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Electromagnetic Interactions with Solids
Ricardo Díez Mui~no, Eugene E. Krasovskii, Wolfgang Schattke,
Christoph Lienau, and Hrvoje Petek

In this chapter, we discuss various processes that contribute to absorption of light at
solid surfaces. We particularly focus on the optical response of metals including
single-particle interband electron–hole (e-h) pair excitations, which are common to
semiconductors and insulators, as well as the free-electron response, which is
particular to metals and doped semiconductors. Free electrons participate both in
the collective screening response and in the single-particle intraband absorption. A
characteristic property of metals conferred by free electrons is the dielectric function
with large negative real and small positive imaginary parts in the infrared and visible
spectral regions. A time-dependent electromagnetic field incident on a metal surface
at frequencies below the material-specific plasma frequency is strongly screened by
the free-carrier polarization. The screening limits the penetration of the electric field
to the skin depth of the metal, typically corresponding to 20–30nm in the visible
spectrum. Moreover, the coherent oscillation of free carriers with the opposite phase
as the incoming field (see Section 5.4.2), as imposed by the negative real part of the
dielectric function, leads to specular reflection of ap-phase-shifted fieldwithminimal
loss to e-h pair excitation. We examine the factors that define the optical properties of
metals and how light deposits energy into elementary excitations at a metal surface.
Absorption of light generates hot carriers within the metal bulk or at surfaces in
intrinsic or adsorbate localized surface states. These excitations undergo relaxation
through elastic and inelastic carrier scattering processes or induce chemistry, as
discussed elsewhere in this book. The absorption of light is detected through linear or
nonlinear optical spectroscopy; alternatively, it can be detected through photoelectron
emission. Although both optical and photoemission measurements have the same
requirements for momentum conservation in the process of photon absorption, the
former confers momentum integrated information and is therefore unsuitable for
band structure mapping. We discuss the optical absorption process with the object of
specifying the hot electron and hole distributions in the energy andmomentumspace
[E(k)] that are generated by absorption of light through interband and intraband
transitions. These distributions are important for the secondary processes induced by
hot carriers, such as femtochemistry, aswell as to describe photoemission. By contrast
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to optical spectroscopy, photoemission spectroscopy has provided a wealth of infor-
mation on the band structures of the occupied states of solids, and with the advent of
tunable ultrafast lasers, it holds a further promise for band mapping of their
unoccupied states. To this end, we describe recent theoretical proposals for the band
mapping by resonant multiphoton photoemission. The coherent response of metals
has been used to great advantage in the field of plasmonics.We describe the nature of
localized and propagating plasmonic modes of metal surfaces, how they can be
manipulated through morphology and dielectric environment, and how they couple
with other excitations such as excitons in molecular aggregates.

5.1
Dielectric Function of Metals

For sufficiently low intensities, absorption of the electromagnetic radiation by a solid
is described by perturbation theory; transitions between the occupied and unoccupied
stationary states represent a negligible deviation of the system from its ground state.
In the simplest case, whenmany-body interactions are described by a mean field, the
probability that a photon of energy hv be absorbed is reduced to summing up the
probabilities of all possible one-particle excitations for all crystal momenta k. The
probability of each individual transition obeys the FermiGoldenRule and, in the long-
wavelength limit, the dipole selection rules [1]. In a crystal, the electron states can be
chosen to be eigenstates of the translation operator, so that thenon-vanishing ones are
only the transitions between electron states having the same k. In the dipole
approximation, the transition probability amplitude is given by the matrix element
Me

mnðkÞ ¼ knj�irejkmh i, where re is the projection of the gradient operator in the
direction of the electric field andm and n are the band numbers of the occupied and
unoccupied Bloch states, respectively. The k-conserving transitions are often referred
to as vertical or direct transitions, with the momentum of a photon being negligible
compared to the range of momenta spanned by the Brillouin zone vectors. The total
probability of being absorbed (per second and per unit volume) is given by an integral
over the Brillouin zone, and it can be converted into the optical constants of the
material using the macroscopic relationships of the classical electromagnetic theo-
ry [2]. Amore consistent approach is to calculate the linear longitudinal responseof the
many-electron system within the random phase approximation (RPA). The simplest
version of the RPA [3], which neglects variations in the electric field on the scale of the
unit cell, leads to the same result. The imaginary part of the macroscopic dielectric
function e00 corresponding to interband transitions,which is of primary interest in this
section, is then simply connected to the band structure:

e00ðvÞ ¼ 4p2e2

m2v2

X
mn

ð
BZ

2dk

ð2pÞ3 Me
mnðkÞ

�� ��2d EnðkÞ�EmðkÞ�hvð Þ: ð5:1Þ

The termsm „ n result in broad absorption spectra reflecting transitions between
electronic bands specific to each solid. This interband term is often referred to as the

182j 5 Electromagnetic Interactions with Solids



Lorentz term and can be represented as a sum of several Lorentz oscillators
corresponding to specific regions of phase space with a large joint density of initial
and final states that are connected by optical transitions.

The one-particle model also describes the fundamental difference betweenmetals
and semiconductors: the normal incidence reflectivity of the former approaches
unity asv! 0. This is caused by the intraband term,m ¼ n, which contributes to the
optical response ofmetals due to the presence of the Fermi surface. In the absence of
damping, the intraband term gives rise to a singularity of e00ðvÞ at v! 0:

e00intraðvÞ ¼ p

2
v2

p0
¶dðvÞ
¶v

: ð5:2Þ

The Kramers–Kronig transform of Eq. (5.2) is the Drude contribution to the real
part of the dielectric function:

e0intraðvÞ ¼ 1�v2
p0

v2
: ð5:3Þ

The parametervp0 ¼ 4pne2=mð Þ1=2 in Eqs. (5.2) and (5.3) is the plasma frequency
of a free-electron gas, which depends entirely only on the electron density n.

The real part of the dielectric function is also seen to diverge as v! 0, and
consequently, the normal incidence reflectivity of metals R approaches unity in this
limit. As long as the real part remains large andnegative, the reflectivity is high; above
vp0, the free electrons are no longer able to screen the external field and the metal
becomes transparent. At the plasma frequency, light can propagate through a metal
as a strongly damped collective charge density fluctuation [4]. In real metals, the
frequencies of plasma oscillations, which occur when e0ðvÞ crosses zero and e00ðvÞ is
small, are modified by interband transitions described by the Lorentz term. The
Drude parameter v2

p is given by the integral over the Fermi surface

v2
p ¼

1
p2

X
n

ð
FS

dS
e � vnðkÞð Þ2
vnðkÞj j

� �
: ð5:4Þ

Here, vnðkÞ is the group velocity of the Bloch state nkj i and the vector e points in the
direction of polarization of the external field. Fermi surfaces of realistic metals have
very complicated shapes, so the actual values ofv2

p are usuallymuch smaller than the
free electron result v2

p0.

5.1.1
Calculations of Dielectric Functions

The one-particle approachprovides a simple scheme for calculating optical properties
with ab initiomethods of band theory. In themajority of applications, the solutions of
the Kohn–Sham equations of the density functional theory are used for kmj i and
EmðkÞ. Formetals, this usually leads to a satisfactory agreementwith experiment. The
typically high quality of the above approach is illustrated in Figure 5.1a for platinum
(Pt): below 30 eV, themeasured optical spectra [5] are well described by the theory [6].
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The theory fails at higher energies, however, where absorption is due to highly
localized semicore states (see the dashed line in Figure 5.1b). It is shown in Ref. [7]
that the problem is caused not only by the errors in quasi-particle energies EmðkÞ, but
also by the simplified form (Eq. (5.1)) of the RPA.

Random phase approximation can be refined by taking into account local field
effects [8], that is, by including the short-wavelength response to a long-wavelength
perturbation, where eðvÞ is k independent. Thus, one improves the description of
electron–electron interaction, while remaining within a one-particle approach. For
crystals, the problem is formulated in terms of the microscopic dielectric matrix in
the reciprocal space representation eGG0 ðvÞ, whose elements are labeled by the
reciprocal lattice vectorsG andG0, each element being a tensor in the real space. The
macroscopic dielectric function e(v) (an element of the tensor) is given by thematrix
inverse of the dielectric matrix

e vð Þ ¼ 1

ê�1 vð Þ� �
G¼0;G0¼0

; ð5:5Þ

eGG0 ðvÞ ¼ dGG0� lim
q! 0

e2

4p2jqþGjjqþG0j
X
mn

ð
BZ

dk

kþ qn eiðqþG0Þr�� ��km� �
km e�iðqþGÞr�� ��kþ qn
� �

Enðkþ qÞ�EmðkÞ�hvþ ihg
;

ð5:6Þ

Figure 5.1 (a) The reflectivity RðvÞ, the real
and imaginary parts of the macroscopic
dielectric function eðvÞ, and the loss function
Im ½�eðvÞ�1� of Pt: theory [6] (lines) and
experiment [5] (dots). (b) Absorption coefficient
m(v) of Pt: theory with (solid line) and without

(dashed line) local fields and experiment [9]
(circles). Theoretical energies of 5p and 5f
bands are adjusted to XPS measurements
(indicated by vertical bars). Reprinted with
permission from Ref. [6]. Copyright (2001) by
the American Physical Society.
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where q is the wave vector in the Brillouin zone and g is a broadening parameter. The
strong effect of the nondiagonal dielectric response on the far UVoptical absorption
in Pt is illustrated by Figure 5.1b: the inclusion ofmicroscopicfields is seen to change
both the shape and the amplitude of the absorption coefficient mðvÞ curve in
Figure 5.1b and to shift the absorption bands to higher energies by several eV. The
absorption coefficient derived from the true macroscopic dielectric function nearly
perfectly agrees with the experiment. Note, however, that in contrast to Figure 5.1a,
which was obtained with ab initio Kohn–Sham solutions in the local density
approximation (LDA) for the valence band of Pt, the one-particle energies of the
5p and 4f bands had to be corrected according to independent X-ray photoemission
measurements [6].

Although Kohn–Sham eigenvalues cannot be identified with true quasi-particle
energies, experience shows that they are often adequate for delocalized valence bands
but are less reliable for core states. Correct quasi-particle equations include many-
body effects through a self-energy operator

P
. A state-of-the-art, but still technically

challenging approach to
P

in moderately correlated solids is the GW approxima-
tion [10]. This approach has been instrumental in calculating the band structure of
semiconductors [11], where the LDA is known to strongly underestimate thewidth of
the band gap.

In contrast to metallic systems, in semiconductors the e-h interaction also plays a
fundamental role in the formation of optical spectra. It leads to bound excitons and
apart from that strongly affects interband transitions. Thus, knowledge of the two-
particle Green�s function is required. Modern ab initiomethods treat the problem by
solving a Bethe–Salpeter equation (BSE) for the polarization functionXGG0 ðq;vÞ [12].
Themacroscopic dielectric function in the limit of small momentum transfer is then
given by

eðvÞ ¼ lim
q! 0

yðqÞx00ðq;vÞ: ð5:7Þ

The result can be reduced (after certain reasonable simplification) to a formula
similar to Eq. (5.1), but with true excitation energies instead of energy differences
EnðkÞ�EmðkÞ and with a coherent sum over direct e-h pairs instead of the incoherent
sum over direct transitions [13, 14]. Thus, apart from obtaining excitation energies
within the quasi-particle gap, the two-particle theory also takes into account inter-
ference between matrix elementsMe

mnðkÞ coming from different k points. The latter
effect may affect the interband absorption spectrum much more strongly than the
former, in particular for semiconductors. It has been shown that for GaAs [14] and
GaN [15] the dramatic shift of the absorption band to lower energies resulting from
the e-h interaction is entirely due to a constructive interference of the transition
amplitudes at lower energies and destructive interference at higher energies. In wide
band gap insulators, the Bethe–Salpeter equation approach reliably describes high-
energy excitons. For example, GW–BSE methods have successfully provided a
unified description of the optical spectra of rutile and anatase polymorphs of TiO2,
clarifying the role of electronic and optical gaps in materials important for solar
energy conversion [16]. Excellent agreement of ab initio calculations with experiment
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has been achieved for a wide range of semiconductors and insulators
[13–15, 17] (see also the review article [18] and references therein).

5.2
Band Mapping of Solids by Photoemission Spectroscopy

Photoemission has become a preeminent tool to understand real solids in terms of
their electronic structure [19, 20]. In a simplified picture and for sufficiently weak
incident radiation, photoemission is a linear process in which one electron is emitted
for each photon absorbed. Because the mean free path of photoelectrons ranges
typically from a few angstroms to a few tens of angstroms, photoemission measure-
ments are surface sensitive. Depending on the photon energy hv, the photoemitted
electron can be extracted either from atomic-like core levels or from more weakly
bound valence levels. In the former case, photoelectron diffraction offers consider-
able information about structural properties. Identification of the chemical envi-
ronment is also possible as well from chemical shifts in X-ray photoemission spectra.
In the latter case, spectroscopy techniques give rise to valuable information on
momentum-resolved band structure: angle-resolved photoelectron spectroscopy
(ARPES) is the preferred method for complete band mapping of solids. A schematic
drawing of the photoemission process is shown in Figure 5.2.

Although photoemission is actually a many-body process, state-of-the-art theoret-
ical descriptions of the photocurrent I rely on Fermi�s Golden Rule in a one-electron
picture:

I E; k0k
� 	

/
X
nk

yf E; k0k
� 	

jO yn kð Þ
��� E

d E�EnðkÞ�hvð Þ;
D

ð5:8Þ

where there is a sum over the continuum of initial states yn kð Þj i with energy EvðkÞ.
The indexes v and k refer to the band index and the three-dimensional momentum,
respectively. In the one-step photoemission theory, the final state yfj i is a time-
reversed low-energy electron diffraction (LEED) state defined by the surface parallel
projection of theBloch vector k0k and energyE. The LEEDwave function is a scattering
solution for a plane wave incident from vacuum. The LEED state incorporates the
effect of the inelastic scattering of the photoelectron,which is quantitatively treated by
adding an imaginary part (optical potential) to the potential in the crystal half-space.
Therefore, yfj i is an eigenfunction of a non-Hermitian Hamiltonian with a real
eigenvalue E.

The delta function in Eq. (5.8) guarantees total energy conservation. The final state
energyE is connectedwith themeasured kinetic energyEkin byEkin ¼ E�W, whereW
is the work function of the solid. Momentum conservation is reduced to the parallel
momentum k0jj, while the perpendicular component of the momentum is not
conserved due to the symmetry breaking by presence of the surface. The operator
O ¼ A � pþ p �A can be written in terms of the vector potential of the photon field A
and the momentum operator p. The A � p term describes photon absorption in a
homogeneous medium, that is, within bulk of a solid, whereas the p �A term has a

186j 5 Electromagnetic Interactions with Solids



significant contribution at a surface, owing to a strong gradient in the vector potential.
In the limit of long wavelength and at high photon energy, the vector potential can be
approximated as constant (dipole approximation). In metals, below the plasma
frequency, this approximation may be unsatisfactory because the exciting field has
a strong contribution from the nonlocal dielectric response at the surface, corre-
sponding to the nondiagonal terms in the dielectric matrix of Eq. (5.5). The spatial
dependence of the total electric field at the surface, however, can be calculated by
modern band structure methods and included into the microscopic theory of
photoemission [21].

For ultraviolet (UV) radiation, photoelectrons are extracted from the valence band
of the solid. Figure 5.3 shows that an accurate description of the photoemission final
state by a time-reversed LEED state yfj i makes it possible to obtain an excellent
agreement between theoretical and measured photoelectron spectra for off-normal
emission in TiTe2 [22].

The mapping of the solid valence band can be simplified if the final state yfj i in
Eq. (5.8) is approximated by a Bloch eigenstate of the bulk system, which conserves
the three-dimensional crystal momentum [23, 24]. A further simplification arises if
the final state band structure is completely neglected. In this case, and because of the
continuum of photoelectron final states, energy conservation is always fulfilled and
the matrix elements are constant. Therefore, the sum over initial states in Eq. (5.8)
turns into the density of initial states. In this approximation, the spectrum reduces to
a one-dimensional density of states (DOS) along the surface normal direction. The
example in Figure 5.3, however, shows a crucial role of final-state effects in the

Figure 5.2 Schematic representation of the photoemission process.
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formation of the spectra even for very narrow bands. Their accurate ab initio
treatment is essential in understanding the photoemission lineshape and its depen-
dence on the photon energy. Modern photoemission theory is capable of taking into
account the subtle effects of interference between branches of the complex band
structure of the final states and providing a good agreement with the experiment.

Band mapping, such as described in Section 3.4, of occupied states can be
considered as a basic application of photoelectron spectroscopy. A more complex
task is thederivationofdynamical information frommeasured lineshapes, linewidths,
and peak intensities. Scattering of photoexcited electrons with electrons in the Fermi
sea, phonons, and defects, as well as hole screening and decay, can significantly
contribute to spectral linewidths [25]. In fact, bulk direct transition linewidths are in
most cases dominated by final-state damping. Only in the case of surface states, it is
possible to determine the initial state spectral function, without influence of the final
state contributions. This feature has been exploited to dissect different contributions
from the e-e, e-p, and defect scattering to the linewidths of Shockley surface states of
noble metals [26]. Excellent agreement has been obtained between the experimental
linewidths and ab initio calculations at a level beyond the GW, taking into account the
spatial dependence of the screened interaction at a surface [27].

For higher photon energies, electrons can be extracted from core levels for which
the theoretical description of the initial electron wave functions is simpler than that

Figure 5.3 Experimental and theoretical energy distribution curves for Ti 3d photoemission in
TiTe2. Spectra are marked by photon energies. Reprinted with permission from Ref. [22]. Copyright
(2007) by the American Physical Society. (Please find a color version of this figure on the color
plates.)
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for delocalized bands. Spectroscopy in this regime is used for chemical identification,
as well as detecting element-specific energy shifts at surfaces. The spatial localization
of the initial excitation makes each atom in the solid a point-like source of photo-
electrons. Core-level emission is thus a powerful tool for holography and electron
diffraction-based techniques [20]. In core-level photoemission, the theoretical
description of the photocurrent can be simplified through the three-step model, in
which the initial excitation process, the diffraction at the crystal lattice, and the
crossing of the surface are considered as three independent processes. Multiple
scattering methods have proven to be successful in describing the photoelectron
spectra in this regime. The fitting of simulated theoretical spectra to experimental
results provides very accurate information on structural parameters of clean and
decorated systems, as well as more complex systems [28, 29]. Spin-resolved photo-
emission provides further insight into the spin structures of surfaces [30–32].

The role of the electron spin is relevant in photoemission processes frommagnetic
systems, as well as in systems with strong spin-orbit coupling. Spin-dependent
phenomena can be investigated through photoelectron spin analysis if the signal
levels are sufficient [33]. Even without spin resolution in the photoelectron detection,
magnetic dichroism can be used for studying these systems. Magnetic dichroism is
based on the change in photoelectron intensity upon reversal of the sample magne-
tization or the direction of circular polarization of the excitation light
[34, 35]. Furthermore, photoemission techniques also provide valuable information
on electron correlation. The extreme energy resolution achieved in photoemission
measurements in the last years has opened the way to detailed studies of many-body
effects in the spectra. This is particularly interesting for the studyof strongly correlated
systems and superconducting materials, as described in more detail in Chapter 1.
Such measurements rely heavily on the ability of photoemission spectroscopy to
measure lineshape changes and energy gap shifts with sub-meV resolution [36].

5.2.1
Nonlinear Photoemission as a Band Mapping Tool for Unoccupied States

Nonlinear photoemission processes induced by light sources of high intensity have
been shown to be well suited for the study of electronic excitations in solid-state
materials. Two-photon photoemission (2PPE) has contributed greatly to the study of
ultrafast electron dynamics and adsorbate dynamics at solid surfaces [37, 38]. The
lifetime of electronic surface and image states, for instance, has been accurately
determined in many systems through pump–probe experiments [39]. In the case of
surface states or adsorbate excitations, momentum conservation is relaxed due to the
presence of the surface or the localization of the wave functions on the adsorbates
[40, 41]. In most cases, 2PPE experiments involve nonresonant excitation or excita-
tions from bulk to surface states that do not involve strong resonance enhancement.
This is in part because the excitation lasers have poor tunability, as well as because
resonances can complicate interpretation of the spectra.

The spectroscopy of bulk electronic states by 2PPE has not received comparable
attention, although it can effectively be used to extend spectroscopy to electronic
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states below and above the vacuum threshold [42–44]. Other photoemission-based
methods, such as inverse photoemission spectroscopy [45, 46], have never
attained accuracy comparable to that of ARPES for the occupied states; therefore,
establishing a general method with high spectral and temporal resolution for the
study of the unoccupied states would be highly desirable. In fact, such methods
could have significant advantage for band mapping over conventional ARPES
because interband excitations within the bulk of solids rigorously conserve
momentum.

In one-photon photoemission, the one-step model (see Eq. (5.8)) is known to
provide a firm basis for ab initio calculations. A similar approach is expected to be
appropriate for the case of multiphoton photoemission. Following perturbation
theory, one can show that the second-order contribution to the photoemission
current is [47]

I/
X
vk

hfkj j2d E�EvðkÞ�hvð Þþ 1
4

X
vk

X
mk0

hf ;k0mhk0m;kv
Emðk0Þ�EvðkÞ�hv�ig

������
������
2

d E�EvðkÞ�2hvð Þ;

ð5:9Þ

where the first sum corresponds to the first-order process of Eq. (5.8). The second
term involves matrix elements between initial and intermediate states hk0mkn and
between intermediate and final states hfk0m. The sum over unoccupied intermediate
states runs over the band index m and the three-dimensionalmomentum k0. The final
state yfj i is again a time-reversed LEED state. In contrast to the relaxed momentum
conservation in the transition matrix elements hfk0m to the inverse LEED state, full
three-dimensional momentum is conserved in the intermediate transition hk0mkn.
This property is crucial to obtain an accurate description of the band dispersion of
unoccupied levels. Distinct peaks in the two-photon photoemission yield can
therefore be associated with initial to intermediate state resonances that correspond
to momentum-conserving transitions. Figure 5.4 illustrates this effect in the case of
two-photon transitions in Si(001) [47]. Figure 5.4b shows the photoemission intensity
versus the energy (measured with respect to the valence band maximum). In
Figure 5.4a, a magnified view of a portion of the band structure that contributes
to the photoemission spectrum is shown, and the full band structure is included in
the inset as well. Thickened grey lines denote the complex band structure consti-
tuents of the LEED states; the thickness gives the contribution of the bulk Blochwave
to the outgoing photoelectron wave function.

Taking full advantage of the band mapping capability of multiphoton photoemis-
sion requires broad excitation laser tunability and momentum mapping capability.
Owing to the experimental demands, only a few examples of such studies have been
reported in the literature [48, 49]. One should also keep in mind that multiphoton
excitation processes can occur throughmultiple resonant and nonresonant pathways,
which contribute coherently to the photoemission yield, and therefore one should
expect such spectra to be influenced by multiple pathway interference effects. Such
multiphoton processes are discussed in Ref. [50].

190j 5 Electromagnetic Interactions with Solids



5.3
Optical Excitations in Metals

The dielectric function, as described in Eqs. (5.1)–(5.6), is defined by both the
electronic structure and carrier phase relaxation phenomena in a solid. Photoemis-
sion spectroscopy measures the electronic bands of a solid with energy and
momentum resolution. Optical measurements, such as reflectivity and transmis-
sion, represent the full electromagnetic response of a solid, which is useful for
describing the macroscopic properties, but the nonspecific nature makes it difficult
to extract information on the band structure and the specific carrier scattering rates.
Nevertheless, opticalmethods have played an essential role in the development of our
understanding of the fundamental properties ofmetals [51, 52], aswell as for ultrafast
studies of electron dynamics in solids [53–56]. A valuable theoretical comparison of
the spectroscopic and dynamical information content of nonlinear photoemission
and optical spectroscopy measurements is given in Ref. [57]. The goal of this section

Figure 5.4 Two-photon photoemission yield
and some relevant two-photon transitions in
Si(001). Right panel: Grey dashed line (dark
solid line) corresponds to the spectrum for
�hv¼ 3.6 (3.8) eV. The full band structure is
shown in the inset as well. Left panel: A selected
part of the band structure is magnified. The
transitions relevant for the spectrum are shown

by squares (circles) for �hv¼ 3.6 (3.8) eV.
Thicker vertical bars rising from the squares and
circles show the magnitude of the coupling
matrix elements for the transitions. See text for
further explanation. Reprinted with permission
fromRef. [47]. Copyright (2008) by theAmerican
Physical Society.
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is to analyze the optical response of metals in greater detail in order to describe the
processes contributing to different components of the dielectric response and to
describe the carrier distributions they generate.

Optical response of a metal involves both single-particle and collective excitations
that are described by the complex dielectric function. In the limit of small momen-
tum transfers relevant to the visible/UV spectral response, the complex dielectric
function is written as a sum of three terms [8, 51, 58–60]:

eðvÞ ¼ 1� v2
p0

v2 þ iv=t
þ eiðvÞ; ð5:10Þ

where t represents the electron–hole pair scattering time, to be described in more
detail. The first two terms in Eq. (5.10) correspond to the Drude term already
introduced in Eqs. (5.2) and (5.3) in the limit of no damping t!1ð Þ. The Drude
term describes the intraband single-particle absorption and the plasma excitation.
The remaining term corresponds to the Lorentz term given in Eq. (5.1) and describes
single-particle interband absorption. Thus, the dielectric function in Eq. (5.10)
combines contributions to photon absorption in a metal from electric dipole
interband transitions between electronic bands, which conserve energy andmomen-
tum and are described by the Lorentz term, with contributions of higher order
processeswhere e-h pair excitation is accompanied by electron, phonon, or impurity/
defect (henceforth, just impurity) scattering to conserve overall energy and momen-
tum. All these higher order processes contribute to theDrude term, and their specific
contribution is generally difficult to isolate. Photon absorption under ultrafast laser
excitation can also occur through multiple photon absorption between bands or
through virtual states. Themultiphoton excitation processmust conserve energy and
momentum only for the transition between initial and final states rather than for the
individual excitation steps, as already discussed in Sections 3.4 and 5.2.1 [47, 49, 61].
In multiphoton photoemission spectroscopy, the final state is usually the photo-
emission continuum, where the inverse LEED states automatically satisfy the energy
and perpendicular momentum conservation, whereas the parallel momentum
remains rigorously that of the initial state (Section 5.2).

Whether interband dipole transitions dominate light absorption depends primar-
ily on the excitation wavelength and the electronic band structure of absorbing
material. In metals, there is an energy threshold for interband transitions that
corresponds either to k-conserving transitions from an occupied band to a point
where another partially occupied band crosses the Fermi surface or from Fermi
surface crossings to another unoccupied band. Below the interband threshold, light
absorptionwill be determined by a variety of secondary factors, some ofwhichmay be
under experimental control, such as sample purity, crystallinity, adsorbate coverage,
and temperature. The dominant channel for photoabsorption will determine the
initial distribution of electrons andholes excited in the sample. This knowledge of the
photoexcitation process is often a missing ingredient for describing the primary
photoexcited carrier distributions and how they couple to other degrees of freedom,
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for instance, the unoccupied resonances of surface adsorbed molecules that may
undergo hot electron chemistry [62].

5.3.1
Optical Response of Noble Metals

Because of their useful and instructive physical properties, detailed optical, photo-
emission, and 2PPE studies have been performed on noblemetals [44, 51, 52, 63, 64].
As a specific example of photoexcitation inmetals, we consider silver, which has well-
known and relatively simple optical and electronic properties and its role has been
central in developing theories of interaction of electromagnetic fields with solids.
Moreover, because of its favorable optical properties, silver features prominently in
the field of plasmonics, which will be discussed in Section 5.4. The electronic
structure and optical properties of Ag are known from ab initio theoretical calcula-
tions, and its dynamical response has been examined at the highest level of theory
[58, 65–67]. Figure 5.5 shows the calculated electronic band structure of Ag in the
high symmetry directions, which defines its complex dielectric function in Fig-
ure 5.6 [66]. Even for a relatively simple metal such as silver, the electronic band
structures obtained from calculations at the DFT and GW levels show significant
deviations from the optical and photoemission measurements [66, 67]. Significant

Figure 5.5 (a) The calculated electronic band
structure of Ag using the GW and DFT–LDA
methods [65, 66] and the possible interband and
intraband transitions excited with near-
ultraviolet light. The GW calculations place the
sp bands at too high energy, whereas the DFT
calculations underestimate the binding energy
of the d bands. Near the L point, both d! sp
and Lsp !Usp transitions are possible.

Intraband transitions within Lsp occur through a
second-order process involving a scattering
process necessary to conserve momentum.
(b–d) The correspondingmodification of the state
occupations (DOS� the distribution function)
through the interband and the intraband
excitation. The dashed lines indicate the initial
population before it is modified by absorption
of a photon.
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improvement between experiment and theory for the optical spectra can be obtained
by describing the dynamical excitonic effects through BSE [66]. Even though
screening of the Coulomb interaction is efficient in metals, dynamical screening
of the interaction between the photoexcited e-h pair is important because of the
participation of the d bands with relatively low binding energies in the optical
response. Excitonic effects have also been predicted to be increasingly important as
the charge density decreases from the bulk value to a few angstroms above a metal
surface, where the density-dependent screening response slows down from sub-
femtosecond in the bulk to a few femtosecond for image potential (IP) states at
surfaces [68].

According to Figure 5.6, the imaginary part of the dielectric constant e00 of Ag is
characterized by the Drude region, which is responsible for decreasing the compo-
nent that extends from the IR to the near-UV region, and the interband region with a
threshold at 3.84 eV. The interband threshold approximately coincides with the
crossing of the real part of the dielectric function from negative to positive, that
is, e0ðvÞ ¼ 0, which can be seen to occur in Figure 5.6 at 3.92 eV. The e0ðvÞ ¼ 0
condition is responsible for the sharpmaximum in the loss function Im½�eðvÞ�1� in
Figure 5.7, where the electromagnetic field resonantly drives the collective charge
density fluctuations in silver. We describe light absorption in the interband region,
and then in the subsequent section in the Drude region.

Figure 5.6 The calculated imaginary part of the
dielectric constant e00 of Ag from a GW
calculationof Ref. [66] (line). The squares are the
experimentally measured values [80]. The inset
shows the real and imaginary parts of the

dielectric function on the same scale at the
onset of the interband excitations, where e0 � 0.
Inset reprinted with permission from Ref. [66].
Copyright (2002) by the American Physical
Society.
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5.3.2
Interband Absorption

At energies below 3.8 eV, direct interband dipole transitions in Ag are not possible
according to the band structure in Figure 5.5. Photon absorption by a dipole
transition cannot occur, because according to the band structure in Figure 5.5, there
are no vertical transitions that couple occupied with unoccupied states. According to
the band structure of Ag (Figure 5.5), the onset of interband transitions at 3.84 eV
involves two types of excitations [58]. The electronic bands of Ag consist of the
partially occupied nearly free electron sp band, which is characterized by a Fermi
energy of 5.5 eV (it crosses EFat several k-space points in high symmetry directions as
shown in Figure 5.5). In addition to the sp band, there are fully occupied d bands that
extend up to approximately �3.8 eV below EF. In noble metals, the interband
threshold corresponds to momentum-conserving transitions from near the top of
the d bands to the sp band at the point where it crosses EF. Such transitions near theX
and L points establish the interband absorption threshold at 3.84 eV [58, 65, 66].
Because the d bands are nearly flat, their contribution to the joint density of states,
which are coupled by optical transitions nearEF, is large [63, 69]. In the case of Ag, the
threshold region includes an additional resonance at 4.03 eV arising from transition
across the L projected band gap from the lower sp band (Lsp in Figure 5.5) near its

Figure 5.7 The experimental electron energy loss spectrum of silver (boxes) and the calculated
(GW) loss spectrum. The major peaks at 3.8 and 7.95 eV are due to the out-of-phase and in-phase
screeningby sp- andd-band electrons. Reprintedwithpermission fromRef. [66]. Copyright (2002) by
the American Physical Society.
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crossing with EF to the upper sp band (Usp in Figure 5.5) [58, 65, 66]. In the case of
copper and gold, the d bands are closer to EF than for Ag, and therefore their
interband thresholds occur at�2 eV, whereas the Lsp !Usp excitations across the sp
band gap are relatively unchanged from the Ag case.

From the threshold at 3.8 eV, the interband transitions dominate the complex
dielectric function of Ag. The band structure in Figure 5.5 portends that in Ag
threshold interband photoexcitation generates dominantly energetic holes at the
top of d bands near X and L points and electrons near EF (Figure 5.5b). By contrast,
the Lsp !Usp transition at 4.03 eV generates holes near EF and electrons at the
bottom of Usp (Figure 5.5c). The d band processes dominate the hot carrier
generation in noble metals because of their larger joint DOS. Owing to the
crystalline symmetry, these interband excitations occur according to Eq. (5.1) along
several equivalent lines in BZ that satisfy simultaneously the energy and momen-
tum conservation [63, 69]. Therefore, the initial electron and hole distributions
generated by interband excitation are usually strongly localized in energy and
momentum according to the specific band structure of the absorbing material and
the photon energy, as indicated schematically in Figure 5.5b and c. Such nascent
electron distributions can be characterized by angle-resolved two-photon photo-
emission [43, 61].

Above the interband threshold, the dielectric function exhibits additional struc-
ture that reflects the joint DOS in dipole-mediated optical transitions. In particular,
features appear at higher energies associated with other critical points that con-
tribute high joint DOS [70]. We also note that for photon energies above the vacuum
level (Evac), the conservation of perpendicular momentum is relaxed by the presence
of the surface, as noted in Section 5.1.3. The potential discontinuity at the surface
allows Bloch states within the bulk to couple to free-electron states in the vacuum
without the requirement for conservation of momentum perpendicular to the
surface. Under such circumstances, photoemission can occur by separate pathways
involving bulk or surface excitations, but starting and terminating at the same initial
and final states through interband transitions within the bulk or through surface-
mediated processes. Such parallel pathways lead to quantum interference effects
that can be diagnosed by their characteristic asymmetric Fano lineshapes in
photoemission spectra [44, 71].

The circumstances for interband absorption in transition metals are somewhat
different andmore complicated than for noblemetals [72, 73]. Because both d and sp
bands are partially filled for transition metals, in principle, interband transitions
could occur with very low photon energies, depending on the separation between the
coupled bands at the Fermi surface crossings. Excitation of complex carrier dis-
tributions in the phase space is likely, becausemultiple d bands can participate as the
initial and final states. Further complications arise from the spin-orbit splitting of the
d bands that are responsible for separate excitation pathways for electrons with the
majority and minority spins [74–76]. Excitations to low-lying unoccupied states have
been investigated by 2PPEmethods for Gd and Ru, amongmetals, and from d bands
to image potential states for Fe and Co [77–79].
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5.3.3
Intraband Absorption

In the year 1900, Drude derived a relation s0 ¼ ðne2tÞ=m for the DC electrical
conductivity of a metal [81]. This is the starting point for the description of the
collective electron response responsible for both intraband absorption to be
described in this section and theplasmonic phenomena thatwill follow inSection5.4.
In the Drudemodel, the electrons in themetal are treated as a freelymoving gas with
a density n, mass m, and charge e, which can be accelerated during a certain
phenomenological relaxation time t in the direction of an externally applied DC
field E until random scattering processes randomize their momentum. This
sequence of acceleration and scattering generates a drift motion of the electrons
with velocity v ¼ �eEt=m, which is manifested in the net current density
j ¼ �nev ¼ s0E. Later, Sommerfeld provided a quantum mechanical extension of
this model by accounting for the Pauli exclusion principle and the Fermi–Dirac
statistics of the electron gas [82]. Corrections to the mass of the conduction electrons
due to the finite Coulomb interaction among the electrons and between the electrons
and the ionic lattice are often incorporated by replacingmwith the effectivemassm�.
Within this model, the room temperature DC conductivity of the noble metals gold
and silver, which have some of the highest conductivities among metals, is well
described by parameters nAu ¼ 5:90� 10�22 cm�3, nAg ¼ 5:86� 10�22 cm�3,
tAu ¼ 30 fs, and tAg ¼ 40 fs [83]. The effective masses in the conduction bands of
Au and Ag are close to unity, m�=mAu ¼ 0:99, m�=mAg ¼ 0:96 [59].

Although theDrudemodel fails to account for the Fermi–Dirac statistics and Pauli
exclusion, it has been remarkably successful in describing the optical response of free
electrons in a metal. We will consider in detail the intraband component in the
dielectric function within the framework of the extended Drude model (EDM) [84]
and its relation to the Lorentz component. Charge carriers in a metal subject to an
applied oscillating field are continuously accelerated by the field, but over a cycle of
oscillation cannot absorb energy in absence of momentum changing collisions [85].
Such collisions can involve e-e, e-p, or impurity scattering. As Drude absorption
requiresmomentum scattering, the electron distributions excited are not localized in
k-space and mainly depend on the photon energy, as well as total density of the
occupied and unoccupied states that conserve energy and momentum through a
secondary momentum scattering process. The degree to which electron scattering is
isotropic depends on thematerial and the scattering process [85]. On the one hand, if
a quasielastic scattering process mediates the optical transition, the energy distri-
bution excited within a solid will be determined primarily by the photon energy.
Drude absorption will excite hole states between EF�hv to EF and electron states
from EF to EF þ hv. If the occupied and unoccupied DOS vary slowly in the optically
coupled region, as can be expected when sp bands cross EF, the energy distribution
should resemble that shown in Figure 5.5d. Because sp bands deviate from the free-
electron dispersion most strongly near the Brillouin zone boundaries, the Drude
distributions could be quite anisotropic in k-space [86]. Isotropic distributions in
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k-space corresponding to a DOS that is constant in energy are often assumed by
default in photoexcitation of metals, but such distributions can be justified only for
free-electron metals, such as alkali metals, when the Drude absorption is the
dominant excitation channel. To observe the nascent electron distributions from
Drude absorption, however, would require laser pulses with durations that are
shorter than the electron scattering times (typically�20 fs for electrons at the Fermi
level for noble metals). More typically, pulses of 50–100 fs duration are employed, so
the observed photoelectron distributions in 2PPE experiments, for instance, are
found to follow a Fermi–Dirac distribution described by a rapidly evolving temper-
ature that decreaseswith pump–probe delay on account of electron–electron (e-e) and
electron–phonon (e-p) scattering [77, 78, 87]. If, on the other hand, momentum
conservation in an optical transition is achieved through e-e scattering, the photon
energy is distributed between at least two electrons and two holes that conserve
overall energy and momentum. Therefore, the hot electron distribution will already
partially relax in the process of photon absorption through the first cycle in an e-e
scattering cascade. Such Auger-like processes could be particularly efficient for
intraband absorption above the interband threshold of metals and have been
described in case of copper in Figure 2.32 [88, 89].

To describe intraband absorption, Eq. (5.10) for the complex dielectric function
includes a phenomenological damping term. The dielectric function can equivalently
be expressed in terms of complex optical conductivity

eðvÞ ¼ e0ðvÞþ ie00ðvÞ ¼ e1 þ 4pisðvÞ
v

: ð5:11Þ

In Eq. (5.11), e1 ¼ 1þ 4pNa is the effective dielectric constant with the second
term describing the core polarization in terms of the ionic polarizability a and the
number density N. The core polarization includes the renormalization of the low-
frequency response by the high-frequency interband excitations. In the case of noble
metals, this term is dominated by the d- to sp-band excitations, that is, the interband
contribution of the Lorentz term. As for Eqs. (5.2) and (5.3), the real and imaginary
parts of the dielectric constant are related by causality; that is, they are constrained by
the Kramers–Kronig relationship [65, 90].

For a free-electron gas (FEG), the intraband optical conductivity of a metal is given
in terms of the Drude parameters, that is, the free-electron plasma frequency, vp0,
and the phenomenological damping constant, t:

sðvÞ ¼ v2
p0

4pðt�1�ivÞ : ð5:12Þ

Treating Ag as an FEG with n given by the density of 5s electrons of 5.85� 1022

cm�3 predicts a plasma frequency of 8.98 eV [65]. The actual plasma frequency
should be different because of electron–electron interactions and screening by the
interband excitations.

Alternatively, the plasma frequency can be obtained by using the sum rule for the
real part of the conductivity [90]:
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ð1
0

s0 vð Þ dv ¼ v2
p0

8
: ð5:13Þ

In practice, s0 is known only in a finite frequency range and has to be extrapolated
to frequency regions where measurements are not available. Another estimation of
vp0 is available from the high-frequency limit of the real part of the dielectric
constant,

e0ðvÞ � e1�v2
p0

v2
; ð5:14Þ

under the assumption that vt � 1. The same approximation gives the relaxation
time from the imaginary part of the dielectric constant as

e00ðvÞ � v2
p0

v3t
: ð5:15Þ

For noble metals in the IR/visible spectral range, the assumption that vt � 1
holds true [52, 84].

Whereas the plasma frequency has a clear interpretation, the scattering time has
contributions frommany possiblemomentumscattering processes. These processes
can be extrinsic, involving impurity scattering, or intrinsic, involving e-e, e-p, or other
quasi-particle scattering [91–94].Within the Fermi liquid theory, it is well established
that e-e scattering rate has a quadratic dependence on the electron energy [95–97].
Therefore, one expects the scattering time to be frequency dependent. The charac-
teristic frequency dependence of t(v) is often used as a diagnostic of the material-
dependent dominant scattering processes contributing to the Drude absorption, as
discussed further in Section 5.3.5 [52, 93, 94].

5.3.4
Extended Drude Model

Causality demands that if t(v) is frequency dependent, so is the plasma frequency
vp(v) [65, 84]. The consequences of the frequency dependence of t(v) are described
within the extended Drude model. First, we will develop the EDM and then discuss
some origins of the frequency-dependent scattering rate.

In EDM, we derive t(v) and the frequency-dependent plasma frequency, vp(v),
from the complex optical conductivity, constraints imposed by the sum rule of
Eq. (5.13), and causality. The components of optical conductivity can be obtained
from Eq. (5.12) in terms of the frequency-dependent t(v) and vp(v):

s0ðvÞ ¼ v2
pt

�1

4pðt�2 þv2Þ ; s00ðvÞ ¼ v2
pv

4pðt�2 þv2Þ : ð5:16Þ

The expressions in Eq. (5.16) satisfy causality, which requires that s0 �vð Þ ¼ s0 vð Þ
and s00 �vð Þ ¼ �s00 vð Þ are even and odd functions ofv. They can be solved for t(v)
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andvp(v). The relaxation time is obtained from the ratio of the real and the imaginary
conductivity

1
tðvÞ ¼

vs0ðvÞ
s00ðvÞ : ð5:17Þ

Taking the real and imaginary parts of Eq. (5.12) gives another pair of equations,

1

vpðvÞ2
¼ 1

4pv
Im

�1
sðvÞ
� �

;
1

tðvÞ ¼
vpðvÞ2
4p

Re
1

sðvÞ
� �

; ð5:18Þ

which together with Eq. (5.17) yield a set of equations that give t(v) andvp(v) even if
the frequency dependence of vp(v) is unknown [84].

When considering a Fermi liquid, as described in Chapter 2, rather than a free-
electron gas, the quasi-particle mass and therefore t(v) and vp(v) are renormalized
through e-e interaction. The renormalization can be expressed through a mass
enhancement factor l, such that l ¼ m�=m�1. Then the renormalized quantities
become

vpðvÞ ¼
v2

p0

1þ lðvÞ ; tðvÞ ¼ ð1þ lðvÞÞt0ðvÞ; ð5:19Þ

where t0ðvÞ is the free-electron scattering time.Withvp0 calculated from the carrier
density, Eq. (5.19) can be substituted into Eq. (5.18) to obtain lðvÞ and t0ðvÞ

1þ lðvÞ ¼ v2
p0

4pv
Im

�1
sðvÞ
� �

;
1

t0ðvÞ ¼
v2

p0

4p
Re

1
sðvÞ
� �

: ð5:20Þ

From the symmetry properties of the real and the imaginary optical conductivity, it
is evident that lðvÞ, t0ðvÞ, vpðvÞ, and tðvÞ are even functions of v.

We can now compare the Drude parameters fromEDMwith the experimental loss
function of Ag in Figure 5.7. The loss function shows a broad peak with high spectral
weight at 8.0 eV, which is to be compared with the renormalized plasmon frequency
of 9.2 eV (here the renormalization factor from EDM is 1þ lðvÞ¼ 0.95) calculated
from the conduction band electron density [65]. In addition to the experimentally
observed plasmon at 8.0 eV, we already noted the prominent sharp peak that occurs
when e0ðvÞ ¼ 0 with a smaller spectral weight at 3.9 eV [66]. This peak is too far
removed from the renormalized plasmon frequency to be attributed exclusively to the
response of the conduction electrons. Its origin can be rationalized by noting that
plasmonic excitations occur when eðVÞ ¼ 0, where V is complex-valued frequency
with a small imaginary part, and for q¼ 0. Neglecting the damping effects, the
dielectric function can be written as

eðvÞ ¼ e1�v2
p

v2
: ð5:21Þ

The solution for eðVÞ ¼ 0 occurs for v�
p ¼ vp0=

ffiffiffiffiffiffi
e1

p
eV, which we understand as

the plasma mode of sp band electrons dressed by a virtual cloud of interband
excitations of d and sp bands. Thus, in Ag, as in other noble metals, the free-electron
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plasma peak occurs within a continuum of interband excitations, leading to its
significant broadening and renormalization (see Figure 5.7). Because in Ag the
eðVÞ ¼ 0 condition occurs right below the interband threshold, where the imaginary
part ofV is small, the loss spectrum also has a sharp component associated with the
plasma response renormalized by the interband excitations [65]. Thus, two peaks in
the energy loss spectrum of Figure 5.7 at 7.95 and 3.9 eV can be considered as the
collective oscillations of the sp- and d-band electrons, where the two components
oscillate in phase for the former and out of phase for the latter [58, 65, 98]. In Cu and
Au, the eðVÞ ¼ 0 condition occurs within the interband excitation continuum, and
therefore a sharp out-of-phase peak is not observed. Nevertheless, the plasmonic
responses of Ag and Au, to be described in Section 5.4, arise from the out-of-phase
responses of the sp- and d-band electrons of these metals.

5.3.5
Frequency-Dependent Scattering Rate

By applying EDM to the experimentally measured complex, frequency-dependent
dielectric function of ametal, we can derive several useful dynamical properties, such
as the frequency-dependent plasma frequency and scattering time, and the renor-
malization of the free-carrier response by the interband excitations. Perhaps themost
interesting and difficult quantity to calculate is t(v), which we discuss inmore detail.

A plot of t�1ðvÞ versus v2 obtained by plotting Eqs. (5.17) or (5.18) can often be
used as a diagnostic for the quasi-particle interactions in simple and correlated
metals [52, 84, 85, 91–94, 99–102]. In Figure 5.8, we show such a plot for Cu, Ag, and
Au. The frequency dependence of t�1ðvÞ can be assumed to have the general form
given by [52, 92]

t�1ðvÞ ¼ t�1
0 ðTÞþ aðTÞvþ bðTÞv2: ð5:22Þ

The form of Eq. (5.22) is expected to be valid in a frequency band above the low-
frequency region,which is dominatedbyelectron–boson (e.g., phonon) coupling, and
below the interband threshold. Outside these limits, t�1ðvÞ is strongly material
dependent, whereas in the intermediate region, it is expected to follow the simple
frequency and temperature dependence of Eq. (5.22). The exact behavior depends on
thedominantmechanismformomentumscatteringofe-hpairscoupledby theoptical
transition.Thefrequencydependenceoft�1ðvÞhas thereforebeenusedtoanalyze the
scatteringprocesses that define theoptical conductivity inmetals, aswell as theoptical
and transport properties in strongly correlated materials [52, 91–93, 101, 102].

In addition to Eq. (5.22), we also assume the validity of Matthiessen�s rule, which
allows us towrite the total scattering rate as a sumof independent contributions from
e-e, e-p, surface, and impurity scattering,

1
tðv;TÞ ¼

1
te-eðv;TÞ þ

1
te-pðv;TÞ þ

1
ts

þ 1
ti
: ð5:23Þ

The last two terms in Eq. (5.23) arise from the breakdown of the translational
invariance of a crystal in the presence of a surface t�1

s

� �
or impurities t�1

i

� �
. We
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assume that both these processes are independent ofv andT [52, 100], and therefore,
contribute only to the intercept of a plot of t�1 versus v or T.

The surface contribution depends on the optical skin depth. As required by
momentum conservation, surface absorption will have significant contribution only
if qvF > v, where q is a scattering wave vector. If the skin depth d is larger than the
distance vF=v traveled by an electron during the period of the radiation field
oscillation, the surface absorption will be negligible [99]. The surface absorption
should be significant only at low frequencies and low temperatures, but the frequency
range falls outside the range of validity in Eq. (5.22).

The contribution of e-p scattering can be estimated through a FEG approach [99].
The FEG scattering rate depends on the probability of the second-order process
involving simultaneous absorption of a photon and absorption or emission of a
phonon to satisfy energy and momentum conservation of the overall process.
Therefore, the Debye frequency and temperature will determine v and T range
where t�1

ep has a significant variation. The phonon contribution to Drude absorption
according to FEG is

1
tepðv;TÞ ¼

2p
v

ðv
0

dV v�Vð Þa2
trFðVÞ: ð5:24Þ

Here,V is the phonon frequency and a2
trFðVÞ is the phononDOSweighted by the

amplitude for large-angle scattering on the Fermi surface (see Section 2.2.3).
Umklapp processes can be included explicitly in the calculation of a2

trFðVÞ. The
scattering time is frequency dependent in the region spanned by the phonon
spectrum. The phonon contribution to the scattering time goes to infinity as v�5

for frequencies below the Debye frequency, similar to the phonon scattering
contribution to electrical conductivity. The low-frequency behavior of the Drude
scattering time, t�1ðvÞ, is useful in studies of superconductivity because it provides
information on e-p interaction strength through a2

trFðVÞ and on the superconduct-
ing gap 2D. For a superconducting system, the upper limit of integration in Eq. (5.24)
is changed tov – 2D and the frequency dependence of t�1

ep reflects the corresponding
changes in the integral of Eq. (5.24) [99].

Figure 5.8 Plot of the dependence of t�1ðvÞ on v2 for (a) Cu, (b) Ag, and (c) Au below the
interband excitation threshold. The v2 dependence is found for Cu and Ag but not Au. Reprinted
with permission from Ref. [85]. Copyright (2007) John Wiley and Sons.
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The conventional e-p contribution to t�1ðvÞ appears only in the temperature-
dependent intercept t�1

0 ðTÞ because Eq. (5.22) is valid only above the Debye
frequency. The surface and defect scattering contributions can be distinguished as
a temperature-independent offset of t�1

0 ðTÞ from the extrapolated T¼ 0 value of the
t�1
ep ðTÞ.
Numerous studies of the optical properties of the relatively simple noble metals

have been used to validate theDrude theory. In the frequency range from0.6 eVup to
the interband absorption onset, the frequency dependence of Eq. (5.22) is dominated
by the bv2 term for Cu and Ag, as can be seen in Figure 5.8. Whether this v2

dependence arises from e-p or e-e scattering, however, is controversial and uncer-
tain [52, 84, 91, 92, 103, 104]. By extending the Fermi liquid theory to describe the e-e
scattering contribution to optical conductivity [105, 106], Christy and coworkers
proposed that the e-e scattering should lead to a scattering rate of the form

t�1
ee ðv;TÞ ¼ bv2 þ cðkBT2Þ: ð5:25Þ

As in the case of electrical conductivity, the temperature dependence of Eq. (5.25)
should be observed only at sufficiently low temperatureswhere the e-p contribution is
frozen out [106]. This termmakes a contribution to the intercept of Eq. (5.22), which
is too small to identify considering theuncertainties in performing and evaluating the
optical measurements. The bv2 term is a consequence of the energy dependence of
the phase space for e-e scattering in a three-dimensional Fermi liquid [96]. The e-e
scattering time according to the Fermi liquid theory is given by

teeðEÞ ¼ 263r�5=2
s ðE�EFÞ�2fs eV2; ð5:26Þ

where rs is the electron density parameter (see also Section 2.4.3.2) [97, 107].
Equation (5.26) gives the e-e scattering time for an electron at a specific energy
above EF, whereas the frequency dependence of Eq. (5.25) arises from the scattering
of an e-h pair coupled by photons of energy hv. Therefore, the optical scattering rate
with the bv2 dependence is an average of the scattering rates of holes in the energy
range from EF�hv to EF and electrons from EF to EF þ hv [52].

Although it is quite reasonable that above the Debye frequency the Drude
scattering rate of noble metals should be dominated by e-e scattering, the measured
parameter b is several times too large in comparison to the e-e scattering rates
deduced from transport measurements. In order to explain this discrepancy, Smith,
Cisneros, and coworkers pointed out that the Umklapp contribution of e-p scattering
should also follow the quadratic dependence in frequency and therefore contribute to
the bv2 term [52, 104]. The e-p mechanism, however, predicts b to be temperature
dependent, but this is not found in the temperature-dependent measurements of
t�1ðv;TÞ for Cu, Ag, and Au [92].

The interpretation of the frequency and temperature dependence of t�1ðv;TÞ for
noble metals is thus still not fully understood, yet Drude theory is actively being
applied as a diagnostic for electron scattering processes in, for instance, strongly
correlated materials. For example, in high-temperature superconductors, where the
av term in Eq. (5.22) often dominates, the linear dependence has been examined in
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terms of the bosonic interactions that give rise to exotic superconductivity and the
marginal Fermi liquid behavior [93, 94, 101]. The applications of EDTand particularly
the frequency dependence of the scattering rate on highly correlated materials are
discussed at length in the review by Basov and Timusk [93].

5.3.6
Surface Absorption

So far we have considered only the role of bulk dielectric properties of metals in the
absorption of light. The effect of the surface appeared only as a source ofmomentum
due to the finite optical skin depth. A surface can also influence absorption on
account of the intrinsic or adsorbate-induced electronic structure with implicit
relaxation momentum conservation on account of reduced dimensionality and
disorder.

Surface absorption is well documented under UHV conditions where surface
science methods are used to prepare atomically ordered samples. Perhaps the most
detailed studies have been performed on the anisotropic absorption at (110) surfaces
of noblemetals [108–112]. The anisotropy of the surfacemakes it possible to separate
the surface contribution from the isotropic bulk response. For example, the reflec-
tivity of a Cu(110) surface has a sharp drop at 2.0 eV, attributed to a transition between
an occupied Shockley surface state at�0.4 eV to an unoccupied surface state at 1.6 eV
(Figure5.9). This surface ispeculiar inhaving two low-energy surface stateswithin the
�Y projected band gap. These surface states are relatively sharp because their wave
function penetration into the bulk is small, and, therefore, the inelastic scattering of
the surface state electrons and holes with the bulk carriers is constrained. Moreover,
the surface states have similar dispersions, leading to a large joint DOS for optical
transitions.Both these factors contribute to a sharpabsorption feature that is observed
in the anisotropic reflectivity spectrum. This resonance is sensitive to the adsorption
of impurities at low coverages because the extremely efficient scattering of surface
state electrons leads to the resonance broadening [110, 113]. When adsorbates form
highly ordered layers, however, such as the oxygen-induced (2� 1) reconstructionof a
Cu(110) surface, adsorbate-localized excitations can also contribute to sharp spec-
troscopic features in surface reflection spectra [109, 111].

In addition to surface localized interband transitions, a complete description of
light absorption at surfaces should also include the surface-to-bulk and bulk-to-
surface optical transitions. Such transitions are known to happen from two-photon
photoemission spectroscopy. For instance, studies of coherent control of photoin-
duced current involving the n¼ 1 image potential state of a Cu(001) surface rely on
the coherent excitation from the occupied bulk sp band near EF [114]. Although such
processes can happenwith high efficiency, as evidenced by the intense IP state signal
fromCu(001), the coupling of 3Dbulkwith 2D surface bands is unlikely to contribute
distinct features in the optical spectra because such transitions have relatively low
joint DOS and they occur above the interband threshold for bulk excitations. In the
case of Cu(001), the threshold for IP state excitation at�4.0 eVoverlapswith themore
intense d- to sp-band interband spectrum. Transitions between bulk and surface
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bandsmight have more significant contributions to the dielectric function below the
interband threshold. For instance, the onset of excitations from the sp band to an
unoccupied part of the Shockley surface state should have an onset above�0.3 eV for
Ag(111) andCu(111) surfaces [115, 116]. Such transitions have recently been found in
3PPE spectra of Cu(111) [117].

Finally, we turn our attention to isolated adsorbates on metal surfaces. UHV
surface studies have shown that adsorbates can have significant effect on the
dielectric functions of metals through resonant or nonresonant effects
[110, 118, 119]. Surface adsorbates are impurity scattering centers, similar to bulk
defects, and therefore can enhance intraband absorption by acting as other nonres-
onant sources of momentum. Electronic states of impurity atoms andmolecules can
also act as resonant absorbers of electromagnetic energy. This is most clearly seen in

Figure 5.9 Plot of the anisotropic reflectivity from Cu(110) and Cu(110)-(2� 1)-O surfaces in
ultrahigh vacuum and air. Peaks a–d involve transitions between surface states. Reprinted with
permission from Ref. [110]. Copyright (2000) by the American Physical Society.
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two-photon photoemission spectra of alkali atoms on noble metal surfaces, where
resonant excitation from substrate to adsorbate-localized states is evident in optical
dephasing of coherent two-photon absorption [120–123]. Although there are many
examples in the literature claiming hot electron excitation of adsorbates on metals,
where presumably electron–hole pairs are absorbed by metal and hot electrons
scattered into adsorbate resonances [124, 125], most experimental studies of adsor-
bate resonance-mediated two-photon photoemission are consistent with the direct
excitation from bulk bands of the substrate to adsorbate-localized resonances [126].
Because excitation occurs to localized states, such charge transfer processes need to
conserve only energy. The transition probability depends on the optical transition
moment and the overlap between the Bloch waves of the substrate and localized
resonance wave functions of adsorbate. Unfortunately, such interfacial charge
transfer excitation processes have yet to be described by theory.

5.3.7
Summary

In this section, our goal was to describe photon absorption processes at metal
surfaces. Traditionally, the optical response of metals has been understood on the
basis of the complex dielectric function. The dielectric function incorporates the
electronic band structure and the dynamical many-body response of a system to an
external electromagnetic perturbation. Farmore detailed information on thematerial
response available to linear opticalmethods such as ellipsometricmeasurements can
now be obtained by means of nonlinear optical spectroscopy and, in particular, by
angle, energy, spin, and time-resolved photoemission [43, 49, 76, 112, 114, 127]. Such
measurements can be typically understood from the static band structure of metals,
but experiments and theory are advancing to the attosecond timescales, where effects
of the coherent many-body response of metals should have measurable effects [68,
128, 129]. We believe that further progress in the understanding of the optical
response of metals can be made by quantitative time-resolved two-photon photo-
emission measurements in partnership with electronic structure theory.

5.4
Plasmonic Excitations at Surfaces and Nanostructures

In the previous section, we described the optical excitation processes in metals. The
focus has been primarily on single-particle excitations, though we found that the
collective response associated with the plasma excitations plays an important role in
defining the dielectric properties of metals. This section describes the collective
plasma response, particularly in how it affects the optical properties of metallic
particles with different geometries and in different dielectric environments. Spe-
cifically, effects of the shape of metallic nanostructures on their linear optical
properties will be addressed. Starting with very simple geometries, the fundamental
optical excitations of extended interfaces (surface plasmon polaritons [130]) and of
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nanoparticles (localized surface plasmons [131, 132]) will be introduced. Structures
with novel and interesting optical functionality can be designed by fabricating
nanostructures supporting bothpropagating and localized surface plasmonpolariton
fields and will be discussed for specific examples of subwavelength gratings and
adiabatic metallic tapers. Finally, some recent ideas for coupling surface plasmon
fields to excitonic excitations in hybrid metal/dielectric nanostructures will be
presented. Much of the discussion will focus on optical properties in the visible
and near-infrared range, treating the local dielectric function of themetal in terms of
the Drude model introduced earlier in this chapter.

5.4.1
Drude Model for Optical Conductivity

When applying a harmonic time-varying electric field~EðtÞ ¼ ~E0 e�ivt of frequency
v, collective oscillations of the free-electron gas are induced. Their amplitude~xðtÞ
is given by the equation of motion mð€~x þð _~x=tÞÞ ¼ �e �~E , inducing a dipole
moment per electron of ~pðvÞ ¼ �e~xðvÞ ¼ ðe2=mÞð1=ðv2 þðiv=tÞÞ and hence a
macroscopic polarization ~P ¼ ne~x ¼ ðe�1Þe0~E . In this approach, the frequency-
dependent dielectric function eðvÞ is thus given by the intraband contribution to
Eq. (5.10) [133, 134]. Using Ohm�s law, ~jðvÞ ¼ ne _~xðvÞ ¼ sðvÞ~EðvÞ, gives the
relationship between the external field and the induced current density in terms of
optical conductivity, as given in Eq. (5.12). Therefore, the collective response of
the electron plasma in themetal results in a dielectric functionwith a large negative
real part and a much smaller positive imaginary part in the infrared and visible
spectral ranges, as described in Section 5.3. In the high-frequency limit, e

approaches unity.
Experimental values for the dielectric function of gold and silver up to the

interband thresholds, taken from Ref. [60], are shown in Figure 5.10, together with
a fit to Eq. (5.10), ignoring ei vð Þ and assuming plasma frequencies ofvp;Au ¼ 9:1 eV
and vp;Ag ¼ 9:2 eV, respectively. The existence of the plasma response at these
frequencies is evident from the dielectric and loss functions of Ag in Figures 5.6
and 5.7, which extend into the higher energy range than Figure 5.10. The phenom-
enological damping times, taken to be frequency independent, are tAu ¼ 9:3 fs and
tAg ¼ 31 fs, respectively. It is evident that the dielectric functions of silver and gold
essentially follow the predictions of the Drude model for energies up to their
interband thresholds at about 3.8 and 2.0 eV if values e1;Ag ¼ 4:0 and e1;Au ¼ 7
are assumed. In Figure 5.10 (solid lines), the interband contribution to the dielectric
function eiðvÞ is modeled phenomenologically as a sum over transitions at critical
points in the joint density of states that are coupled by optical excitation as described
in Eq. (5.1) [135]. For gold, a reasonable agreement with the experiment is reached
by including two transitions, i ¼ 1; 2, whereas for silver more resonances are
needed [135, 136]. Effects connected with a nonlocal (k-dependent) response of the
metal [137, 138], relevant for particle sizes of less than 10 nm, will not be considered
here. It is currently believed that such a local Drude-like dielectric function can
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account for themajority of collective optical phenomena at metal surfaces [139–142].
More refined description of the optical response of noble metals can be obtained by
EDM, as described in Section 5.3.1.

5.4.2
Interaction of Light with a Planar Metallic Surface

In combination with Maxwell�s equations, the dielectric function of metals as
represented by the Drude model directly accounts for the mirror-like reflectivity at
frequencies below the plasma frequency. We consider a planar interface, located at
z ¼ 0, between a semi-infinite and nonmagneticmetal with a local dielectric function
e1ðvÞ and a dielectric with e2ðvÞ. Themetal lies in the negative half-space, z< 0. The
corresponding complex refractive indices ni ¼ n0 i þ in00i ¼ ffiffiffiffi

ei
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e0i þ ie00i
p

of the
two layers are then obtained from

n0i ¼ 1
2

e0i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e02i þ e002i

q� �1=2
 !

and n00i ¼ e00i=2n0i, where the prime and double-prime functions indicate the ampli-
tudes of the real and imaginary components. Consider a monochromatic plane
wave ~Eð~r ; tÞ ¼ ~E0eið

~k1~r�vtÞ propagating through the dielectric toward the metal.
The plane of incidence is defined by y ¼ 0, that is, ~k1 ¼ kx; 0; k1zð Þ ¼
ðvn1=cÞ sin ð�1Þ; 0; cos ð�1Þð Þ, with �1 denoting the angle of incidence and c being the
speed of light in vacuum. Snell�s law gives n1 sin ð�1Þ ¼ n2 sin ð�2Þ and the continuity
equations require that the wave vectors of the reflected and transmitted beams be
given by~k1r ¼ kx; 0;�k1zð Þ and~k2 ¼ kx; 0; k2zð Þ ¼ ðv=cÞ n1 sin ð�1Þ; 0; n2 cos ð�2Þð Þ,
respectively.

For s-polarized incident light, the electric field vector lies perpendicular to the
plane of incidence and~E0 ¼ 0;E0; 0ð Þ. The reflection and transmission coefficients
rs and ts for the incident beam are given by Fresnel�s equations [143, 144]

Figure 5.10 The real and imaginary parts of the
dielectric function of (a) gold and (b) silver. The
experimental data (open circles) are taken from
Ref. [60]. The dashed lines indicate fits to the

Drude model (Eq. (5.10)) without the interband
term eiðvÞ. The solid lines represent fits to the
Drude model, including a phenomenological
description of eiðvÞ.
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rs ¼
1�a
1þ a

; ts ¼ 2
1þ a

; ð5:27Þ

respectively, with a ¼ k2z=k1z ¼ tanð�1Þ=tanð�2Þ. In this case, the amplitudes of the
reflected and transmitted fields are ~E0r ¼ rs

~E0 and ~E0t ¼ ts~E0, respectively.
For p-polarized incident light, ~E0 ¼ E0 �cos ð�1Þ; 0; sin ð�1Þð Þ lies in the plane of

incidence and Fresnel�s equations give

rp ¼
1�b
1þ b

; tp ¼ 2ðn1=n2Þ
1þ b

ð5:28Þ

with b ¼ n1=n2ð Þ2 k2z=k1zð Þ ¼ n1=n2ð Þ2a. The reflected and transmitted field ampli-
tudes then are ~E0r ¼ rpE0 cos ð�1Þ; 0; sin ð�1Þð Þ and ~E 0t ¼ tp~E0 �cos ð�2Þ; 0;ð
sin ð�2ÞÞ, respectively. The resulting angle-dependent reflectance curves Rs;pð�Þ ¼
jrs;pj2 of an Ag/air interface irradiated with s- and p-polarized light at l ¼ 1000 nm
(v ¼ 1:24 eV) are shown in Figure 5.11.

In this case, v 	 vp so that the dielectric function of the metal is governed by its
large and negative real part (e2 ¼ �51:1þ 0:943i). Hence, the induced coherent
polarization~P of the electron gas is phase shifted by 180
 with respect to the driving
field. The electromagnetic field inside the metal is thus effectively screened and
decays within the skin depth d ¼ l=ð2p Im ðn2ÞÞ, which is about 25 nm for gold and
silver in a fairly broad range ofwavelengths from the visible up to themid-infrared. In
the present example, d ¼ 22 nm. The second important consequence of the coherent
free-carrier oscillation, that is, the same coherent polarization, is the almost loss-free
specular reflection of the incident light wave. It is important to realize that s- and p-
polarized light waves experience different phase shifts w ¼ arg ðrÞ, and hence
reflection from a metallic mirror at an off-normal angle of incidence modifies the
polarization state of the reflected field.

Figure 5.11 The reflectance and phase shift for the reflection of a light wave at l ¼ 1000 nm at a
silvermirror. The dielectric function of silver is taken as e2 ¼ �51:1þ 0:943i. The data are plotted for
s- and p-polarized light as a function of the angle of incidence �.
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5.4.3
Surface Plasmon Polariton Fields

5.4.3.1 Planar Interfaces
It has been known since the pioneering work of Ritchie that metal/dielectric
interfaces support collective charge density oscillations and surface plasmons
[32, 145]. These surface charge oscillations couple strongly to light and the resulting
coupled modes between charges and fields are termed surface plasmon polaritons
(SPPs). Surface plasmon polaritons propagate freely along planar interfaces and are
evanescently confined in the direction perpendicular to the interface. They penetrate
into the dielectric on a scale given by their wavelength, whereas the skin depth gives
their penetration depth into the metal. Throughout most of this depth, the dipolar
charge oscillations preserve charge neutrality. A net charge density exists only within
the Thomas–Fermi screening length of about 1A



at the surface. For a perfectly planar

surface, such SPP fields must have a finite component of the electric field normal to
the surface; s-polarized SPPmodeswith an electricfield vector oriented parallel to the
surface do not exist [139, 142]. SPP modes on planar interfaces are necessarily
p-polarized electromagnetic waves with amagnetic field vector ~H pointing parallel to
the interface. Some of the fundamental SPP properties are readily derived directly
from Maxwell�s equations in the absence of external sources [130, 142].

We again consider a planar interface, located at z ¼ 0, between a semi-infinite and
a nonmagnetic metal in half-space z< 0, with a local dielectric function e1ðvÞ and a
dielectric with e2ðvÞ. The metallic layer is irradiated with a monochromatic wave of
frequency v propagating along the x-axis with vectors

~Ei ¼ Eix; 0;Eizð Þe�kijzj eðikixx�vtÞ; ð5:29Þ

~Hi ¼ 0;Hiy; 0
� �

e�kijzj eðikixx�vtÞ; ð5:30Þ
where kix gives the component of the wave vector parallel to the interface in medium
i ¼ 1; 2. Amp�ere�s law connects the electric and magnetic field amplitudes (þ sign
for i ¼ 1)

ikiHiy ¼ �eie0vEix; ð5:31Þ

kixHiy ¼ �eie0vEiz ð5:32Þ
and hence gives Eix=Eiz ¼ �ki=ikix . It requires, together with Faraday�s law, the
magnitude of the wave vector components along the z-axis to be

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ix�eik20

q
ð5:33Þ

with k0 ¼ v=c being the magnitude of the light wave vector. Since the tangential
components of E and H are continuous at the interface, H1y ¼ H2y and E1x ¼ E2x.
Equation (5.10) then gives the surface plasmon condition
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e1
k1

þ e2
k2

¼ 0: ð5:34Þ

The boundary conditions at the interface also demand the continuity of the
tangential component of the wave vector k1x ¼ k2x ¼ kx. Together with Eqs. (5.33)
and (5.34), the continuity equation gives the surface plasmondispersion relation for a
planar interface [32]

kx ¼ v

c
e1e2

e1 þ e2

� �1=2

: ð5:35Þ

The dispersion relations vðRe ðkxÞÞ are shown in Figure 5.12 for air/gold and
air/silver interfaces. The curves have been calculated by using the Drude dielectric
function (Eq. (5.10)) in the presence (dashed lines) and absence (solid lines) of
interband absorption terms. For frequencies above the plasma frequency v > vp,
Re ðe1Þ > 0 and the metal becomes transparent. In this region, the diagram displays
the dispersion relation of light inside the metal. For sufficiently high frequencies,
e1 ! 1 and the curve approaches the light line v ¼ c � kx (c is the speed of light in
vacuum) indicated by a dash-dotted line. The high kx asymptotic limit given by
e1 þ e2 ¼ 0 defines the classical surface plasmon frequency, which in the case of
a lossless Drude model for the dielectric function at a metal/air interface is
vSP ¼ vp=

ffiffiffi
2

p
.

Of interest is the SPP dispersion relation at frequencies below vp. At sufficiently
low frequencies, in the so-called retarded region, the SPP dispersion lies only slightly
outside the light line. In the absence of interband screening, this region roughly
covers the small wave vector part ðkx < vp=ð

ffiffiffiffiffi
2c

p ÞÞ of the dispersion curve at energies
v < vSP ¼ vp=

ffiffiffi
2

p
. In this situation, SPPs are light-like quasi-particles, propagating

at essentially the speed of light and having evanescent SPP field amplitudes
(Eqs. (5.29) and (5.30)), which decay exponentially on either side of the interface.
In this region, the spatial extent of the electromagnetic field is very different on the

Figure 5.12 SPP dispersion relations
vðRe ðkxÞÞ based on Eq. (5.35) for planar (a)
gold/air and (b) silver/air interfaces. The curves
are calculated based on the Drude model

neglecting interband absorption (ei ¼ 0, solid
lines) and including interband absorption
(dashed lines). The light linev ¼ c � kx is shown
as a dash-dotted line.
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two sides. Equations (5.34) and (5.35) give the following expression for the SPP decay
constants ki perpendicular to the interface:

ki ¼ v

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2i

e1 þ e2

s
: ð5:36Þ

The resulting attenuation lengths li ¼ j1=kij at which the electromagnetic field
falls off to 1/e are shown in Figure 5.13. For clarity, values resulting from a only
lossless Drude model are shown. In the long-wavelength limit (q! 0), the attenu-
ation length in themetal is given by the skin depth. The field on the air side, however,
is much less confined and extends over more than c=v ¼ l=ð2pÞ, with l being the
wavelength of light in vacuum. In this regime, the interface supports SPPmodes, but
the fields are only weakly confined to the interface and field localization effects are
basically absent. Therefore, retardation effects arising from the finite SPP phase
velocity are important for optical properties of the interface.

This changes in the nonretarded regime of large in-plane wave vectors kx > vSP=c
in the frequency range v < vSP. Here, for a lossless Drude metal, the dispersion
relation vðkxÞ is a monotonically increasing function of kx that approaches asymp-
toticallyvSP. SPPwaves in the nonretarded regime have interesting properties. Their
in-plane wave vector kx ismuch larger than that of a light wave of the same frequency.
In the fictitious lossless case, the corresponding in-plane wavelength can be reduced
to essentially arbitrarily small values. Therefore, SPP waves can be localized in
volumesmuch smaller than l3, breaking the diffraction limit in conventional far-field
optics. SPPwaves in the nonretarded regime are strongly confined to the interface. It
is seen in Figure 5.13 that the attenuation length in air becomes similar to that in the

Figure 5.13 The attenuation lengths
li ¼ j1=kij of the electromagnetic field on either
side of Au/air and Ag/air interfaces deduced
from Eq. (5.34). An idealized loss-free Drude
model (e¥ ¼ 1, t!¥, ei ¼ 0) is taken for the

dielectric function of the metal. The solid black
line shows the attenuation length l1 in air,
whereas the dotted anddashed lines denote l2 in
gold and silver, respectively.
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metal and approaches 1=kx as v approaches vSP. As kz � k0, the finite propagation
speed of the SPP modes is of minor importance and quasi-static approximations of
Maxwell�s equations can describe the optical properties of nonretarded SPP modes
reasonably well. Consequently, the magnetic field associated with nonretarded SPP
waves is much weaker than that of a corresponding propagating field.

More important, since kx > k0, propagating light fields impinging on the interface
cannot directly excite SPP modes. Coupling of far-field light to SPP at a
metal/vacuum interface can occur in a total internal reflection geometry from a
high-index substrate material for a thin metal film, creating evanescent fields at the
interface, as demonstrated by Otto [146] and Kretschmann and Raether [147], or by
scattering lightoff surface roughnessorgratings, aspioneeredbyTengandStern [148].
In the latter approach, the scattering at a subwavelength asperity such as a sharp edge
or a slit with smaller features, the wavelength of exciting light provides the necessary
momentum to couple to the SPP modes [149]. Also, near-field excitation schemes,
directly providing evanescent fields, can be employed [150]. Most recently, nonlinear
four-wave mixing has been demonstrated as a versatile method for exciting SPP
modes [151].

For real, that is, lossy metals, the situation is obviously less ideal. As illustrated in
Figure 5.12, the finite imaginary part of e1 removes the singularity in Eq. (5.36) and
hence limits the maximum value of Re ðkxÞ, as well as the field confinement to the
interface. For Im ðe1Þ„ 0, also the quasi-bound, leaky part of the dispersion relation
with vSP < v < vp is allowed. It is evident that for both gold and silver structures,
the interband contribution to the dielectric function greatly affects the SPPmodes in
the visible range.

In case of a planar interface, the SPP dispersion is fully governed by the frequency-
dependent dielectric function of the metal and the dielectric. It will be illustrated in
Section 5.4.4.3 that structuring of themetal provides an additional degree of freedom
for tailoring SPP dispersion and fields. This led to artificially designed surface
plasmon resonances or, more precisely, the optical properties of structures support-
ing SPP fields by patterning metallic films with closely packed geometric arrange-
ments of structureswith dimensions and separationsmuch smaller than the vacuum
wavelength [152, 153]. This emergingfield is now sometimes called designer or spoof
plasmonics and evidently bears many similarities with other fields such as band gap
engineering of semiconductors [154], or the design of photonic crystals [155] or
metamaterials [156, 157].

An additional important consequence of Eq. (5.35) is the finite propagation length
of SPPwave packets along planar interfaces. The finite extent of the SPP field into the
metal results in damping of SPP waves due to unavoidable Ohmic losses. For a
complex value of e1, the propagation constant kx is also a complex number and the
SPPs are damped with a propagation length Ld ¼ 1=ð2 Im ðkxÞÞ. Typical propagation
lengths are <10–100 mm in the visible spectrum for Ag films (Figure 5.14).

The propagation lengths increase greatly with longer wavelength due to the
concomitant increase in k2. For planar interfaces, the lengths can be increased
further by sandwiching a thin metal film between the two dielectric layers. In these
multilayers, SPPs at both interfaces are coupled giving rise to symmetric and
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antisymmetric modes. The antisymmetric modes have reduced Ohmic losses
because they are only weakly confined to the metal. These long-range SPP solu-
tions [158] show drastically increased propagation lengths, extending to the mm
range. Attempts to geometrically pattern the metal surface will almost inevitably
result in a reduction of the propagation length [159–162] because the collective charge
oscillations in these geometrically confined metallic structures can now also emit
radiation into the far field. Radiation damping therefore appears as an additional loss
mechanism [163]. Hence, the reduction of SPP losses in passive or active hybrid
metallic–dielectric nanostructures is a very active field of current research [164, 165].

The preceding description of SPPs is based on a local dielectric function eðvÞ,
independent of the SPP wave vector. Possible nonlocality of the electronic response
and the microscopic spatial distribution of the electron density have been neglected.
Such microscopic effects are thought to be of minor importance for sufficiently long
SPPwavelengths 2p=kx, but will become important if the SPPwavelength approaches
the Fermi wave vector, kx � kF. For a detailed discussion, we recommend Ref. [142].

The SPP coupling at discontinuities and propagation in flat metal films can be
imaged by near-field microscopy or photoemission electron microscopy (PEEM)
[149, 166–168]. Such measurements rely on the interference between the external
excitationfield and the SPPwave packet generated at a vacuum/metal interface. Near-
fieldmicroscopy has the advantage of being a linear technique, but it does not directly
measure the total field present in themetal. By contrast, PEEMmeasurements detect
the spatial distribution of two-photon photoemission, without introducing a near-
field perturbation. Therefore, PEEM measurements provide a nonlinear map of the
polarization gratings excited by different field components. Moreover, because
PEEM in an imaging method, it is relatively simple to perform femtosecond
time-resolved measurements on surface plasmon dynamics [169]. Proposals have
been put forward to use PEEM in the attosecond domain in order to resolve
plasmonic fields with a time resolution of less than one optical cycle [170].

Figure 5.14 SPP propagation lengths
Ld ¼ 1=ð2 Im ðkxÞÞ as a function of SPP energy
calculated for (a) gold/air and (b) silver/air
interfaces based on the dispersion relation

(Eq. (5.33)) for Drude models neglecting
(ei ¼ 0, solid lines) and including interband
absorption (dashed lines). The propagation
lengths are plotted on a logarithmic scale.
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5.4.4
Surface Plasmons in Nanostructured Metal Films

A fundamentally different approach for localizing electromagnetic fields at surfaces
relies on the optical excitation of individual or coupled arrays of metallic nanopar-
ticles. Metallic nanostructures of arbitrary shape show a strong optical response at
certain resonance frequencies. This response is connected with a pronounced local
enhancement of the electromagnetic field in the vicinity of the nanoparticle. Such
enhancements are important in, for instance, light harvesting for solar conversion
applications, or surface-enhanced spectroscopies, such as Raman spectroscopy, and
surface photochemistry [171–173]. The optical properties of single metallic
nanoparticles have already been discussed in textbooks and reviews [131, 132,
139, 174, 175], and only very basic properties will be summarized here as prototypical
examples for how the interplay between metallic dielectric function and geometric
shape gives rise to new optical properties and greatly enhanced local electromagnetic
fields.

5.4.4.1 Spherical Nanoparticles
In the quasi-static approximation, the isotropic polarizability a of a spherical
nanoparticle of radius a is found by solving the Laplace equation for the scalar
potential W, DW ¼ 0 [143], and is given as

a ¼ 4pa3
e1�e2
e1 þ 2e2

ð5:37Þ

for a metal particle described by e1 in an isotropic and nonabsorbing medium with
dielectric constant e2.

An incident electromagnetic field~E0ðvÞwill polarize the nanoparticle and create a
spatially homogeneous field~E inðvÞ ¼ ð3e2=ðe1 þ 2e2ÞÞ~EðvÞ inside the sphere. This
approximation can be valid only for particles smaller in size than the skin depth
because for larger particles~E in will necessarily decay in the interior of the sphere. The
electromagnetic field ~Eout ¼ ~E0 þ~E1 outside the sphere is given as the sum of the
incident field ~E0ðvÞ and the field ~E1ðvÞ that is reradiated by a fictitious point-like
dipole located at the center of the sphere (~r ¼ 0) and having a dipole moment

~pðvÞ ¼ e2e0aðvÞ~E0ðvÞ: ð5:38Þ
For a monochromatic incident field at frequency v, the field~E1ð~r ; tÞ at position~r

outside the sphere is thus given by

~E1ð~r ; tÞ ¼ 1
4pe2e0

k2ð~n �~pÞ �~n
eikr

r
þ 3ð~n �~pÞ�~p½ � 1

r3
� ik
r2

� �
eikr


 �
e�ivt

ð5:39Þ
with~n ¼~r=j~r j and k ¼ ffiffiffiffiffi

e2
p

v=c. The different symmetries of the optical near field
given by the last two terms and the optical far field given by the first term in Eq. (5.39)
are illustrated in Figure 5.15 for a particle with a 10 nm radius [176].
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The near field is preferentially oriented along the direction of the incident field,
whereas the far field vanishes along the dipole axis. For such a small particle, the field
intensity in thedirect vicinity of the particle is up to 10 000 times larger than that given
by the far-field term in Eq. (5.39). This is amanifestation of the large enhancement of
the local field by the nanoparticle.

Equation (5.37) shows that the polarizability experiences a resonant enhancement
if the magnitude of the denominator je1 þ 2e2j tends toward zero. For a sufficiently
small Im ðe1Þ, the resonance (Fr€ohlich) condition is simply Reðe1Þ ¼ �2e2 and the
associated quasi-particle is known as the dipole surface plasmon. For a spherical
particle, which has a lossless Drude dielectric function and is embedded in air, the
condition ismet forv0 ¼ vp=

ffiffiffi
3

p
. With increasing e2, the resonance shifts to the red.

Higher order resonances occur when [174]

lðe1Þþ ðlþ 1Þe2 ¼ 0; l ¼ 1; 2; . . . ð5:40Þ
These are the quadrupole (l¼ 2) and higher resonances.

Within this quasi-static model, the scattering cross section of the nanoparticle
CscaðvÞ is obtained by calculating the total radiated power emitted by the dipole and
dividing it by the intensity of the incident plane wave:

CscaðvÞ ¼ k4

6p
jaðvÞj: ð5:41Þ

Similarly, the absorption cross section CabsðvÞ is obtained from the power

Pabs ¼ v=2ð Þ Im ~p �~E �
0

h i
absorbed by a point dipole:

Cabs ¼ k Im ½aðvÞ�: ð5:42Þ
The extinction cross section is given by the sum Cext ¼ Csca þCabs.

Figure 5.15 Magnitude of the electric field
j~Eð~r Þj (arbitrary units) near a small nanoparticle
with a radius of 10 nm. The field profile is
calculated in the x–y plane using Eq. (5.39),
assuming that it is given by that of a point-like
oscillating dipole~p ¼ p0 �~ey � eivt at the center

of the sphere. (b) Electric fieldmagnitude j~Eð~r Þj
given by the far-field term in Eq. (5.39). Close to
the particle, the far-field amplitude is up to two
orders of magnitude smaller than that of the
corresponding near field. (Please find a color
version of this figure on the color plates.)
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Absorption cross sections of gold andsilver particles calculated for aDrudemodel in
the absence of interband resonances and the full dielectric function in Eq. (5.10) are
presented in Figure 5.16. The resonant enhancement depends critically on the details
of thenanoparticle dielectric function (and of course its geometric shape) in the region
around e1 � �2e2, making nanoparticle scattering spectra sensitive to the dielectric
function of the environment [177]. This feature has been exploited in sensing
applications [172].

The scaling of CabsðvÞ and CscaðvÞ with particle size is very different. The scattering
cross section is proportional to jaj2 and hence to the sixth power of the particle radius,
Csca / a6. By contrast, the absorption cross section scales only with a3. This is
immediately relevant for spectroscopic studies of individual nanoparticles, which are
of particular importance for elucidating the complex interplay betweennanoparticle size,
shape, and environment on their optical properties. The scaling suggests that absorption
studies are more sensitive to small particles than light scattering. Indeed photothermal
imaging techniques have successfully detected individual sub-10nm particles [178].
Light scattering fromsingle small particles is challenging to resolve.After initial attempts
to use near-field spectroscopic techniques [179], a variety of different far-field techniques,
often relying on dark-field excitation schemes and combined with interferometric
detection or nonlinear optical techniques, have been developed for this purpose
[180–183]. PEEM-based measurements provide an alternative method for imaging
emission from regions of high field enhancement that are associated with the excitation
of plasmonic modes of metallic nanoparticles [169, 184, 185].

The quasi-static approach outlined above completely neglects the radiative damp-
ing of the particle dipole as well as retardation effects due to phase changes in the
driving and scattered fields within the volume of the particle. Both effects are
included in the rigorous electrodynamic model developed by Mie [132, 174].

Figure 5.16 Absorption spectra CabsðlÞ
calculated using Eq. (5.42) for (a) spherical gold
nanoparticles and (b) spherical silver particles
with a radius of 5 nm embedded in different
dielectric media with refractive indices n¼ 1,
1.33, and 1.5. The dielectric function of the
metal is based on the dispersion relation

(Eq. (5.35)) for Drude models neglecting
(ei ¼ 0, short dashed and dotted lines) and
including (long dashed and dotted lines)
interband absorption. The cross sections for
gold particles in presence of interband damping
have been enlarged by a factor of 10.
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Mie theory gives an approximate value for the polarizability of a sphere of volumeV
as [186, 187]

aðvÞ ¼ 1�0:1 ðe1 þ e2Þx2
ð1=3Þþ e2=ðe1�e2Þð Þ�ð1=30Þðe1 þ 10e2Þx2�ið4p2e

3=2
2 =3ÞðV=l3Þ

ð5:43Þ

with x ¼ pa=l being the size parameter and l the vacuumwavelength. The new term
in the numerator characterizes the retardation of the excitation field across the
particle. The x2 term in the denominator is due to the retardation of the depolar-
ization field inside the particle [186]. Both terms lead to a spectral redshift of the
resonance. The imaginary term in the denominator accounts for the radiation
damping. Higher terms in xmay be included in Eq. (5.43) and will lead to additional
multipolar resonances in the spectra.

The radiation damping contributes to the finite lifetime T2 of the photoinduced
dipole moment~p [188] and hence to a finite homogeneous linewidth C ¼ 2h=T2 of
the linear optical spectrum of a single nanoparticle. The radiative damping rate
1=T2;rad ¼ Crad=2h ¼ kV scales with the volume of the particle (k is the proportion-
ality coefficient) [132, 189, 190]. Therefore, the homogeneous spectral linewidth
C ¼ Crad þCb of large spherical nanoparticles is expected to be larger than the
linewidthCb deducedwithin the quasi-static approximation and should increasewith
increasing particle diameter. The effect of particle size, geometry, and environment
on C has been the subject of numerous primarily frequency domain studies of single
metal nanoparticles during the last decade. For gold nanoparticles [189, 190], the
linewidth C has indeed been found to increase from 200 meV (T2¼ 6.5 fs) for 20 nm
particles to more than 800meV (T2¼ 1.7 fs) for larger particles of more than 100 nm
diameter. Values for the coefficient k of 4� 10�7 fs�1 nm�3 to 6� 10�7 fs�1 nm�3

have been deduced [132, 189, 191]. For silver nanoparticles, a similar increase in
linewidth has been reported [189, 191]. Solid agreement between the observed size
dependence ofC andMie theory predictions based on e values fromRef. [60] has been
found. When reducing the size of the nanoparticle much below 50 nm, the contri-
bution from radiative damping to the linewidth vanishes and the T2 time approaches
that deduced fromquasi-staticmodels. In this regime, for particle diameters between
50 and 20 nm, nonradiative contributions to the plasmon damping arising from
intra- and interband electron–electron scattering, electron–phonon scattering, or
impurity scattering dominate. Their effects on the dielectric function of a metal are
discussed in more detail in Section 5.3.

When decreasing the particle diameter below 20 nm, the linewidth tends to
increase again [132, 192, 193]. The linewidth increase is found to be inversely
proportional to the particle radius, C ¼ Cb þA � a�1. Different microscopic
mechanisms can contribute to this increase, in particular a reduction in the surface
plasmon mean free path due to scattering at the nanoparticle surface [132, 194].
This modifies the decay of the surface plasmon into electron–hole pairs (Landau
damping). In quantum mechanical terms, this is understood as an enhanced
electron scattering induced by the quantum confinement of electronic states inside
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the nanoparticle [195, 196]. Also, the inelastic scattering of plasmon excitations at
adsorbate or interface states (chemical interface damping) contributes [132, 187,
192, 197]. For particles with a well-controlled environment, for example, a defined
dielectric shell, chemical interface damping can be suppressed and the effect of
quantum confinement on surface plasmon damping can be quantitatively
measured [193].

5.4.4.2 Elliptical Nanoparticles
To illustrate the effect of the shape of the particle on its optical properties, we briefly
discuss nanoparticleswhose shape inCartesian coordinates is given by an ellipsoid of
the form

x2

a21
þ y2

a22
þ z2

a23
¼ 1 ð5:44Þ

The principal axes are chosen such that a1 � a2 � a3. In quasi-static approxima-
tion, the analytical solution for the polarizability tensor a$ ¼ a1~ex þa2~ey þa3~ez
is [174]

ai ¼ 4pa1a2a3
e1ðvÞ�e2

3e2 þ 3Liðe1ðvÞ�e2Þ ð5:45Þ

with i ¼ 1; 2; 3. The geometric factors Li are

Li ¼ a1a2a3
2

ð1
0

dq
ða2i þ qÞf ðqÞ ð5:46Þ

with f ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ a21
� �

qþ a22ð Þ qþ a23
� �q

. For spherical particles, Li ¼ 1=3 and the
sum rule

P
iLi ¼ 1 is fulfilled for all shapes. These polarizabilities can then be taken

to calculate the fields~E 1ð~r Þ near the outer surface of the ellipsoid by using Eq. (5.39)
and~pðvÞ ¼ e2e0a

$ðvÞ~E0ðvÞ. This immediately gives the scattering and absorption
cross sections of the nanoparticle following the same approach as outlined above.

The optical spectra of such particles hence depend critically on the orientation of
the particle with respect to the incident field. This is best illustrated for prolate
ða1 ¼ a2 < a3Þ or oblate ða1 < a2 ¼ a3Þ spheroidal particles having only two differ-
ent nonzero elements of a$ and hence showing two distinct spectral resonances in
their optical spectra. For a prolate spheroid, the short-wavelength resonance is excited
with incident light polarized along one of the short axes, whereas light polarized
along the long axes couples to a3. As illustrated in Figure 5.17, the resonance
wavelength of a3 is sensitive to the aspect ratio r ¼ a3=a1 and gradually shifts to
longer wavelengths as a3 is increased. Also, an increase in aspect ratio greatly
enhances the polarizability along the long axis and transforms the particle from an
isotropic into a strongly anisotropic light scatterer, with its preferential polarization
direction oriented along the long axis.

Variation in the shape of nanoparticles therefore is an important means to tailor
their optical spectra. It affects not only the resonance energies but also the SP
lifetimes [189]. SP dephasing times T2 as long as 20 fs have been reported [189–191].
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The radiative damping is weak and thought not to affect the T2 time because the
volume of the investigated nanoparticles is small. The comparatively long dephasing
times are attributed to the suppression of interband absorption resulting from the
redshift of the plasmon resonances. To first approximation, the electric field
distribution in the vicinity of the particle is obtained from Eq. (5.39). Spatially
resolved imaging of those fields may be achieved by different experimental techni-
ques, including near-field scanning optical microscopy (NSOM) [175, 198–200], two-
photon photoemission microscopy [169], tip-enhanced electron emission micros-
copy [201], cathodoluminescence imaging [202], or electron energy loss spectroscopy
(EELS) [203]. Empirical extensions of the polarizability model given in Eq. (5.43) to
larger sized elliptical nanoparticles have been discussed in the literature [192].

5.4.4.3 Diffraction Gratings
Diffraction gratings present another prime example illustrating the influence of the
geometric shape of a metallic nanostructure on its optical properties. These have
fascinated researchers sinceWood publishedhis observations on anomalous spectrally
narrow dark bands in their reflectivity spectra [204, 205]. It took 40 years until Fano
assigned these anomalies to the resonant excitation of surfacewaves [206], later termed
surface plasmon polaritons. Renewed interest in diffraction gratings emerged in 1998
whenEbbesen et al. discovered the extraordinary enhancement of transmission of light
through periodic two-dimensional arrays of subwavelength holes at certain resonance
frequencies (Figure 5.18) [207]. To the surprise of many, they reported transmission
coefficients much larger than T ¼ ð64=27p2Þ k rð Þ4, the so-called Bethe limit, for a
normally incident plane with wavevector k through a single aperture with radius r in a
perfectly conductingmetal film [208, 209], and even exceeding the hole filling fraction.

A dominant effect of the grating in such experiments is to exchange momentum
with the incident light beams. When scattering a monochromatic plane wave with

Figure 5.17 Simulations of absorption spectra
CabsðlÞ of (a) elliptical gold and (b) elliptical
silver nanoparticles with axes a1 ¼ a2 ¼ 5 nm
and a3 ¼ r � 5 nm. The short and long dashed
and dotted lines lines represent spectra for light
linearly polarized along the long and short axes,

respectively. Interband absorption is included in
the model for the dielectric function of the
metal. With increasing ellipticity, the cross
section for linearly polarized light along the
long axes increases. The spectra have been
scaled for clarity.
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in-plane momentum ~kjj ¼ kx; ky; 0
� �

off the grating, momentum conservation
requires that the diffraction orders have in-plane wave vectors ~kp;q ¼~kjj þ
p �~Gx þ q �~Gy. The integers p and q denote the diffraction orders and ~Gx ¼
2p=axð Þ~ex and~Gy ¼ 2p=ay

� �
~ey are the reciprocal lattice vectors of a two-dimensional

grating with periods ax;y along the x and y directions, respectively. Regular propa-
gating diffraction orders are given if j~kp;qj � v=c, that is, if the wave vector of the
diffracted beam lies inside the light cone. Evanescent surface plasmon polariton
fields can be excited at the grating interface if~kp;q lies outside the light cone, that is, if
j~kp;qj > v=c. Efficient grating coupling to SPP requires that energy and momentum
conservation be fulfilled according to Eq. (5.35)

vð~kp;qÞ ¼ c � j~kp;qj e1 þ e2
e1e2

� �1=2

: ð5:47Þ

Subwavelength diffraction gratings (ax; ay < l) are of particular interest for
coupling to SPP modes. In this case, close to normal incidence, only the zero-order
mode with wave vector k0;0 is a propagating mode, whereas all higher diffraction
orders are evanescent SPP modes.

The resonance condition expressed in Eq. (5.47) gives approximate values for the
transmission resonances in Figure 5.18 when considering that for thin transmission
gratings deposited on a dielectric substrate, SPPmodes can be excited either at the air
side (e2 ¼ 1) or at the dielectric side (e2 ¼ ed) of the grating. Consequently, different
transmission resonances appear in Figure 5.18 for excitation of SPPmodes at the air
or the dielectric side. Excitation of SPP modes in diffraction gratings can be verified
by mapping resonances in angle-resolved or spectrally resolved reflectivity measure-
ments or, more directly, by microscopically imaging the resulting SPP fields. A
representative NSOM image of the intensity of light transmitted through a two-
dimensional array of nanoholes in a thin gold film is shown in Figure 5.19 [210].

Figure 5.18 (a) Scanning electronmicroscope
image of a periodic nanohole array in an
optically thick gold film. The array period is
850 nm and the hole diameter 150 nm. (b)
Representative far-field transmission spectrum
through such an array in a gold film deposited

on a sapphire substrate. The spectrum is
recorded at near-normal incidence and
transmission resonances at the air/gold or the
sapphire/gold interface are indicated. Reprinted
with permission from Ref. [210]. Copyright
(2002), American Institute of Physics.
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The film thickness (about 100 nm) ismuch larger than the skin depth and hence is
sufficient to fully suppress photon tunneling through the unstructuredmetallic film.
The image reveals pronounced field intensity maxima in the region outside the holes
(marked as white circles). The stripe-like pattern is oriented perpendicular to the
polarization direction of the incident field, giving evidence for the excitation of
longitudinal SPPmodes. The clear standing wave pattern at themetal surfacemainly
results from the interference of SPP modes with wave vectors~kjj ¼ �~Gy. A rotation
of the incident polarization also changes the orientation of the standing wave
pattern [210], giving additional support that these measurements probe SPP fields.
The presence of the holes has different effects on theSPPfields propagating along the
metal interface. They partly scatter the SPP field back into the far field and hence give
rise to a radiative damping of the SPPmodes [163]. Also, they scatter the SPPfield into
the holes. Photon tunneling couples the electromagnetic fields at the front and back
sides of the film because electromagnetic waves do not propagate through sub-
wavelength-sized cylindrical apertures [211]. This evanescent coupling between SPP
fields at both interfaces is important for enhancing the transmission through thefilm
and can be optimized by choosing identical dielectrics on both sides [211]. If air and
dielectric modes are tuned into resonance, photon tunneling through the holes
results in a coherent coupling between bothmodes and gives rise to the formation of
new coupled SPP modes extending across both interfaces. This coupling leads to
anticrossings between the interacting SPP resonances in angle-resolved linear optical
spectra [212]. One contribution to the enhanced transmission, therefore, stems from
the coupling of the incident light to SPP modes at the front side of the film, their

Figure 5.19 (a) NSOM image of the light
transmitted through a subwavelength
diffraction grating. The grating is fabricated by
milling an 850 nm period array of 150 nm
diameter nanoholes into a thin gold film
deposited on a sapphire substrate. The grating
is illuminated from the sapphire side with y-
polarized light (see arrow) at 877 nm. The light
at the air side of the grating is collected with a
metal-coated NSOM fiber probe. Light regions

correspond to high intensity, whereas the
intensity drops to zero in the dark regions.
Standing SPP waves at the grating interface are
mapped. (b) Near-field intensity jEyj2 obtained
from a three-dimensional finite difference time
domain simulation. Reprinted with permission
from Ref. [210]. Copyright (2002), American
Institute of Physics. (Please find a color version
of this figure on the color plates.)
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coupling to evanescentmodes inside the hole channels, and to SPPmodes at the back
side of the film and the outcoupling of the confined fields to the far field. This
contribution is enhanced by tuning the excitation laser into resonance with the SPP
modes. In addition, a certain fraction of the incident light can directly tunnel through
the hole channels without coupling to SPP modes. Experimentally, both contribu-
tions can be readily distinguished in time-resolved pulse transmission experiments
using ultrafast lasers with a pulse duration that is shorter than the SPP lifetime [213].
The linear optical transmission spectra are then givenby the interference between the
electric fields transmitted through the resonant SPP channel and the continuous
direct transmission channel [214]. This interference gives rise to the asymmetric,
Fano-like lineshapes shown in Figure 5.18b [215].

The scattering of SPPs at the holes also couples SPPmodes on the same side of the
metal film. The effect of this coupling on the linear optical spectra is readily seen in
angle-resolved transmission spectra of an 150 nm thick gold film deposited on a
sapphire substrate and perforated with an array of 50 nm wide slits with a period of
650 nm (Figure 5.20).

A clear anticrossing with a splitting of 70 meV is observed at angles of about 36


due to the coupling between SM[þ 1] and SM[�2] [For one-dimensional arrays, the
allowed in-plane SPP wave vectors are 2p/a, with a denoting the grating period. The
SPP modes at the air and sapphire interface are then denoted as AM[p] and SM[p],
respectively]. The coherent coupling between bothmodes thus leads to the opening of
a band gap in the SPP dispersion relation. In addition, it results in a pronounced
modification of the linewidths of the SPP resonances on the two sides of the crossing.
The SPP coupling evidently affects the radiative lifetimes of the coupled modes
because these linewidths are governed by the radiative SPP damping. This is
qualitatively understood by considering the symmetries of the coupled modes. In
the so-called strong coupling limit where the coupling strength is larger than the

Figure 5.20 Experimentally measured angle-
resolved transmission spectrum for a gold
nanoslit arraywith a period of a0¼ 650 nmand a
slit width of 50 nm.Open circles: CalculatedSPP
band structure near the crossingof SM[þ 1] and
SM[�2] resonances. A band gap splitting of 72

meV is revealed. Note the spectral narrowing of
the transmission spectrum and the decrease in
transmission intensity in the lower energy
region of the SM[þ 1]/SM[�2] crossing.
(Please find a color version of this figure on the
color plates.)
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damping times of the individual resonances [216, 217], the coupling results in
coupled SPPmodeswhose spatialmode profile is symmetric and antisymmetric with
respect to the slit center [213]. As verified by near-field imaging, the spatial overlap of
bothmodeswith the slit scattering centers is very different and results in a very strong
suppression of radiative damping for the antisymmetric mode [218]. Long SPP
lifetimes exceeding 200 fs have been observed that exceed the SPP lifetimes of a
perfectly flat metal/dielectric interface [213]. Hence, the coherent coupling between
SPP modes not only provides a means to tailor the dispersion relations, but also
manifestly alters the SPP lifetimes and the quality factors, as well as local field
enhancements of nanoplasmonic resonators.

There have been numerous attempts to theoretically describe the phenomenon of
extraordinarily enhanced transmission. For a very recent overview of the different
approaches, the reader is referred to Ref. [219]. Initial attempts relied on semiana-
lytical transfer matrix models, describing themetallic nanostructure as a special type
of Fabry–P�erot resonator [211, 220]. Rather good agreement has been found between
the experimental results of Ref. [210] and a fully vectorial diffraction model initially
developed by Lochbihler [221] and later refined by Park and Lee [222]. Simulations
based on thismodel as well as numerically demanding finite difference time domain
simulations [223, 224] support the qualitative picture outlined above.

Numerous possible applications of such periodically structured metallic nanos-
tructures have been discussed [141]. Of particular interest seem to be the directional
transmission (beaming) of light through a single aperture flanked by periodic
corrugations [225] and the ability to localize light in very small volumes, which is
of interest for the sensing of single molecules [226].

5.4.4.4 Adiabatic Metallic Tapers
One of themost intriguing physical properties of metallic surface plasmon polariton
waveguides is their ability to localize light in extremely small volumes, much below
the diffraction limit. Here, we briefly discuss the optical properties of a specific SPP
waveguide, a sharp, tapered gold tip, to highlight the interplay between geometrical
shape and optical properties and to illustrate the unique light localization capabilities
of such nanostructures that is advantageous for spectroscopic, sensing, and
microscopic functions in both continuous wave and ultrafast measurements [200,
227, 228].

Consider a surface plasmonpolaritonwave packet propagating toward the apex of a
conical metallic taper (Figure 5.21) with perfectly smooth interfaces. Owing to the
evanescent nature of the SPP mode, this wave packet cannot emit radiation into the
far field until it reaches the very apex of the taper. The taper apex acts as a scatterer for
SPPwaves and thus as a point-like light source. The optical properties of such conical
tapers have been studied analytically by Babadjanyan et al. [230] and within the
Wentzel–Kramers–Brillouin approximation [231] by Stockman et al. [232]. Several
intriguing features of these results merit attention. First, the magnitude of the SPP
in-plane wave vector k / 1=r is inversely proportional to the distance r between a
certain position on the taper surface and the tip apex. Correspondingly, the in-plane
SPP wavelength tends to zero near the tip apex. Both phase and group velocities
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decrease to zero, and hence the SPP wave packet is predicted to be slowed down and
come to a complete halt as it approaches the tip apex. The adiabatic decrease in group
velocity is related to a divergence of the electric field strength near the tip apex and to
an extreme concentration of the electromagnetic energy stored in the SPP wave
packet into a vanishingly small spot size. Effectively, the spatial extent of the SPPwave
packet reduces as it approaches the apex and is transformed adiabatically from a
propagating into a localized mode. Even if the field singularity at the tip apex is
removed by limiting theminimum tip radius to 2 nm [232], a strong enhancement of
the field intensity by more than three orders of magnitude remains. This field
localization is expected for adiabatic tapers whose change in taper diameter is small
on a scale of the wavelength.

From this early work, the phenomenon of adiabatic nanocompression has received
considerable theoretical and experimental attention. Different nanofocusing geom-
etries includingwedges [233, 234], cones [235–237], andnanogrooves [238] have been
proposed and theoretically analyzed. On the experimental side, first the effect has
been studied in two-dimensional tapered waveguides [239, 240]. Apossible geometry
for demonstrating adiabatic nanofocusing on conical tapers, introduced in Ref. [229],
is shown in Figure 5.21 and consists of a chemically etched gold taper with an
opening angle from 20
 to 30
. The taper is patterned with a slit grating with a period
of 800 nm and slit width of 150–300 nm. When illuminated with laser light and a
wavelength approximately matching the grating period, a SPP wave packet is
launched onto the taper shaft, propagating toward the tip apex. The 15–30 mm

Figure 5.21 (a) Experimental geometry for
adiabatic nanofocusing on conical gold tapers.
Light from a tunable Ti:sapphire laser is focused
by a high-NA objective onto a nanoslit grating
milled onto the shaft of a gold taper. Grating
coupling launches a SPP wave packet on the
taper that propagates toward the tip apex, where
it is scattered into the far field. (b) Scanning

electron microscopy image of a chemically
etched gold taper with a nanoslit grating
patterned by focused ion beam milling. (c)
Optical microscopy image of the light that is
scattered from the tip apex after grating
illumination. Reprinted with permission from
Ref. [229]. Copyright (2007) American Chemical
Society.
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distance between the grating edge and the taper apex is chosen such that a significant
fraction of the launchedwave packet reaches the taper apex withminimal Ohmic loss
or scattering into the farfield.Only at the tip apex are the SPPs efficiently transformed
into radiation. This is readily seen in microscope images taken from such tapers
when illuminating the grating [229]. Apart from light scattering from the grating
edges, the taper shaft remains dark, while a second and intense light spot is seen at
the very apex of the tip. Thiswas taken as indirect evidence for adiabatic nanofocusing
on conical tapers. More direct evidence can be given by using such a localized
nanoscale light spot at the apex as the light source in a scattering-type near-field
scanning optical microscope [200, 227]. When scanning such a tip across a glass
substrate covered with small gold metallic nanoparticles while illuminating the
grating coupler, strong enhancement of the light scattered into the far field is seen
when the tip is positioned directly on top of a nanoparticle (Figure 5.22).

The spatial resolution in these images is only of the order of 40 nm. The
enhancement in scattering signal by a single 30 nm diameter particle is strong and
amounts tomore than 30%of the signal given by the light scattering from the tip apex
in the absence of a nanoparticle [200]. This is considered direct evidence for the very
efficient adiabatic focusing of far-field light toward a nanometer-sized spot at the tip
apex. Such an essentially background-free high spatial resolution near-field scanning

Figure 5.22 Two-dimensional optical images
of individual gold nanoparticles on a glass
substrate recorded by adiabatic nanofocusing
scattering-type near-field scanning optical
microscopy (s-NSOM). (a) Optical s-NSOM
imageof a single goldnanoparticlewith<30 nm
radius. In these experiments, SPP waves are
launched onto a gold taper by grating coupling
(Figure 5.21b) and the light scattering from the
tip apex is recorded in the far field while
scanning the tip across the surface of a dielectric
substrate covered with a low concentration of

gold nanoparticles. Inset: Scanning electron
microscope image of the gold nanoparticles. (b)
Cross sections of the optical intensity along the x
and y directions (marked by dash-dotted lines in
(a)). The optical resolution of about 40 nm and
the large signal-to-background ratio confirm the
efficient adiabatic nanofocusing of SPPwaves at
the tip apex. Reprinted with permission from
Ref. [200]. Copyright (2011) American Chemical
Society. (Please find a color version of this figure
on the color plates.)
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optical microscope is certainly of considerable interest for linear light scattering,
Raman and fluorescence imaging of densely packed nanoparticle samples.

5.4.5
Exciton–Plasmon Coupling

So far, we have considered electromagnetic fields at the interface between ametal and
a transparent dielectric and have focused on propagating or localized surface
plasmon excitations. As all other electromagnetic waves, surface plasmons interact
with materials such as semiconductors or molecules that may be present in the near
field. When replacing the dielectric with a thin semiconducting layer or a layer of
molecules, this layer may itself show optical absorption resonances in the spectral
range of the surface plasmon resonances and therefore introduce resonant coupling
between themodes. In case of low-dimensional, quantum-confined semiconductors,
these resonances arise mostly from dipole-allowed excitonic excitations, optically
induced electron–hole pairs bound by the Coulomb interaction [241–243]. In
molecular layers, these are molecular excitons, arising from the light-induced
transition of an electron from the highest occupied to the lowest unoccupied
molecular orbital [244, 245].

In this case, an external light field not only can interact with the surface plasmon
polaritons at the interface between themetal and its surrounding, but can also create
excitons in the surrounding layer. Hence, the possibility for a resonant exchange of
electromagnetic energy between excitons and surface plasmons exists. If this
exciton–plasmon coupling is sufficiently strong, it will influence the optical prop-
erties of the coupled system.When the excitons are located close to themetal surface,
that is, at distances of much less than one wavelength, the energy exchange will
mainly be mediated by optical near fields (the last two terms in Eq. (5.39)). For larger
distances, propagatingfields (thefirst term in Eq. (5.39)) contribute and for very short
distances of only a few angstroms, tunnel coupling of electrons and holes is expected
to set in. The resulting charge transfer processes will not be considered here and we
will restrict the discussion to electromagnetic couplings between the optically
induced excitonic and surface plasmon dipole moments. In molecular systems,
such dipole–dipole couplings are important for the excitation transfer in light
harvesting systems [246]. Recently, they have also been investigated in coupled
semiconductor quantum dot systems [247, 248].

An intuitive insight into the effects of such couplings on the optical properties of
plasmonic systems can be gained from the hybridization model introduced by
Nordlander and coworkers [249]. On the basis of earlier work [250, 251], the authors
have investigated sphericalmetallic nanoshells covering small dielectric spheres. The
theoretical work shows that the optical response of this composite system results
from the electromagnetic interaction between the plasmon resonances of the
individual constituents, in this case a metallic sphere and a spherical void inside
a metallic film. The lowest order dipolar resonance of the sphere is discussed in
Section 5.4.4.1. In quasi-static approximation, the polarizability of a spherical
inclusion of radius a in a metal film with e2ðvÞ and filled with dielectric with e1

5.4 Plasmonic Excitations at Surfaces and Nanostructures j227



is given by exchanging e1 and e2 in Eq. (5.37) [132, 174]:

a ¼ 4pa3
e2�e1
e2 þ 2e1

: ð5:48Þ

Then, the Fr€ohlich condition for the SP resonance is 2Reðe1Þ ¼ e2. This gives a SP
resonance frequency vv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3Þvp
p

in a lossless Drude model compared to
vs ¼ vp=

ffiffiffi
3

p
for the sphere. Using a hydrodynamicmodel for the SP response [252],

it was shown that vv can be understood as the resonance frequency of a harmonic
oscillator model for the collective charge density oscillation. The problem of finding
the resonance of the hybrid system can then be transformed into solving coupled
oscillator equations [252]. In this dipolar approximation, the resonance frequencies
of the composite system are then derived as

v2
� ¼ v2

p

2
1� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8x3

p
 �
; ð5:49Þ

where x ¼ a=b defines the ratio of the inner and outer radii of the shell. This
expression gives the same resonance frequencies as obtained from classical Mie
scattering theory [132, 174]. For vanishingly small void volume, x! 0, one retrieves
the uncoupled resonances. With increasing void volume, the splitting between the
resonances increases, indicating the formation of antisymmetrically coupled (anti-
bonding) vþ plasmon mode and a symmetrically coupled (bonding) v� plasmon
mode. The two modes correspond to out-of-phase and in-phase charge density
oscillations at the inner and outer surfaces of the shell, respectively [249]. For
sufficiently small x, the splitting between the modes can be approximated

as vþ�v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvs�vvÞ2 þ 4jV j2

q
, giving a coupling energy (or Rabi splitting)

[217, 231] of hV � hvpð1=3Þx3=2. If the coupling is sufficiently strong, the spectra
of the composite particles show new resonances, which can be attributed to the
coupled plasmon modes [249].

The same theoretical approach can be used to describe surface plasmon couplings
in metallic dimers [253], multishell concentric spheres [249], or exciton–plasmon
interactions [254].When coating ametallic nanoshell with, for example, a thin layer of
a J-aggregate molecular dye, the plasmonic excitations of the nanoshell can couple
to the excitonic excitation of the molecular layer. This then leads to an exchange
of electromagnetic energy between the excitonic and the plasmonic system and –

for sufficiently strong coupling – as in the previous line to the formation of new
coupled resonances with resonance frequencies that are spectrally shifted with
respect to those of the uncoupled ones. J-aggregate dyes [245], formed by dissolving
dye molecules, for example, 2,20dimethyl-8-phenyl-5,6,50,60-dibenzothiacarbocya-
nine chloride (Figure 5.23a), at high concentration in polymer matrices are well
suited for studies of exciton–plasmon interactions because of their large oscillator
strengths and spectrally narrow absorption resonances (Figure 5.23b) [255].

The optical absorption spectra of ensembles of spherical silver and gold nano-
particles [257] and of gold nanoshells [254] covered with J-aggregate dye molecules
have been studied experimentally. Spectral splittings of more than 100 meV have
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been observed [254] and taken as a signature of the coherent coupling between the
plasmon excitations of the nanoparticle and the excitons of the J-aggregate complex.
Since these splittings are less than the ensemble-averaged linewidth of the nanoshell
absorption spectra, it is not yet clearwhether the strong coupling regime, inwhich the
coupling strengthV is larger than the spectralwidth of theuncoupled resonances, can
be reached in these systems [216, 217].

Clear evidence for strong exciton–plasmoncouplinghas beengiven for the coupling
of J-aggregate excitons to surface plasmon polariton excitations on planar metallic
films [258] and in one-dimensional nanoslit arrays [256] or two-dimensional hole
arrays [259]. As an example, linear optical reflectivity spectra of a nanoslit grating in a
goldfilm coveredwith a 50nm thick J-aggregate dye layer are presented in Figure 5.24.

Figure 5.23 (a) Chemical structure of the
cyanine dye 2,20dimethyl-8-phenyl-5,6,50,60-
dibenzothiacarbocyanine. (b) Room
temperature optical absorption spectra of this

dye in monomeric form (red line) and in J-
aggregate form (black line). Reprinted with
permission from Ref. [256]. Copyright (2010)
American Chemical Society.

Figure 5.24 (a) Angle-resolved p-polarized
linear reflectivity spectra (T¼ 77 K) of the J-
aggregate dye deposited on a gold film
perforated with a nanoslit grating of 430 nm
period and 45 nm width. (b) Reflectivity spectra
at different angles of 33
, 38
, and 49
. (c)
Polariton dispersion relation obtained from the

experimental spectra (open circles), a full
vectorial solution of Maxwell�s equations (solid
line), and a coupled oscillator model (dashed
line). Reprintedwith permission fromRef. [256].
Copyright (2010) American Chemical Society.
(Please find a color version of this figure on the
color plates.)
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The surface plasmon resonances of such gratings are discussed in Section 5.4.4.3.
Here, the grating period of 430 nmwas chosen such that the SPP resonancevSPPð�Þ
of the grating in the absence of exciton–plasmon coupling (Eq. (5.47)) is shifted from
650 to 750 nmwhen varying the angle of incidence �between 30
 and 50
. This allows
one to angle tune the SPP resonance across the (angle-independent) exciton
resonance vX of the dye. The width and the depth of the slits at 45 and 30 nm,
respectively, were chosen to obtain spectrally narrow SPP resonances with a line-
width of less 10 nm. Near the crossing angle, vSPPð�Þ ¼ vX , a clear splitting of the
optical spectra into upper and lower polariton resonances were observed. The
resonance energies of the newly formed coupled polariton modes were found to be

~vUP;LP ¼ 1
2

~vX þ ~vSPPð Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~vX�~vSPPð Þ2 þ 4V2

q
; ð5:50Þ

where ~vX ;SPP ¼ vX ;SPP�icX ;SPP denote the complex eigenfrequencies of the
uncoupled exciton and SPP resonances. Equation (5.50) matches the observed
dispersion relation when choosing a coupling energy of hV � 55meV, which was
larger than the widths hcX and hcSPP of both uncoupled resonances, confirming that
the regime of strong exciton–SPP couplingwas indeed reached in these experiments.
The Rabi splitting V ¼ Ð ~mX ð�rÞ �~ESPPð�rÞ d�r reflects the overlap integral between the
excitonic transition dipolemoment density~mX ð~r Þ and the electric field vector~ESPPð~rÞ
of the local SPPmode and thereforemeasures the rate of exchange of electromagnetic
energy between excitons and SPPs. The observation of such large coupling energies
is of interest because the coupling and the optical properties of suchhybrid structures
can be altered by externally manipulating ~mX ð~rÞ or ~ESPPð~r Þ. Owing to the short
anticipated lifetimes of the coupled polariton modes, this provides a new degree of
freedom for control of optical properties on fast timescales and potentially also small
length scales. This functionality might be of interest for future applications in all-
optical switching or nanolasing.

5.4.6
Summary

Electromagnetic fields at the interface between a metal and a dielectric are strongly
confined to the interface. The coupling between an incident light field and collective
charge density oscillations inside the metal results in propagating surface plasmon
polariton and localized surface plasmon modes. These modes are fundamentally
interesting because they allow the efficient localization of light on the nanoscale, in
dimensions that are substantially smaller than the wavelength of light. For simple
geometries such as planar interfaces, gratings, or spherical and elliptical nanopar-
ticles, the local electromagnetic fields and the resulting linear optical properties of
these structures are reasonably well understood using phenomenological Drude-like
models for the local dielectric function of the metal. More complex geometries such
as two- or three-dimensional arrays or nanometer-sized taper waveguides carry the
potential to act as antennas or waveguides, providing exquisite and unprecedented
control of the propagation and localization of light on the nanoscale. Such structures
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for localization of light on the nanometer scale are interesting for spectroscopic and
dynamical imaging of single molecules, sensing, and inducing linear and nonlinear
photochemistry of adsorbedmolecules. Hybrid nanostructures consist ofmetals and
gain materials add nonlinear ultrafast switching functionality and open the door to a
new class of functional nanophotonic devices. A microscopic understanding of their
optical properties requires knowledge about the spatiotemporal dynamics of elec-
tromagnetic fields near interfaces on short, nanometer-sized length and extremely
fast atto- to femtosecond timescales, posing considerable experimental and theoret-
ical challenges. We believe that emerging advances in ultrafast optical and electron
microscopy in combination with advanced quantum theoretical modeling will
provide more insights in the near future.
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