Guenther et al. Reply: In a recent Letter [1], we concluded that excitation-induced dephasing (EID) is the dominant mechanism underlying the perturbed free induction decay (FID) of the coherent polarization emitted from a single exciton in a quantum dot (QD).

In the preceding Comment [2], Joffre questions this claim and speculates about a slow buildup of exciton bleaching, i.e., a change in oscillator strength, as a possible mechanism. This argument seems based on earlier quantum well (QW) studies [3]. We show that a slow bleaching is inconsistent with our experimental results.

Our experiments probe, at negative time delays Δt , the temporal dynamics of the field $E_{OD}(t)$ radiated from the coherent excitonic polarization $P_{QD}^{(t)}(t) = d_{OD}^* \rho_{01} + \text{c.c.},$ where d_{QD} denotes the excitonic dipole moment. The microscopic QD polarization ρ_{01} obeys the equation of motion

$$\frac{\partial}{\partial t}\rho_{01}(t) = -i\omega_{QD}\rho_{01}(t) + i(1 - 2n_{QD})\omega_R - \gamma\rho_{01}(t),$$
(1)

with exciton energy ω_{QD} , dephasing rate γ , exciton population n_{OD} , and generalized Rabi frequency ω_R [4]. The off-resonant pump laser creates electron-hole pairs (density n_{OW}) in the QW continuum, i.e., does not interact directly with the excitonic dipole, and thus may perturb the FID of P_{QD} only through changing ω_{QD} , n_{QD} , ω_R , γ [5] and/or d_{OD} by many-body interactions: (i) The symmetric spectral oscillations around the exciton resonance shown in Fig. 3 of Ref. [1] demonstrate a negligible change $\Delta \omega_{OD} < 0.1$ meV. (ii) We agree with the Comment that the integral $\int d\omega \Delta R(\omega, \Delta t)$ always vanishes when integrating over the full spectral range. In our case, however, the integral already vanishes when integrating over only 2 meV around ω_{OD} , a small fraction of the total probe bandwidth of 18 meV. This behavior is different from what has been reported in earlier studies of excitons in quantum wells [3] and indeed rules out an *instantaneous* change of d_{QD} by the pump. Instead, the FID is damped on a slow 3 ps time scale, demonstrating that other subpicosecond changes of $P_{OD}(t)$ are negligible. In particular, fast changes of the Rabi frequency ω_R due to the femtosecond pump field E_p and/or short-lived polarizations P_c on continuum transitions are absent. As the second term in Eq. (1) is relevant only for nonzero E_p and P_c , changes of n_{OD} [(second term in Eq. (1)] [6], do not affect our transients.

(iii) In principle, there could be a pump-induced change of d_{QD} on a 3 ps time scale. As argued in the Comment, such a mechanism could account for the spectral oscillations at negative delay times. For positive delay times, this model [Fig. 1(b)] predicts an increase in $\Delta R(\omega_{OD}, \Delta t)$ on the time scale of the switch-off time, in striking contrast to our experimental data [Fig. 1(c)]. Moreover, it appears difficult to find a mechanism that changes the excitonic dipole moment d_{QD} of a quantum

FIG. 1. Schematics of the excitation-induced dephasing (a) and bleaching (b) model. Experimental $\Delta R(\omega_{OD,\Delta t})/R_0$ dynamics (open circles) and simulations based on the two models.

dot without affecting its transition energy [see (i)]. $\Delta \omega_{QD}$ is less than 1/100 of the exciton binding energy which is typically needed to significantly affect d_{OD} [7]. Thus, we rule out this model. (iv) Our data at both negative and positive delay times are very well reproduced by a model invoking EID as the dominant nonlinearity, i.e., an increase in γ due to the interaction between ρ_{01} and free carriers in continuum states [solid line in Fig. 1(c)]. For positive delays, such a model predicts an initial decay of $\Delta R(\omega_{OD}, \Delta t)$ on a time scale given by the decay of n_{OW} .

In conclusion, our results provide strong evidence that EID is indeed the dominant contribution to the observed perturbed FID of the excitonic polarization of a single quantum dot.

- T. Guenther,¹ C. Lienau,^{1,*} T. Elsaesser,¹ M. Glanemann,²
- V. M. Axt,² and T. Kuhn²
- ¹Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie D-12489 Berlin, Germany ²Institut für Festkörpertheorie
 - Universität Münster D-48149 Münster, Germany

Received 10 September 2002; published 4 April 2003 DOI: 10.1103/PhysRevLett.90.139702 PACS numbers: 78.67.Hc, 07.79.Fc, 78.47.+p

*Electronic address: lienau@mbi-berlin.de

- [1] T. Guenther et al., Phys. Rev. Lett. 89, 057401 (2002).
- [2] M. Joffre, preceding Comment, Phys. Rev. Lett. 90, 139701 (2003).
- [3] J. Sokoloff et al., Phys. Rev. B 38, 7615 (1988), and references therein.
- [4] H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1994).
- [5] S.W. Koch, N. Peyghambarian, and M. Lindberg, J. Phys. C 21, 5229 (1988).
- [6] S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B 32, 6601 (1985).
- [7] D. A. B. Miller et al., Phys. Rev. B 32, 1043 (1985).