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Evolution of the Near-Field Patterns into the Far-Field in Surface Plasmonic
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We study emission patterns in periodic nano-hole arrays perforated in a metal film. In the near-
field region, higher order multiple components of diffraction interfere with each other to generate
complicated spatial patterns. These patterns simplify to a sinusoidal one in the intermediate region
and become either homogeneous or sinusoidal in the far-field region, depending on whether the
excitation wavelength is larger or smaller than the lattice constant. For an incident wavelength
much smaller than the lattice constant, complicated patterns can survive into the far-field. De-
tailed analytic and numerical studies are presented, which show good qualitative agreement with
experiment.
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I. INTRODUCTION

There has been an upsurge of interest in surface plas-
monic band gap structures such as a metal film with
periodically perforated nano-hole arrays [1–13], because
of its potential use in sub-wavelength pattern formation.
Recently, a novel behavior of the nanoscopic emission
pattern has been found in this structure [14], showing
that the metal surface can shine brighter than the holes.
It was also observed that the pattern becomes sinusoidal
in the far-field region under certain conditions. A sys-
tematic study of these patterns, however, has not yet
been made.

In this paper, we focus on how the near-field emission
pattern evolves into the far-field region. The initially
complicated near-field pattern simplifies as the tip-to-
sample distance increases, and in the far field region
it becomes either sinusoidal or homogeneous, depend-
ing on whether the excitation wavelength is smaller or
larger than the lattice constant. This near-to-far-field
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emission-pattern change is explained through interfer-
ence between surface plasmon polaritons and diffracted
waves. This clearly establishes that survival of the first
one or two diffraction orders into the far-field is the key
to understanding the pattern evolution.

II. EXPERIMENT

We employ the near-field scanning optical microscope
technique [15,16] in probing the transmission geometry.
A 200-nm-thick gold film is deposited onto a sapphire
substrate. Electron beam lithography and dry-etching
processes are used to make a periodic nano-hole array
pattern, with a hole diameter of 250 nm and period of
760 nm. A Ti:sapphire laser excites the sample from the
sapphire-metal side with near normal incidence and a
metal-coated fiber-tip with a sub-100 nm aperture size
collects light from the air-metal side.

Figure 1(a) shows a shear force image of our sample.
Figures 1(b), (c) and (d) show near-field emission pat-
terns for horizontal, diagonal, and vertical polarizations,
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Fig. 1. (a): Topography of our sample; (b), (c), and (d):
Near-field images at different polarizations (arrows). The
scanning area is roughly 5 µm × 5 µm.

respectively, indicated by the arrows. The excitation
wavelength is 780 nm, near the air-metal [1,0] resonance
defined as below. These images show stripe-like emis-
sion patterns and their orientation runs perpendicular to
the incident polarization, reflecting the longitudinal na-
ture of SP excitations. The image repeats itself with the
periodicity of lattice, a0, which strongly suggests that
patterns arise through interference between coherently
propagating SPs in the x − y plane, each satisfying the
periodic boundary condition. The wave vectors of these
SP waves are therefore given by ± 2π

a0
(m,n) for integers

m and n, where m and n can be thought of as the dif-
fraction orders.

Figure 2(a) shows the z-dependence of emission pat-
terns at an excitation wavelength of 820 nm. Between
z = 0 and z = 0.2 µm, the signal intensity decreases
while a sinusoidal pattern appears. The sinusoidal pat-
tern further evolves into an essentially homogeneous one
with further increasing z. The situation is markedly dif-
ferent when the excitation wavelength becomes smaller
than a0. Shown in Figure 2(b) are the images for an
excitation wavelength of 750 nm < a0 in near-field, at
z = 0.55 and 2.9 µm. Here, the initially complicated
pattern becomes spatially sinusoidal with increasing z.
In contrast to the longer-wavelength case, the sinusoidal
pattern persists up to the far-field region. Shown in Fig-
ures 2(c) and (d) are cross-sectional scans of the far-
field images shown on the far-right sides of Figures 2(a)
and (b), respectively. The cross section at the excita-
tion wavelength 750 nm fits very well with a simple sine
function, as shown by the dotted line. We now study the
wavelength dependence of the far-field images in more

Fig. 2. (a) Emission patterns for λ = 820 nm at z = 0,
0.2, and 1.8 µm, from left to right, respectively. (b) Emission
patterns for λ = 750 nm at z = 0, 0.55 and 2.9 µm, from
left to right, respectively. (c) Cross-sectional scan for the far-
right image shown in (a). (d) Cross-sectional scan for the
far-right image shown in (b). Dotted lines represent simple
sinusoidal fit.

Fig. 3. (a) Emission patterns at a far field region
z = 2 µm, with varying wavelengths: 750, 760, 770, and
780 nm from left to right, respectively. (b) Emission patterns
at the excitation wavelength of 442 nm at different z values
as specified. The scanning area is roughly 2 µm × 2 µm.



Evolution of the Near-Field Patterns into the Far-Field in Surface Plasmonic· · · – S. C. Hohng et al. -S207-

Fig. 4. Emission patterns predicted by diffraction the-
ory. (a) Time-averaged Poynting vector component S̄z of
a Gaussian beam, and (b) cross section through (a) for
λ = 740 nm < a0 = 750 nm, for z = 500 nm (solid line) and
1000 nm (dashed line). (c) and (d) are for the case λ = 780 nm
> a0 = 750 nm. z values for (d) are 200 nm (solid line) and
1000 nm (dashed line).

detail.
Shown in Figure 3(a) are far-field-region images at

z = 2 µm, at various wavelengths around a0. At
this distance, clear sine waves are seen only up to λ =
760 nm and the stripe patterns become blurred beyond
this point. At an excitation wavelength of 780 nm,
the image becomes more or less homogeneous. Clearly,
the pattern at the far-field region makes a “transition”
around a wavelength equaling a0. When the wavelength
becomes shorter, the pattern becomes more localized
and preserved into the far-field region, as shown in Fig-
ure 3(b). In the following, we show that a linear super-
position of SP waves explains all the essential features of
the observed patterns.

III. ANALYTIC AND NUMERICAL RESULTS

To understand the experimental results, we first ob-
serve that radiation patterns in the far-field region ap-
pear as stripes perpendicular to the polarization direc-
tion, irrespective of the details of hole geometry. This
suggests that the experiment can be described effectively
by diffraction at nano-slits instead of a rigorous diffrac-
tion analysis at nano-holes. Thus, in the following analy-
sis, we assume that the system is symmetric along the
slit direction, which we choose to be the y-direction. The
electric field lies in the xz-plane. In the experimental
measurement, we are concerned with the z-component
of the Poynting vector, Sz = ExHy. The electric field

Fig. 5. Emission patterns calculated by the FDTD
method. Results are in arbitrary units for λ = 750 nm
< a0 = 760 nm, for z = 500 (box), 1000 (triangle) and
1500 nm (circle). Solid lines are results predicted by dif-
fraction theory with A0 = 1.31 × 10−2, A1 = 0.58 × 10−2,
and A2 = −0.066× 10−2.

component Ex is given by

Ex =
r−1∑
n=0

2An cos(2πnx/a)

× (cos knz cos wt + sin knz sinwt)

+
∞∑

n=r

2An exp(−hnz) cos(2πnx/a) cos wt, (1)

where coefficients An specify relative excitation
strengths of each mode and the integer r denotes the
number of radiating modes determined such that the n-
th order momenta kn and hn defined by

kn ≡
√

(2π/λ)2 − (2πn/a)2, n < r,

hn ≡
√
−(2π/λ)2 + (2πn/a)2, n ≥ r (2)

are all real. The nonvanishing electric field component
Ez and the magnetic field component Hy can be obtained
directly by integrating Maxwell’s equations:

∇ · ~E = ∂xEx + ∂zEz = 0,

−1
c

∂Hy

∂t
= ∂zEx − ∂xEz. (3)

Coefficients An can be determined by means of a modal
formalism approximation which uses the surface im-
pedance as boundary conditions on the metal surface
[17]. Detailed expression of An does not concern us here
and we simply refer the reader to Ref. [17], from which
An can be readily obtained with a minor modification.

Consider first the case where the excitation wavelength
is slightly shorter than the lattice constant, λ < a0, so
that r = 2. That is, only the homogeneous (n = 0) and
the first order diffraction mode (n = 1) are radiating.
Higher order modes (n ≥ 2) are all evanescent. In the
far field region where only the radiating mode survives,
the time average of Sz can be readily computed to give



-S208- Journal of the Korean Physical Society, Vol. 46, June 2005

cS̄z = 2A2
0 + 2A0A1 cos(2πx/a) cos[(k0 − k1)z](1 +

k0

k1
) + 2A2

1 cos2(2πx/a)
k0

k1

+ 2A0A2e
−h2z cos(4πx/a)

[
cos(k0z)− k0

h2
sin(k0z)

]
+ 2A1A2e

−h2z cos(2πx/a) cos(4πx/a)
k0

k1

[
cos(k1z)− k1

h2
sin(k1z)

]
, (4)

where we suppressed contributions from higher-order
terms. More realistically, we could include a Gaussian
modulation factor to Ex along the x-direction in order
to simulate the Gaussian beam and derive the time av-
erage of Sz by following the same procedure as above.
Figure 4 displays analytic results computed in this way.
In all cases, the lattice constant was 750 nm and the
Gaussian beam width was assumed to be 8 µm.

Shown in Figure 4(a) and (b) are the time average of
Sz and its transversal cross sections at two different z
values for λ < a0. The zeroth- and the first-order modes
persist into the far-field region and their mutual inter-
ference generates well-defined spatially sinusoidal waves.
In particular, Eq. (4) shows that the period of patterns
in the propagation direction is given by

λ

[
1−

(
1− λ2

a2

)1/2
]−1

, (5)

which is bigger than the wavelength λ. It also shows
that the relative contribution of the first diffraction or-
der, n = 1, is enhanced by

(
1− λ2/a2

)−1/2, increasing
the modulation depth of the spatial sine wave.

When the excitation wavelength is longer than the lat-
tice constant, λ > a0, only the homogeneous (n = 0)
mode radiates. All other diffraction modes are evanes-
cent and decay exponentially. Figures 4(c) and (d) show
the time average of Sz and the cross sections in this
case, where the interference between the homogeneous
and the decaying diffraction modes can be explicitly ob-
served. These analytical results agree well with a di-
rect numerical result by using the 2-dimensional FDTD
(Finite-Difference Time-Domain) method. In performing
the FDTD calculation, we assumed a dielectric constant
of the Drude type in the metal [18] and measured the
time average of Sz at various locations. Figure 5 com-
pares numerical results with the results obtained from
Eq. (4), which shows a good agreement particularly in
the far field region (z = 1500 nm). The agreement is
relatively poor in the near field case (z = 500 nm) due
to the neglect of higher diffraction orders.

For wavelengths much shorter than a0, which is the
case for Figure 3(b), more modes can be radiating and
therefore more complicated patterns are preserved. It
should be noted that for the excitation wavelength of 442
nm, r should be larger than 2, since the SP group veloc-
ity decreases with increasing photon energy [19]. Then,

even in the far-field region, a variety of wave-vector com-
ponents can participate in the pattern generation. This
qualitatively explains why the initial pattern evolves nei-
ther to a homogeneous nor to a sinusoidal pattern as z
increases, but remains relatively similar to the near-field
pattern.

IV. CONCLUSION

In conclusion, we have studied the near-field to far-
field evolution of the emission patterns of a plasmonic
band gap structure. We can generate tunable, spatially
symmetric far-field emission patterns that may be ho-
mogeneous or sinusoidal or, in general, polarization- and
wavelength-tunable interferences of a few radiating dif-
fraction orders.
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