists in all areas
of science. Implementations of quantum logic operations are currently explored in a wide range of different
quantum systems (1), e.g., nuclear magnetic spins in liquids and solids (2; 3), ions in traps (4; 5; 6; 7), atoms in
microwave resonators (8), optical lattices (9), photonic band gap materials (10), Josephson junctions (11; 12) or
photons in quantum-optical systems (13; 14). The complexity of this endeavor is quite clearly demonstrated by
the fact that despite the outstanding progress in this field over the last few years, the most complex quantum
calculation performed to date is the factorization of the number 15 (3).

A particularly attractive approach for realizing all-solid-state quantum information processing relies on using
charge or spin excitations of semiconductor quantum dots (QD) as quantum bits. In QDs, electron and hole
wave functions are localized in all three spatial dimensions on a nanometer length scale due to growth-induced
nanoscale variations of the semiconductor composition. This makes QD interesting model systems for exploring
the basic physics of quasi-zero-dimensional quantum confinement as well as interesting for building novel optical
devices, such as low-threshold semiconductor lasers.

The optical and electronic properties of semiconductor QDs have been intensely studied during the last
decade. Due to the pronounced and so far unavoidable growth-induced inhomogeneous broadening in ensembles of
semiconductor QDs, the recent development of single QD spectroscopy has provided a wealth of new information
(15). It is now understood that sufficiently confined QDs resemble in many respect atomic systems, showing
atomic-like densities of states (16; 17; 18), a shell-like absorption spectrum (19) and - at low temperatures -
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comparatively long dephasing times of up to 1 ns (20; 21). In addition, the large extent of the electron wave
function in QDs gives rise to excitonic dipole moments of 10 – 100 Debye, much larger than those of atomic
systems. This strong coupling to light makes charge excitations of single quantum bits interesting for quantum
information processing. Ultrafast light pulses with pulse durations in the 100 fs range allow one to generate
and manipulate exciton excitations of single QDs on a sub-picosecond time scale. With such ultrafast coherent
carrier control, dephasing times in the 100 ps to 1 ns range can be considered as long, allowing in principal
up to 10,000 coherent manipulations before decoherence destroys the quantum information stored in excitonic
quantum bits (21). Another important consequence of the large excitonic dipole moments are comparatively
strong dipolar interactions between adjacent quantum dots (22; 23). Those interactions give rise to a nonlocal
coupling between adjacent excitonic quantum bits, an important prerequisite for implementing scalable quantum
gates. Consequently, different ideas for realizations of such gates have been proposed theoretically during the
last years (22; 23; 24; 25).

Such perspectives have triggered a research effort towards coherent control of excitonic excitations in semi-
conductor quantum dots. First successful experiments have shown coherent control on excited state transitions
in the weak excitation regime (26; 27; 28) before Rabi oscillations could be demonstrated on different quantum
dot systems (29; 30; 31; 32; 33). All these experiments have so far revealed a finite damping of Rabi oscillations,
which has been attributed either to excitation-induced dephasing due to Coulomb interactions among charge
excitations (29; 34) or to exciton-phonon coupling (35; 36). Most recently, an all-optical two-bit quantum logic
gate has been demonstrated using the exciton and biexciton transitions of a single quantum dot (37).

In this paper, we present our recent experimental work on coherent control of excitonic excitations in quantum
dots. We discuss a novel nano-optical technique (34) for probing optical nonlinearities of single quantum dots on
ultrafast time scales (34; 38). Coherent control of both amplitude (39) and phase (40) of the coherent exciton
polarization in a single interface quantum dot is demonstrated and interactions between permanent excitonic
dipole moments in a pair of neighboring quantum dots are resolved by analyzing Rabi oscillations in their
nonlinear optical response (39).

The manuscript is structured as follows: In Sec. 2 we summarize the most important properties of the
investigated samples. In Sec. 3 the experimental techniques are described. Results on coherent control of single
quantum dots are given and discussed in Sec. 4. In Sec. 5 we present first results on dipolar couplings between
two quantum dots. Some conclusions are given sin Sec. 6.

2. INTERFACE QUANTUM DOTS

An important QD model system are thin semiconductor quantum wells (QW). In quantum wells, local monolayer
height fluctuations at the interfaces (interface roughness) and fluctuations of the alloy composition (alloy disorder)
are unavoidable (Fig. 1(a)). The resulting disordered potential leads to the localization of excitons in single
“interface” quantum dots with a confinement energy of about 10 meV (Fig. 1(b)). This disorder gives rise to a
pronounced inhomogeneous broadening of far-field optical spectra. In experiments with high spatial and spectral
resolution, however, the smooth, inhomogeneously broadened photoluminescence (PL) spectra break up into
narrow emission spikes from a few localized excitons (16; 17; 18; 41; 42; 43).

The linear optical properties of interface QDs resemble in many aspects those of atomic systems. At low
temperatures, the excitonic lines display a narrow homogeneous linewidth of 30–50 µeV, in agreement with
measured dephasing times of 20–30 ps. The QDs show a discrete absorption spectrum (18) and often a fine
structure splitting due to the spatial asymmetry of the monolayer islands. The temperature dependence of
the exciton linewidth and the fine structure splitting has been thoroughly investigated (18; 44). The correlation
length of the disordered potential and thus also the center-of-mass wave function of localized excitons in interface
quantum dots typically extends over several tens of nm, as known from near-field autocorrelation spectroscopy
(42). This large coherence length of the excitonic wavefunction results in large QD dipole moments of 50–
100 Debye and a particularly strong coupling of these excitons to light (45; 46). This makes interface quantum
dots a particularly interesting model system for nonlinear spectroscopy of single quantum dots.

In this work, we investigate a sample consisting of 12 single QW layers of different thicknesses grown on
a (100) GaAs substrate. The QW layers are separated by AlAs/GaAs short period superlattice barriers, each
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Figure 1. (a) Disorder in quantum wells arises from spatial fluctuations of the local quantum well thickness (interface
roughness) and of the quantum well composition (alloy disorder). (b) Schematic illustration of the effective disorder
potential V (R) and of a localized excitonic center-of-mass wave function |Ψ(R)|2. (c,d) Representative near-field PL
spectra (T =12K) of (c) a 5.1 nm thick and (d) a 3.3 nm thick (100) GaAs QW.

formed by nine AlAs and GaAs layers with a total thickness of 23.8 nm. Here, we study the top seven QWs
with thicknesses of 3.3 to 7.1 nm. The layers are buried at distances between 40 and 211 nm below the surface.
Growth interruptions of 10 s at each interface lead to a large correlation length of the QW disorder potential
and to the formation of interface quantum dots (QD). The growth interruptions are kept short in order to avoid
a monolayer splitting of the macroscopic PL spectra and to minimize the incorporation of impurities at the
interfaces.

In Fig. 1(c) and (d) representative low temperature (T =12 K) near-field PL spectra are shown for the 3.3
and 5.1 nm thick (100) GaAs QW. The spectra reveal clearly the emission from excitons localized in interface
quantum dots. The linewidth of the sharp resonances is limited by the spectral resolution of 100 µeV. The
spectra are recorded at an excitation intensity of 110 nW, corresponding to an average excitation density well
below one exciton per monolayer island. For excitation powers between 1 and 500 nW, we find a linear intensity
dependence and an excitation-independent shape of the emission spectra, indicating negligible contributions from
biexcitons and charged excitons.

In addition to the sharp localized exciton emission, these spectra display at higher energies a spectrally broad
background emission from more delocalized excitons in QW continuum states (47). This is a disadvantage for QIP
applications, as it may be difficult to avoid the uncontrolled population of such delocalized exciton states when
ultrashort and thus spectrally broadband pulses are used for optical excitation. Yet, we will demonstrate below
that such problems can be reduced by careful spectral shaping of the excitation pulses. Important properties of
IQD are the excellent interface quality of the (100) GaAs quantum wells and the strong reduction of piezoelectric
and strain fields. In the investigated samples, the energetic positions of the sharp exciton emission lines remains
unchanged over many hours and we observe no signs of a spectral diffusion of the exciton lines.

3. COHERENT SPECTROSCOPY ON INTERFACE QUANTUM DOTS:
EXPERIMENT

In the experiments on interface quantum dots (IQD), we read-out quantum information from single interface
quantum dots by directly probing the transient nonlinear optical spectrum of ground-state exciton transitions of
a single quantum dot with sub-picosecond time resolution. Our experimental concept is outlined in Fig. 2(a). We
use spectrally broad femtosecond laser pulses, centered around the excitonic QW absorption resonance, coupled
into a near-field fiber probe to probe the optical QD nonlinearity. As a near-field probe we use an uncoated
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etched single mode optical fiber taper with a cone angle of about 30◦ (48). With such probes we reach - in an
illumination/collection geometry - a spatial resolution of about 150 nm, i.e., about λ/5 (41). This high spatial
resolution together with their large collection efficiency makes such uncoated fiber probes particularly well suited
for semiconductor nano-spectroscopy. Experimentally, we find that for GaAs samples about 1% of the light
coupled into the fiber is collected in this illumination/collection geometry.
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Figure 2. (a) Schematic illustration of the experimental setup and of near-field PL and reflectivity spectra of the QD
sample. (b) Near-field PL spectrum of a single QD (solid line) and differential reflectivity spectrum ∆R/R0 at ∆t =30 ps.
PL and ∆R are recorded with identical pump pulses centered at 1.675 eV, exciting electron-hole pairs in 2D continuum
states. The 100 nW probe pulses of 19 meV bandwidth are centered at 1.655 eV, around the QD absorption resonance.
Inset: Schematic energy diagram.

In the pump-probe experiments, the probe laser light reflected from the QW sample is collected by the same
fiber probe, dispersed in an 0.5 m monochromator and then detected with a high sensitivity liquid-nitrogen cooled
CCD camera. This steady-state reflectivity spectrum R0(ωdet) contains weak spectrally narrow resonances from
single QD transitions (Fig. 2(a)).

The interaction with a second pump pulse now affects the QD spectrum and thus gives rise to a modified probe
reflectivity R(ωdet). Differential probe reflectivity spectra ∆R(ωdet,∆t)/R0 = [R(ωdet,∆t)−R0(ωdet)]/R0(ωdet)
are recorded at a fixed spatial position of the near-field tip as a function of the time delay ∆t between pump and
probe pulses. To probe the nonlinear optical response from single quantum dots, the high spatial resolution of
the near-field technique is needed for two reasons. First, the combined spatial and spectral resolution allows us
to isolate single QD resonances (Fig. 1). Second, the relative amplitude of the QD resonance in R0(ωdet) scales,
in first approximation, inversely proportional to the square of the spatial resolution.

We assume for simplicity that the QD absorption spectrum can be modeled as that of an ideal two-level system
(TLS) and that the incident laser power is homogeneously distributed over an area A (the areal resolution of the
microscope). Then the incident power is P = I0A and the absorbed power is PQD = I0σQD, with I0 being the
incident intensity and σQD the QD absorption cross section. For an ideal TLS,

σQD(ω) =
ωµ2

QD

ncǫ0h̄

γ

γ2 + (ω − ω2

QD)
, (1)

where ωQD = 2πc/λQD denotes QD resonance frequency, ω the laser frequency, µQD the QD dipole moment, n
the refractive index and γ = 1/T2 the dephasing rate of the QD polarization. Thus improving the resolution from
1 µm to 100 nm increases the weak nonlinear QD signal by two orders of magnitude. For values typical for our
experiments, A = (250 nm)2, µQD = 60 D, γ = (30 ps−1), n = 3.5, λQD = 750 nm, we estimate σQD/A ≃ 0.04,
well measurable with the sensitivity of our setup.

The near-field PL and differential reflectivity ∆R spectrum of a single QD are compared in Fig. 2(b). To
record the ∆R spectrum we use 100 fs pump pulses derived from a 80 MHz repetition rate Ti:sapphire laser.
The pump pulses in this experiment create less than five electron-hole pairs in QW states, corresponding to an
excitation density of 5 ·109cm−2. Relaxation of these extra carriers into the QD bleaches the QD absorption and
this bleaching is probed with 1 fJ probe pulses centered around the QW absorption resonance. Fig. 2(b) depicts
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a differential reflectivity spectrum ∆R(Edet) at a time delay of 30 ps in the low energy region of the 5.1 nm QW
absorption spectrum. It displays a single spectrally sharp resonance at exactly the same spectral position EQD

as the simultaneously recorded near-field PL spectrum. The large amplitude of the signal of 5 ·10−3 is consistent
with a spatial resolution of the experiment of 200–250 nm. Two-dimensional spatial scans indicate a resolution
of 230 nm, partly limited by the QW-to-surface distance.
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Figure 3. Differential reflectivity spectra (open circles) of five interface QDs located at different depths of 95 to 210 nm
below the sample surface (see inset). The differential reflectivity spectra are compared to simultaneously recorded PL
spectra. Note the transition between dispersive and absorptive line shapes.

To better understand the image contrast in these pump-probe experiments, we compare in Fig. 3 differential
reflectivity ∆R(Edet) and PL spectra recorded under similar excitation conditions for single localized excitons
in five different QWs buried at distances of 95 nm to 211 nm below the surface. We very clearly observe a
transition between a dispersion-like and an absorption-like line shape as the QW-to-surface distance is varied.
This behavior of the QD line shape can be understood in the framework of a local oscillator model as caused by
the interference between the electric probe laser field ER(t) reflected from the sample surface and the field EQD(t)
emitted from the QD in back direction. Our experiment works in the following way (Fig. 4). A fraction ER(t) of
the probe laser transmitted through the near-field probe is reflected from the sample surface and coupled back
into the near field fiber probe. The probe field ET (t), transmitted into the semiconductor, induces a polarization
PQD(t) =

∫

dt′χQD(t′)ET (t − t′) of the QD located at a distance d below the sample surface. Here, ET (t) and
χQD denote the probe field interacting with the QD and the QD susceptibility, respectively. The QD polarization
re-emits an electric field and a fraction of this field, EQD(t) is locally collected by the near-field probe where it
interferes with ER(t).

The time-integrated reflectivity R(ω) detected behind the monochromator is proportional to |ẼQD(ω) +

ẼR(ω)|2 ≃ |ẼR(ω)|2 + 2Re[Ẽ∗

R(ω)ẼQD(ω)], where Ẽ(ω) denotes the Fourier transform of the field E(t). Here,

the finite monochromator resolution and the weak contribution from |ẼQD|2 has been neglected. Excitation by
the pump laser affects the QD polarization and thus results in a change of the QD reflectivity. The differential
reflectivity ∆R(ω,∆t) represents the spectral interferogram of ẼR and ẼQD:

∆R(ω,∆t) ∝ Re{Ẽ∗

R(ω)[ẼQD(ω,∆t) − ẼQD,0(ω)]}. (2)

The spectral shape of this interferogram evidently depends on the QD polarization dynamics and on the phase
delay between EQD(t) and ER(t). Treating the QD for simplicity as a point dipole and the near-field tip as a
point-like emitter, the phase delay and thus the spectral shape of this interferogram depends on the distance
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Figure 4. Heterodyne detection of coherent QD polarizations. A fs probe laser is coupled through a near-field fiber
probe. A large fraction ER of the probe laser is directly reflected the sample surface into the fiber probe. The transmitted
probe light ET is induces a QD dot polarization PQD and the fraction EQD of the electric field re-emitted from the QD
is collected by the near-field probe. ER and EQD are spectrally dispersed in a monochromator and interfere on the CCD
detector. This heterodyne detection scheme greatly enhances the weak QD field.

between quantum dot and near field tip. This interference effect is nicely seen in Fig. 3 and explains the transition
between absorptive and dispersive line shapes. Since the QDs are buried more than 50 nm below the surface,
the near-field terms of the QD dipole emission can be neglected since they decay on a typical length scale of
λ/(2πn) ≃35 nm (n ≃ 3.5 - refractive index). Based on an optical path of 4πnd/λ, we estimate a phase change
of π/2 for a change in QD-sample distance of 28 nm. This is in quite good agreement with the results of Fig. 3.
We consider this convincing evidence for the validity of the phenomenological local oscillator model described
above. Clearly a detailed analysis of these data, using, e.g., a Green function solution of Maxwell’s equations for
a realistic experimental geometry is desirable for a quantitative comparison between experiment and theory.

4. COHERENT CONTROL IN SINGLE INTERFACE QUANTUM DOTS

In this section, we describe experiments probing the coherent polarization dynamics of a single interface quantum
dot induced by impulsive excitation with ultrafast light pulses. Specifically, three different topics are addressed.
First, we ask the fundamental question to what extent the ultrafast nonlinear optical response of a single IQD
resembles that of an atomic system and how many-body Coulomb interactions - often governing optical nonlin-
earities of higher-dimensional systems such as quantum wells and wires - affect the QD polarization dynamics.
Then we demonstrate coherent control of the phase of the QD polarization by probing the optical Stark effect
in a single QD and coherent control of the polarization amplitude by probing Rabi oscillations in single QD.

4.1. Ultrafast optical nonlinearities of single interface quantum dots

To study the effects of many-body interactions on the QD nonlinearities, we perform a quasi-two-color pump-
probe experiment, exciting the QD sample in the QW absorption continuum with 100 fs pump-pulses with a
pulse energy of 1.5 fJ. These pulses create carriers in QW states and the resulting change in the QD spectrum
is probed. The dynamics of the spectrally resolved reflectivity change measured on different QD resonances is
shown in Fig. 5. After a picosecond rise of the signal at negative delay times (probe precedes pump) one finds a
partial decay with a time constant of about 6 ps, followed by a much slower decay with time constants of 50 to
150 ps, depending on the specific QD resonance investigated.

The nonlinearities observed at sufficiently long positive ∆t are easily understood on the basis of a simple two-
level model for the QD nonlinearity. The pump laser creates a non-equilibrium distribution of electron-hole pairs
in QW continuum states. Subsequent trapping of these carriers gives rise to a bleaching of the QD absorption
and a concomitant decrease of the QD absorption. Hence, the decay time reflects the lifetime of the individual
exciton state probed. Following an earlier conjecture (18), the QD population decay is mainly dominated by
radiative recombination, i.e. τrad ≃ τQD. We can then estimate the dipole moment of the individual QDs using
(49; 46):

1

τrad

= n
ω3 · µ2

QD

3πǫ0h̄c3
. (3)
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Figure 5. (a) Temporal dynamics of ∆R/R for three different QD resonances (logarithmic ordinate scale). All decays
are biexponential with a slow decay time varying between 30 and 150 ps. (b) Early time ∆R/R0 dynamics of a single QD
resonance. A slow rise of ∆R/R0 is observed at negative time delays. The time resolution of the experiment is 150 fs, as
indicated by the cross-correlation measurement (solid line around ∆t=0).

We estimate dipole moments µQD of 50 to 85 Debye for τrad between 150 and 50 ps. These values are in rather
good agreement with previous estimates (29; 49). They exceed those of atomic systems by more than an order
of magnitude and reflect the large spatial extension of the exciton center-of-mass wave function in these QDs.
Near-field autocorrelation spectra indicate an exciton localization length of about 40-50 nm (50). Due to the
statistical nature of the disorder potential, the exciton localization length and thus the dipole moment and
radiative recombination rate varies quite strongly from QD to QD, as seen in Fig. 5(b). Theoretical models of
localized excitons in disordered quantum wells (51; 50) yield comparable results.
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Figure 6. (a) Near-field ∆R/R0 spectra (circles) at different delay times ∆t. The spectra at ∆t < 0 display pronounced
spectral oscillations around the excitonic resonance. The solid lines shows simulated spectra for the perturbed free
induction decay of the coherent QD polarization assuming T2=15 ps. (b) Dynamics of PQD(t) extracted from the time-
dependent near-field ∆R/R0 spectra.

The dynamics of the QD reflectivity on a time scale of less than 10 ps, however, are quite different from what is
expected for an ideal atomic system. The time evolution shows an 8-ps rise at negative delay times, much slower
than the 150-fs cross correlation of pump and probe pulses. A biexponential decay is found at positive delays,
where the slow component reflects the exciton lifetime as discussed above. The fast decay time of about 6 ps is
similar for all different QD’s. The spectral characteristics of the differential reflectivity are markedly different
at positive and negative delays. At negative delays, pronounced spectrally symmetric oscillations around the
excitonic resonance are observed Fig. 6. Their oscillation period decreases with increasing negative time delay.
At large positive delays, the spectra show a bleaching of the QD resonance (34).
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This complex behavior reflects directly the coherent polarization dynamics of the excitonic QD excitation.
To account for this behavior, one has to consistently describe the dynamics of the field EQD(t) radiated from
the coherent QD polarization PQD(t). We phenomenologically describe the QD as an effective two-level system
with a ground, no-exciton state |0〉, and an excited one-exciton state |1〉. Then the quantum state of the TLS
is given as a coherent superposition |ψ(t)〉 = c0(t)|0〉 + c1(t)|1〉. Within the density matrix formalism, PQD(t)
is given as PQD(t) = µ∗

QDρ01 + c.c., where the microscopic QD polarization ρ01 = 〈c∗
0
c1〉, µQD denotes the QD

dipole moment and 〈...〉 the ensemble average (52). Then, the well known Bloch equations hold and ρ01 obeys
the equation of motion

∂

∂t
ρ01(t) = −iωQDρ01(t) + i(1 − 2nQD)ωR − γρ01(t), (4)

with exciton energy ωQD, dephasing rate γ, exciton population nQD and generalized Rabi frequency ωR.

In the absence of a pump laser, the resonant probe laser impulsively excites a coherent QD polarization which
then decays with the dephasing rate γ (free induction decay) . The re-emitted field interferes with the reflected
probe laser field, giving rise to a Lorentzian QD line shape in R0(ω). The fact that we observe a linewidth that
is limited by our monochromator resolution of about 60µeV gives a lower limit for the QD dephasing time of
T2 = 1/γ > 15ps.

The transient spectral oscillations around the QD exciton resonance at negative time delays indicate that
this free induction decay of the PQD(t) is perturbed by the presence of the pump laser. In semiconductors,
such oscillations have so far only been observed for higher dimensional system, e.g., studies of transient QW
nonlinearities (53; 54). In our experiments, the off-resonant pump does not directly interact with the QD dipole
but creates electron-hole pairs (density nQW )in the QW continuum. Thus many-body interactions perturb the
free induction decay of PQD(t).

The spectra at ∆t < 0 are quantitatively described by assuming that an excitation-induced dephasing (55),
i.e., an increase in γ due to the interaction between ρ01 and nQW is the leading contribution to the QD nonlinearity
at early times. Coulomb scattering between the QD dipole and the initial nonequilibrium carrier distribution in
the QW causes this additional fast damping of ρ01. In the frequency domain, this excitation-induced dephasing
leads to oscillatory structures in the spectrum with a period determined by the time delay between probe
and pump. The solid lines in Fig. 6(a) are calculated from Eq. (4) by assuming that the probe-induced QD
polarization PQD(t) decays initially with an effective dephasing time T2 = 15 ps, decreasing to TEID = 3 ps after
the arrival of the pump laser (Fig. 6(b)). Such an excitation-induced dephasing model accounts quantitatively
for the the transient oscillations and this analysis allows to extract the QD polarization dynamics. A detailed
theoretical analysis of the data was performed on the basis of the semiconductor Bloch equations in the mean-field
approximation (34) gives strong for this interpretation.

The assumption of a density-dependent dephasing rate can also explain the fast decay of the differential
reflectivity at early positive delay times (Fig. 5(b)). We have to assume that nQW decays on a time scale of
about 3 ps. This decay is most likely due to carrier trapping into QD states. Then, the initial fast differential
reflectivity decay reflects the transition from a QD nonlinearity dominated by excitation-induced dephasing to a
nonlinearity dominated by exciton bleaching due to the population relaxation into the QD.

These results highlight two important features of interface quantum dots. First, the coherence of the exci-
tonic QD polarization persists for more than 10 ps even after resonant excitation with spectrally broad-band
femtosecond pulses. This decoherence times is two orders of magnitude larger than the duration of the excita-
tion pulses. On the other hand Coulomb many-body interactions may contribute significantly to their optical
nonlinearities on ultrashort time scales if an additional exciton population in quantum well continuum states is
created during the optical excitation process. Such many-body interactions have to be taken into account as
important additional dephasing mechanisms.

4.2. Optical Stark effect and Rabi oscillations in a quantum dot: Ultrafast control of
single exciton polarizations

In this subsection, we demonstrate coherent control of both the amplitude and phase of the coherent QD polar-
ization on an ultrafast time scale. Coherent control of the population of a generic two-level system with finite
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electronic dipole moment ~µ can be achieved by resonant impulsive excitation with light pulses much shorter
in duration than the decoherence time of the microscopic polarization ρ01. Neglecting for simplicity the finite
decoherence time of this TLS, the excited state population after the interaction with the excitation laser is given
as n1 = sin2(θ/2), with θ being the pulse area

θ =
~µ · ε̂

h̄

∫

∞

−∞

E(t)dt, (5)

where E(t) denotes the time-dependent electric field profile of the excitation laser and ε̂ its polarization direction.
Thus, for weak excitation pulses the excited state population first increases linearly with increasing pulse intensity
until it reaches a value of n = 1 for θ = π, i.e., until the two-level-system is fully inverted. Further increase in
the pulse intensity induces stimulated emission from the excited state back to ground state and thus a decrease
of excited state population. After interaction with a light pulse of area θ = 2π the excited state population
reaches again n = 0, i.e. the system is back in its original state. For higher excitation, the population shows the
well known Rabi oscillations. Of course this simplified picture only holds for resonant excitation and negligible
decoherence and thus the study of Rabi oscillations should generally give insight into the decoherence of quantum
systems in the strong excitation regime.
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Figure 7. (a) Schematics of exciton ground (|00〉), one-exciton (|10〉, and |01〉), and biexciton states |11〉 in a QD. (b)
Excitation-level diagram in an interface QD and optical selection rules for pump and probe laser. (c) PL and ∆R for
above band gap excitation. In the studies of biexciton nonlinearities, the pump laser (dashed line) is tuned to the exciton
resonance at 1.652 eV. (d) Pump-induced biexciton nonlinearity. The time delay between pump (at 1.652 eV) and probe
laser is ∆t = 10 ps.

For resonant excitation of only a single excitonic transition, we use spectrally tailored optical pulses with a
spectral width of about 1 meV and a pulse duration of about 1.5 ps. We tune these pump pulses to a specific
quantum dot resonance and probe the induced optical nonlinearity with collinearly polarized 15-meV broad of
200 fs duration. The idea of the experiment is to read-out the exciton population after the QD interaction with
the pump pulse by probing the induced absorption on the exciton - biexciton transition. Since each confined
electron state in the QD can be occupied with two electrons of opposite spin orientation, two distinguishable single
exciton states with orthogonal polarization can be optically excited. Simultaneous excitation of both exciton
states results in a transient population of the bound biexciton state [Fig. 7(a)]. In IQDs, the biexciton energy is
normally slightly smaller (1-4 meV) than the sum of the two exciton energies due to the Coulombic interaction
between the two excitons. Since the monolayer islands in interface quantum dots are slightly elongated along the
[-110] direction (18), the energetic degeneracy of the two single-exciton states is lifted (by typically less than 100
µeV) (18) and one finds linear polarization selection rules for the exciton and biexciton transitions (18; 56). The
energy level structure of the QD states and the polarization selection rules can be summarized in a four-level
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system for the no-exciton crystal ground state |00〉, two exciton states with orthogonal polarization |10〉 and
|01〉 and the biexciton state |11〉 [Fig. 7(b)]. Optical excitation of the |00〉 → |10〉 single exciton transition gives
rise to excited state absorption on the |10〉 → |11〉 transition. This excited state absorption is not present in
the absence of single exciton excitation. Experimentally we observe indeed, after single exciton excitation at
1.652 eV [Fig. 7(c)] a new transition resonance red shifted by 1.648 eV, red-shifted by 4 meV from the single
exciton transition which is assigned to the exciton-biexciton X → XX transition [Fig. 7(d)]. Also the dynamics
of the pump-probe signal on the X → XX is consistent with this assignment [Fig. 8(a)] . We observe no biexciton
nonlinearity at negative delay times (probe precedes pump), i.e. in the absence of |10〉 exciton excitation. Around
time zero the X → XX signal rises within the time resolution of the experiment and then decays exponentially
on a 40 ps time scale, i.e., with the radiative single exciton lifetime. This means that the amplitude of the
induced X → XX reflectivity change is a direct measure of the transient |10〉 exciton population generated by
the pump pulse. We study the effect of the pump power on this biexciton nonlinearity. The experimental results
at a delay time of ∆t = 10 ps are shown in Fig. 8(b). The magnitude of the differential biexciton nonlinearity
∆RXX displays pronounced oscillations when varying the power of the pump laser Ppu. In Fig. 8(b) ∆RXX is
plotted vs. the maximum field strength Epu ∝

√

Ppu of the pump laser. These oscillations give clear evidence
for Rabi oscillations on a single ground-state exciton transition in a single interface quantum dot. Despite the
clarity of these oscillations, the experiment also shows that interface quantum dots are not an ideal two-level
system. The biexcitonic nonlinearity at the second maximum, corresponding to a 3π excitation pulse, is about
1/3 smaller than that at the first maximum - corresponding to a π excitation. This unwanted damping of the Rabi
oscillations is caused again by excitation-induced dephasing as an additional source of decoherence. The field
dependence of the biexciton nonlinearity, ∆RXX(Epu), can well be reproduced within the framework of Optical
Bloch Equations of a two-level system with an intensity-dependent dephasing rate γ = 1/T2 +γ1 ·E

2

pu [Fig. 8(b)].
Good agreement between experiment and model is achieved by assuming a dipole moment of 60 D, similar to
those previously measured. The microscopic physics underlying this excitation-induced dephasing is similar to
that reported for above band gap excitation of QW continuum states in Sec. 4.1. Excitation by the ps-pump
pulse not only drives the desired single exciton transition but also creates coherent polarizations and incoherent
populations in the QD environment. Since our pump-probe signals are accumulated over a large number of
typically 108 laser pulses, these unwanted excitations effectively give rise to a fluctuating QD environment and,
thus, to decoherence of the ensemble-averaged QD polarization. Our experimental results are well reproduced
by assuming that the QD dephasing rate increases from less than (15 ps)−1 (an upper limit given by our finite
monochromator resolution) to about (6 ps)−1 for a pulse area of 3π. In summary, these experiments evidence
coherent control of the population of a single QD exciton by demonstration of Rabi oscillations.
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Figure 8. (a) Temporal dynamics of the biexciton nonlinearity at 1.648 eV. The excitation conditions are as shown in
Fig. 7. The 40 ps decay at ∆t > 0 reflects the exciton lifetime. (b) Rabi oscillation is single IQD. Magnitude of the
biexcition nonlinearity as function field amplitude of the pump laser at ∆t = 10 ps.

Full coherent control over the single exciton excitation, however, requires not only control over the exciton
population or more precisely the amplitude of the microscopic polarization ρ01 but also control over the polariza-
tion phase φ = arctan(Im(ρ01)/Re(ρ01)). In a Bloch sphere representation, often used to visualize the quantum
dynamics of quasi-two-level systems, the momentary polarization ρ01 is represented as a three-dimensional vec-
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tor ρB = [Re(ρ01), Im(ρ01)), 1/2(n1 − n0)], with ni = 〈c∗i ci〉 describing the population of state |i〉. In this
representation, polarization control thus means controlling the azimuthal angle φ in the [Re(ρ01), Im(ρ01)]-plane.
Simultaneous control over amplitude and phase of the polarization thus gives full control over both degrees of
freedom on the Bloch sphere.

Here we demonstrate control of the relative phase between the driving laser and the excitonic polarization
by making use of the optical Stark effect (OSE). The OSE is one of the fundamental coherent light-matter
interactions describing the light-induced shift (’dressing’) of energy levels in the presence of non-resonant laser
fields. In atomic systems the OSE is well known and, for weak excitation, well described by optical Bloch
equations for independent two-levels systems (57; 58). In higher-dimensional semiconductors, e.g. quantum wells,
however, the polarization dynamics induced by non-resonant light fields is much more complex than in atomic
systems and often dominated by Coulomb-mediated many-body interactions (59; 60; 61; 62). Effects such as
exciton-exciton interaction, biexciton formation or higher-order Coulomb correlations may affect the magnitude
of the energy shift, the exciton oscillator strength and may even reverse the sign of the shift (61; 63; 64; 65; 66).
Here, we report the first experimental study of the OSE in a single quasi-zero-dimensional semiconductor quantum
dot(40).
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Fig. 9 compares the PL (solid line) from a single QD and the ∆R(ω,∆t = 30 ps)/R0 spectrum for above
band gap excitation of QW continuum states (solid circles). The absorptive ∆R spectrum reflects the bleaching
of the QD resonance as described above. For below band gap excitation, however, we observe for weak excitation
(Ppu < 0.2 µW) and negative delay times, here ∆t = −4 ps (probe precedes pump) a dispersive line shape
centered around ωQD. With increasing excitation power, we find a drastic change in the line shape of ∆R(ω)
[Fig. 10(a)]: For strong excitation, the signal maximum shifts slightly towards higher energies and an increasing
number of spectral oscillations is observed, in particular on the high energy side of the QD resonance. This
change in line shape occurs together with a saturation of the strength of the nonlinear signal ∆Rm, taken as the
difference between minimum and maximum of ∆R(ω) [Fig. 10(b)]. As we will show below, this characteristic
change in line shape allows us to extract the phase shift ∆φ of the QD polarization due to the interaction with
the off-resonant pump laser from a Bloch equation simulation. The extracted phase shift ∆φ is plotted as a
function of excitation power in Fig. 10(c).

To ensure that we are indeed probing only a light-induced shift of the exciton resonance, we also plot the time
evolution of the QD nonlinearity ∆Rm(∆t)/R0 [Fig. 11]. It is important that the signal vanishes completely for
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positive delay times ∆t > 0 (pump precedes probe) and rises around ∆t = 0 within the time resolution of our
experiment of 250 fs. For ∆t < 0, ∆Rm(∆t) decays with a time constant of τd = 8 ps.
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Figure 10. (a) Optical Stark Effect in a single QD. Differential reflectivity spectra ∆R(ω)/R0 for below band gap
excitation at ∆t = −4 ps with 2-ps pulses at 1.647 eV (bandwidth σ = 0.8 meV) for excitation powers between 0.12 and
0.58 µW. Solid lines: Bloch equation model. (b) Variation of the signal magnitude ∆Rm(ωQD)/R0 with pump power. (c)
Phase shift of the QD polarization vs. pump power.

The dispersive ∆R line shape observed in Fig. 9(a) for below band gap excitation and small time delays is the
signature of the OSE in the weak excitation limit (59). It reflects a transient light-induced blue shift QD exciton
resonance. In the presence of an AC electric field of frequency ωp, the transition frequency of a two-level system

shifts by ∆ω0(t) =
√

[(ω0 − ωp)2 + ΩR(t)2]+ωp−ω0. Here, ω0 is the transition frequency without external field,
ΩR(t) = µ · Ep(t)/h̄ is the Rabi frequency, µ the transition dipole moment and Ep(t) · cos (ωpt) the (pump) AC
electric field. The blue shift ∆ω0(t) of the QD absorption resonance results in a dispersive ∆R(ω)/R0 line shape,
which can be approximated as ∆R(ω)/R0 ∝ ∆ω0,max · ∂α(ω)/∂ω, where α(ω) is the QD absorption spectrum
and ∆ω0,max is the maximum blue shift. Thus, in the weak excitation limit, the amplitude of the ∆R(ω)/R
signal is expected to increase linearly with increasing pump power, without change of the line shape. The spectra
of Fig. 10(a) taken with pump powers ≤ 0.2 µW exactly display this behavior. For such pump powers, the Rabi
frequency has a maximum value of ΩR,max = 1.75 meV≃ 5∆ω0,max.

The origin of this transient blue shift becomes clear from an analysis of the optical Bloch equations. We
describe the QD as a two-level system with a radiative lifetime of T1 = 100 ps corresponding to a dipole moment
µ = 50 Debye (45; 34; 46). A dephasing time of T2 = 8 ps is assumed to account for our finite monochromator
resolution. It is important to stress that since we know both power and duration τp of the pump pulses and the
spatial resolution of about 250 nm, the electric field of the pump laser is estimated to within a factor of 2 and
no free parameters enter the simulation.

The calculated dynamics of the QD polarization in the weak excitation limit are displayed in the rotating
frame in Fig. 12(a). The probe field resonant to the exciton line changes the QD population and drives a
coherent polarization oscillating at the QD resonance frequency ωQD. This polarization is 90◦ phase-shifted with
respect to the probe field (Re[PQD]=0). During the presence of the pump pulse, the polarization is externally
driven, leading to oscillations at the detuning frequency ωdet = ω0 − ωp. After the interaction, the polarization
is phase-shifted by ∆φ ≈

∫

∆ω0(t)dt. It is this shift ∆φ of the QD polarization which changes the product
Epr(ω) · EQD(ω) of the complex electric fields and therefore the line shape. Fourier-transformation of the
polarization dynamics gives directly the dispersive line shape of the ∆R(ω) spectrum in the weak excitation
limit, ∆φ < 40◦, at early delay times (Fig. 9, inset in Fig. 12(a)). The simulation also reproduces the time-
dependent data shown in Fig. 11. Evidently, a vanishing nonlinearity at positive time delays is predicted by the
Bloch model, since then the pump laser interacts with the sample before the excitonic polarization is created. At
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Figure 11. Time evolution of ∆Rm(∆t)/R0 for a single QD at ωQD = 1.6544 eV. Here 200-fs pump pulses with a power
of 58 µW were centered at 1.640 eV. ∆Rm(∆t > 0) vanishes and the signal for ∆t < 0 decays on a ps time scale. (a) 3
ps time scale. (b) 25 ps time scale.

negative delays, the OSE nonlinearity is expected to decay with the dephasing time of the polarization. The fact
that we reproduce both predictions of this simple model experimentally is quite striking. In particular, we find
within our signal-to-noise ratio, no measurable nonlinearity at ∆t > 0. This indicates that we are indeed probing
a pure light-induced shift of the resonance and that nonlinearities induced by real carriers generated by one- or
two-photon absorption in the surrounding of the QD obviously play a negligible role (40). This conclusion is
strongly supported by recording transient nonlinear spectra at different negative delay times between 0 and -10
ps. Here, pronounced spectral oscillations are observed which are quantitatively fit by the Bloch equation. Thus,
even under femtosecond excitation, the nonlinear response of the IQD for below band gap excitation is very
close to that of an isolated atomic system and it appears that the excitonic QD excitation is only very weakly
influenced by the complex solid state environment. To be precise, one should note that from our experiments
one cannot directly tell whether the 8 ps decay at negative delay times reflects the polarization dephasing time.
We are spectrally resolving the QD nonlinearity with a monochromator with about 100 µeV resolution and this
finite resolution puts an upper limit of slightly less than 10 ps to the measurable decay. Thus the 8 ps decay is
close to our instrument resolution and only gives a lower limit for the excitonic decoherence rate.
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Figure 12. Bloch equation simulation of the single QD optical Stark effect. Shown is the time-dependent QD polarization
PQD in the rotating frame with (solid line) and without (dashed line) pump laser. Nonlinear ∆R spectra are given in
the inset. (a) Weak excitation limit. (b) Strong excitation limit. The chosen pump power corresponds to a phase shift
∆φ = 172◦.

For higher electric fields of the pump pulse, the weak excitation limit of the OSE nonlinearity is no longer
valid. Experimentally one finds additional features in the transient reflectivity spectra [Fig. 10(a), traces for pump
intensities of 0.32 and 0.58 µW]. These spectral oscillations are a direct consequence of the interaction of the QD
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polarization with the strong pump field. The pump laser induces pronounced large amplitude oscillations of QD
polarization at the detuning frequency during the presence of the pump laser. This is illustrated in Fig. 12(b)
showing the solution of Bloch equations for strong excitation with ΩR = 6 meV (ωdet = −10 meV). A large
phase shift ∆φ of 172◦ of the QD polarization results from this interaction and the nonlinear ∆R spectrum shows
additional oscillatory structures on the high energy side, as found in the experiment. This large amplitude phase
rotation corresponds to the observation of gain on the resonance of a single QD. In the Bloch sphere representation
this phase rotation basically reflects a nutation-like motion of the Bloch vector, resulting in change in azimuthal
angle after the interaction. A comparison between experimental spectra and simulation [solid lines in Fig. 10(a)]
allows us to quantify the phase shift ∆φ experienced by the QD polarization. In Fig. 10(c) we plot ∆φ obtained
from the simulation of the data in Fig. 10(a) as a function of the pump power Ppu. We find a linear increase in
∆φ with Pp. This means that the light shift also increases linearly in our experiment, despite the saturation of
∆Rm. This linear increase in the polarization phase ∆φ is somewhat analogous to the pulse area theorem for
Rabi oscillations of the population of a two-level system when driven with a resonant pulse. Currently, we can
quantitatively measure the phase shift with an accuracy of about 10◦ and achieve phase rotations of as much
as 200◦. Control of the exciton density, on the other hand, has been established above by the observation of
Rabi oscillations when varying the pulse area of a resonant excitation pulse. The result show that a sequence
of a resonant and an off-resonant laser pulse gives full control over both amplitude and phase of the coherent
excitonic polarization. In particular, we can switch the QD from absorption to gain within about 1 ps.

5. COUPLING TWO QUANTUM DOTS VIA THE DIPOLE-DIPOLE INTERACTION

Coherent control of excitonic transitions in single quantum dots, as demonstrated in the last section, is an
essential prerequisite for exploring excitonic couplings between adjacent dots and attempting to implement
potetially scalable two-qubit operations. During the last years, different microscopic coupling schemes have
been proposed theoretically for achieving such implementations, among them coupling via photonic or plasmonic
nanoresonator modes, via optical phonon wavepackets or through dipolar interactions. In particular, ultrafast
optical realizations of two-qubit operations in dipole-coupled QDs have been studied theoretically in some detail
(67; 22; 23; 68; 69).

Experimental studies of the proposed ideas have so far not been reported. This is partly due to a lack of
suitable experimental methods. Since the strength of the dipole-dipole interaction depends strongly on both the
geometric arrangment, (orientation and separation of the dipoles), and on the microscopic interaction (permanent
dipole couplings, van der Waals dispersion forces, Förster dipole energy transfer, ...), studies of single nanosystems
and/or ordered and homogeneous nanoarrays are often needed to resolve such copulings. Such experiments are
scarce and have so far investigated a pair of molecules in an organic crystal (70) or the light-harvesting-2
complex (71) with steady-state techniques. Here, we demonstrate that combining high spatial resolution with
time-resolving optical techniques allows for a separation of different couplings through their individual real-time
dynamics and for controlling nanosystems on ultrashort time scales (39).

To probe dipole interactions between two individual QDs, we go back to the experimental situation depicted in
Fig. 7. In Sec. 4.2 we have discussed experiments demonstrating coherent population control of the QD resonance
at energy of 1.652 eV (QD A). In these experiments, we have probed the pump-induced biexcitonic nonlinearity
of this QD. The broad spectral bandwidth of the femtosecond probe pulses enables us to simultaneously probe
also the pump-induced nonlinear optical response of the other quantum dots detected at this NSOM tip position.
We focus on the optical nonlinearity of the neighboring QD resonance at 1.649 eV (QD B) and study now the
effect of a single-exciton excitation of QD A on the optical nonlinearity of this QD. Nonlinear spectra ∆RB of
QD B recorded with resonant excitation of QD A are displayed in Fig. 13(a). The excitation conditions are
identical to those in Fig. 7(c) with an excitation pulse area of θ = 0.75π.

Now, optical nonlinearities are observed both at positive and negative ∆t, the latter being evident from the
non-instantaneous rise of the signal in Fig. 13(b). In contrast to the absorptive line shape in Fig. 7(b), the
nonlinear spectra display a time-independent dispersive line shape, reflecting a transient blue shift of the exciton
resonance which does not change much with time delay. From the amplitude and shape of the nonlinear spectra
we deduce a line shift of 30±15 µeV around zero time delay. As seen in Fig. 13(b), the time evolution of ∆RB,m,
defined as the difference between maximum and minimum of ∆RB(ω), is very different from that observed at
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Figure 13. (a) Nonlinear ∆R spectra of quantum dot B for resonant single-exciton excitation of QD A at 1.652 eV as
a function of time delay ∆t. The pulse area of the 2-ps excitation pulses is θ ≃ 0.75π. Inset: Excitonic |00〉 → |10〉
transitions in QD A and QD B coupled through VDD. (b) Time dynamics of ∆RB,m(∆t). The excitation conditions are
the same as in (a) and the time resolution of the experiment is indicated (thin solid line). (c) Rabi oscillation in a coupled
QD. Magnitude of ∆RB,m(∆t = 10 ps) as a function of the field amplitude of the pump laser. The solid line shows a
simulation based on an optical Bloch equation model.

the biexciton resonance. At negative time delays ∆RB,m(∆t) shows a rise with a time constant of about 6 ps,
followed by a slight dip and a slower decay on a time scale of more than 100 ps. The change of ∆RB,m with the
excitation field displays clear Rabi oscillations, in phase with those of Fig. 6(d).

To discuss these results, we stress the following observations: (i) Dispersive line shapes, caused by a transient
blue shift of the QD resonance, are observed at all time delays and we find no signature of absorptive ∆R changes
which would reflect pump-induced changes of the exciton population of QD B. This indicates that the observed
nonlinearity is not due to an exciton relaxation between QD A and B. (ii) The presence of a strong laser field
gives rise to transient excitonic line shifts via the optical Stark effect (OSE). However, as shown in Sec. 4.2, the
OSE leads to optical nonlinearities at negative time delays (∆t < 0) only. Also, for a pump frequency above the
exciton resonance, a red-shift of the QD line is expected, in contradiction with our present findings. (iii) There
is a clear correlation between the pulse-area dependence of ∆RXX in Fig. 8(d) and of ∆RB in Fig. 13(c).

The data in Fig. 13 thus reflect an electronic coupling between the QDs A and B. The most likely candidate
for such an interaction is a dipole-dipole coupling between both QDs. Theoretical studies (22; 23; 67; 68)
indicate that two different mechanisms can contribute: resonant Förster energy transfer and direct Coulomb
interaction between permanent excitonic dipole moments. For two quantum dots separated by less than the
wavelength of light, pulsed optical excitation of one QD leads to the re-emission of a transient electric field which
can be reabsorbed by the second QD, thus (Förster) transferring the excitation. The interaction Hamiltonian
HF = VF pAp

∗

B + c.c includes the coupling VF ∝ µAµB/R
3

AB between coherent excitonic polarizations pi(t) =
|10〉i〈01|i + c.c. in QDs A and B. The coupling strength is determined by the transition dipole moments µi =

|〈00| ~Mi|10〉i| ( ~Mi: dipole operator) and the QD separation RAB . In the strong coupling limit, VF /h̄ is larger
than the detuning ∆ω = ωA −ωB between the QD resonances and the dephasing rate 1/T2, leading to entangled
states of the coupled system and cooperative effects in its radiative decay (72; 70; 68). In the weak coupling
limit, VF ≪ h̄∆ω, h̄/T2, the interaction induces a population relaxation between the coupled states (73).

The direct dipole interaction HD on the other hand involves permanent excitonic dipole moments and thus
interaction between the exciton populations ni = |10〉i〈10|i with HD = VDnAnB and VD ∝ dAdB/R

3

AB . Here,
di represents the permanent dipole moment originating from a shift of the electron and hole charge distributions
in the exciton. This interaction leads to a biexcitonic energy shift VD in case that both QDs are excited (22).
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Figure 14. (a) Simulation of optical nonlinearities of two QD coupled by Förster energy transfer for excitation conditions
similar to Fig. 13. The nonlinear spectra (inset) display an absorptive line shape at ∆t > 0 and dispersive red-shifted
lineshape at ∆t < 0. (b) Coupling via permanent excitonic dipole moments. For VD > 0, the nonlinear spectra (inset)
reflect a blue shift of the exciton line at all time delays. Pump-induced Rabi oscillations (∆t = 10 ps) for Förster (c) and
for direct dipole coupling (d).

To examine these two interaction mechanisms, nonlinear optical spectra are calculated from the time evolution
of the density matrix in rotating wave approximation. Here, the QDs are treated as effective two-level systems
(states |00〉i, |10〉i), interacting with the pump and probe fields and coupled via the dipole-dipole interaction.
Most of the parameters of these calculations such as ωi, µi, T2,i, and electric field profiles of the lasers are
quantitatively known. The basic unknown is the mechanism and strength of the dipole-dipole interaction.

For the Förster mechanism, the time-evolution of the spectra depends critically on the ratios of VF , h̄∆ω,
and h̄/T2. In our case, typical interdot distances are limited by the finite exciton size to about 20 nm, giving
VF ≃ 30 µeV for µ = 60D. Therefore VF ≤ h̄/T2 (0.1 meV) ≪ h̄∆ω (3 meV), i.e., we are in the weak coupling
limit. At negative delay times ∆t < 0, ∆RB,m is due to the optical Stark effect induced by the pump field
with a dispersive lineshape reflecting a red shift of the exciton line, and a rise of ∆RB,m(∆t < 0) with T2,B

(Fig. 14(a)). At ∆t > 0, the Förster mechanism induces exciton population relaxation between both QDs,
resulting in absorptive line shapes. The decay of ∆RB,m(∆t > 0) reflects both the exciton lifetime T1,A ≃ 40 ps
and the exciton transfer rate which scales as ΓF ∝ V 2

FT2[1 + (∆ωT2)
2]−1 (73). Although the excitation field

dependence of ∆RB,m(∆t = 10 ps) (Fig. 14(c)) displays Rabi oscillations, the line shapes and the the temporal
dynamics of ∆RB,m are in disagreement with the experiment. Also the amplitude of ∆RB,m is much smaller
than in the experiment. We infer that dipole coupling via the Förster mechanism is of minor importance for our
QDs.

For a direct dipole interaction HD between permanent excitonic dipole moments, excitation of QD A tran-
siently shifts the energy of QD B by VD. The sign of this shift depends on the sign of VD and - thus - a blue shift
occurs for parallel dipoles dA and dB . For a shift smaller than the homogeneous exciton linewidth, the coupling
results in a dispersive shape of ∆R (Fig. 14(b)). Both direct dipole coupling and OSE contribute to the line
shifts at ∆t < 0 and net blue shifts are observed if the Coulomb coupling is stronger than the OSE. The signal
at ∆t < 0 rises with T2,B . For ∆t > 0, ∆RB,m decays exponentially with the exciton lifetime T1,A , as there is
no population transfer between the dots. The amplitude of ∆RB,m monitors the exciton population in QD A
and the intensity dependence of the pump-induced Rabi oscillation (Fig. 14(b)) is thus similar to that found in
the single exciton manipulation experiments.

The experimental line shapes and Rabi oscillations are in good agreement with the direct coupling model.
The calculated decay of ∆RB,m, however, is faster. This discrepancy may reflect signal contributions from more
delocalized excitonic transitions in the environment of QD A (42). Such states have smaller dipole moments and
thus longer radiative lifetimes. Their presence may also lead to finite dipole shifts that persist on time scales
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longer than T1,A. This notion is supported by finding experimentally a finite optical nonlinearity from QD B when
the excitation pulse is slightly detuned from the resonance of QD A. For such a nonresonant excitation, however,
Rabi oscillations are not observed. This indicates that the direct coupling between permanent excitonic dipole
moments is the dominant interaction mechanism. Apart from the permanent dipoles, the Coulomb interaction
between excitons in QD A and B may lead to induced charge rearrangements which lower the energy (formation
of distant biexcitons). The absence of a redshift in the experiment points to a dominance of dipole repulsion
over such correlation effects.

It is interesting to ask whether the weak Förster coupling is a general property of this class of QD samples.
The energy statistics of the localized exciton states are heavily influenced by level repulsion effects (42), resulting
in finite energy splittings between excitons in neighboring QDs. Such splittings are typically 1−3 meV and thus
stronger than the dipole coupling. Thus it is quite unlikely to find near-resonance situations between adjacent
QDs and Förster coupling is expected to be weak in general.

6. SUMMARY AND CONCLUSIONS

In summary, we have introduced a novel technique, ultrafast near-field optical spectroscopy, to probe the nonlinear
optical response from single semiconductor quantum dots. We have used this technique to demonstrate coherent
control over amplitude and phase of the excitonic QD polarization. Rabi oscillations of up to 4π are induced and
probed by ultra-fast light pulses. It appears that even in relatively weakly confined interface quantum dots, the
ultrafast polarization dynamics are in many respects similar to those of an atomic system, yet with an enhanced
dipole moment. Only when interacting with strong excitation pulses with an area of order 2π, excitation-induced
dephasing due to Coulomb-mediated many-body interactions is limiting the visibility of Rabi oscillations. One
may expect that using quantum dots with larger confinement energies may reduce excitation-induced dephasing.
Yet, so far the experiments on Rabi oscillations in more strongly confined self-assembled quantum dots seem
to indicate that here other factors, such as enhanced exciton-phonon coupling, may be important additional
decoherence sources. Certainly, the microscopic origin of exciton decoherence in single quantum dots will be the
topic of much additional experimental and theoretical work in the near future.

The introduced experimental technique probes transient optical nonlinearities in a broad spectral range and
thus is particularly well suited to study excitonic couplings. This allowed us to demonstrate coupling between
permanent excitonic dipole moments in a pair of adjacent quantum dots. The coupling strength of about 30 µeV
is still about one order of magnitude too small to implement a nonlocal conditional quantum gate as proposed
in (22). An increase in coupling should readily be achievable by applying moderate lateral electric fields and
two-qubit gating times of few ps seem feasible (23). Recent progress in nano-fabrication allows for manufacturing
linear arrays of vertically and laterally stacked quantum dots with well defined interdot distances. Such systems
may permit to go beyond two-qubit operations towards scalable qubit arrays, even though statistical variations
of the coupling parameters within such arrays and excitation-induced decoherence still pose major technological
challenges. Either energy-selective addressing (with inherently limited scalability) or cellular-automaton schemes
with globally applied multicolor pulse sequences may be used for encoding information in such arrays. The
now established real-time probing of many-body interactions between individual solid-state nanostructures will
certainly be of key importance for future progress in this area.
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