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We present a joint experimental and theoretical study of selective population of dressed states (SPODS) in
a three-level system. Control is exerted by shaped intense femtosecond laser pulses generated by a generalized
spectral phase-step modulation function. We show that both control parameters (i.e., the phase-step amplitude and
position) can be used to switch population among each three dressed states with high selectivity. The dynamics of
the system, and hence the resulting photoelectron signal is studied theoretically by analyzing the time evolution
of the adiabatic dressed-state energies and populations.
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I. INTRODUCTION

Quantum control on the ultrafast time scale has opened
up new perspectives for the manipulation of light-matter
interactions with wide-ranging applications from coherent
excitation of model systems to complex interactions with
materials [1–12]. In recent time, the focus of quantum control
studies has shifted from demonstrations of quantum control
to understanding the underlying physical mechanisms of the
interaction of shaped femtosecond laser pulses with matter. In
particular, control by shaped intense laser fields has attracted
much interest because nonperturbative light-matter interaction
opens novel control pathways which are inaccessible in weak
laser fields. A general approach to physically understand
control in strong fields has been discussed in terms of
selective population of dressed stats (SPODS), which provides
a unified picture of distinct control scenarios such as photon
locking [13,14], rapid adiabatic passage (RAP) [15], and also
stimulated raman adiabatic passage (STIRAP) [16]. SPODS
has been demonstrated experimentally, for instance on the
Autler-Townes doublet by exerting suboptical cycle control
of temporal phase discontinuities employing either double
pulses [17] or pulse sequences [18], continually varying phases
by chirped laser pulses [19], and combinations thereof [20]. In
addition, SPODS by adaptive pulse shaping [21] was reported.
Besides two theoretical reports on SPODS on molecules
[22,23], these experimental observations have been discussed
in the framework of SPODS in an idealized two-state system.
Recently, a novel coherent control scenario (robust photon
locking [24]) was introduced experimentally making use of
adiabatic preparation of a state of maximum coherence fol-
lowed by photon-locking-type switching. Besides the reported
switching mechanism, photoelectrons arising from a third
selectively populated dressed state have been observed but
not discussed in detail in that article.

In this paper, we generalize the two-level picture to
demonstrate SPODS in a three-level system to address the
observations of the third dressed state in [24] upon variation
of the control parameters in a generalized θ -step spectral
phase modulation function. To this end, we investigate the
coherent excitation of potassium atoms involving the 4s1/2

ground state and the two resonantly excited states 4p1/2 and

4p3/2. Because the spectral bandwidth (60 meV) of our 30 fs
laser pulse is much larger than the fine-structure splitting of
both potassium 4p states (7.2 meV), the dynamics of both 4p

states are essentially identical (neglecting the small differences
of the respective transition dipole moments) when bandwidth
limited pulses are employed. However, making use of shaped
pulses, both 4p states show different dynamics resulting in
selective population of one out of three dressed states.

We start in Sec. II by discussing the properties of the
complex temporal pulse shapes due to the generalized θ -step
modulation function in some detail. First, we derive some
general properties of this type of phase modulation for pulse
spectra of arbitrary shape. Subsequently, these properties
are exemplified on a Gaussian-shaped pulse spectrum and
illustrated for various cases. In Sec. III the experiment
recently reported in [24] is briefly summarized. To analyze
the underlying physical mechanisms, we discuss the dynamics
induced by these complex shaped pulses in terms of adiabatic
dressed states in Sec. IV, based on our previous work on
selectivity in a multilevel system via chirped excitation [25].

II. TEMPORAL PULSE SHAPES FROM GENERALIZED
SPECTRAL PHASE-STEP MODULATION

A. General properties

We start with an initially unmodulated laser pulse

E(t) = E(t)eiω0t , (1)

with a central frequency of ω0 and a temporal pulse enve-
lope E(t). Fourier transformation of the envelope yields the
spectrum Ẽ(ω) centered at zero frequency. We study the effect
of a generalized spectral phase step defined by the spectral
modulation function

M̃(ω) = exp

[
−iσ (ω − δω )

θ

2

]
= cos

θ

2
− iσ (ω − δω ) sin

θ

2
, (2)

where σ (ω − δω ) denotes the signum function which
takes the values of ±1 for ω <

> δω . M̃(ω) is characterized
by a phase jump from −θ/2 to θ/2 at a step frequency which
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is detuned by δω from the laser central frequency [26–34].
Therefore, the absolute frequency of the step position is
ωs = ω0 + δω . The phase-modulated spectrum reads

Ẽmod(ω) = M̃(ω)Ẽ(ω). (3)

Making use of the Fourier convolution theorem [35,36] the
modulated temporal electric field is obtained by convolution of
the initial unmodulated field E(t) and the temporal modulation
function M(t)

Emod(t) = M(t) ◦ E(t). (4)

The temporal modulation function M(t) of the spectral θ -step
phase modulation is obtained by inverse Fourier transforma-
tion of Eq. (2),

M(t) = δ(t) cos
θ

2
+ ei δω t

πt
sin

θ

2
, (5)

where δ(t) is the Dirac-delta function. Combining Eqs. (4) and
(5) yields the modulated temporal electric field

Emod(t) = E(t) cos
θ

2
+ E(t) ◦ ei δω t

πt
sin

θ

2
. (6)

Equation (6) shows that the modulated field Emod(t) for any
input field E(t) is a superposition of the unmodulated field
and a complex field obtained by convolution with ei δω t/(πt).
By tuning the phase angle θ , we can exert control on their
relative contributions via the respective factors cos(θ/2) and
sin(θ/2). The modulated field deviates significantly from the
initial unmodulated field if the spectral position of the phase
step is not too far detuned from the central frequency (i.e., the
phase jump occurs at a spectral position well within the laser
spectral bandwidth δω < �ω). In the temporal wings of the
field (i.e., for times much larger than the pulse duration |t | �
�t) the unmodulated contribution E(t) cos θ

2 has decayed. In
this case, Eq. (5) reveals that the modulated field rises and
decays proportional to

Emod(t) ∝ 1

t
. (7)

Equations (5) and (6) also imply that in the temporal wings of
the modulated field the instantaneous detuning �(t) – defined
as the time derivative of the temporal phase ζ (t) = arg Emod(t)
of the modulated field, �(t) = ζ̇ (t) – converges to the detuning
of the θ -step position with respect to the central laser frequency
δω

�(t) −→
t→±∞ δω. (8)

Summing up, Eqs. (7) and (8) show that for any shape
of the pulse spectrum the temporal pulse starts and ends
very smoothly with constant detuning from the central laser
frequency determined by the spectral position of the θ step.

For the important case when the θ phase jump occurs at the
central laser frequency (i.e., δω = 0) Eq. (6) reduces to

Emod(t) = E(t) cos
θ

2
− Ê(t) sin

θ

2
, (9)

where Ê(t) describes the Hilbert transform of E(t). In writing
Eq. (9) we made use of the fact that convolution with −1/(πt)
yields the Hilbert transform [35]

E(t) ◦ 1

πt
= − 1

π
P

∫ ∞

−∞

E(τ )

τ − t
dτ = − Ê(t), (10)

where P denotes the Cauchy principal value. For δω = 0 the
spectral phase modulation function is symmetrical with respect
to the pulse spectrum for all values of θ , and therefore this
type of modulation delivers a real-valued modulated temporal
pulse envelope Emod(t) in accordance with Eq. (9) (provided
the unmodulated field envelope E(t) was real-valued, i.e.,
the modulus of the spectrum |Ẽ(ω)| is of even symmetry).
As a consequence, the temporal phase of the envelope is
zero (apart from π phase jumps reflecting zero crossings of
the envelope), implying a constant instantaneous frequency
and detuning, respectively. Equation (9) shows that resonant
θ -step modulation of an arbitrary input field E(t) delivers a
modulated field being a superposition of the unmodulated field
and its Hilbert transform where the phase angle θ controls the
weights of both interfering contributions. A phase angle of
θ = 2nπ leaves the field obviously unmodulated, whereas for
θ = (2n + 1)π the modulated field is the Hilbert transform
Ê(t) of the unmodulated field. The superposition character of
the modulated field is illustrated in Fig. 1 for step amplitudes
of θ = π/2, π , and 3π/2. Note that a temporal phase
jump of π occurs due to a change of sign of the envelope when
cos(θ/2) E(t) and sin(θ/2) Ê(t) cancel each other. Therefore,
the choice of θ controls—besides the pulse shape—also the
location of the temporal phase jump.

B. Gaussian pulses

For practical applications—such as analytical models or
numerical simulations of the dynamics induced by a modulated
pulse—we discuss the effect of θ -step spectral phase modula-
tion for a Gaussian shaped pulse envelope as the most relevant
example. Analytic solutions for this special pulse shape are
given for the general θ -step modulation at an arbitrary spectral

FIG. 1. (Color online) Decomposition of the temporal electric
field envelope Emod(t) of (a) a θ = π/2, (b) π , and (c) 3π/2-step
phase-modulated Gaussian input pulse at the central laser frequency
(black bold line) into the unmodulated contribution cos(θ/2)E(t)
(blue dashed line) and the contribution of its Hilbert transform
− sin(θ/2)Ê(t) (red thin line) according to Eq. (9). Note that a
temporal phase jump of π occurs at the moment when cos(θ/2)E(t)
and sin(θ/2)Ê(t) cancel each other.

053422-2



THREE-STATE SELECTIVE POPULATION OF DRESSED . . . PHYSICAL REVIEW A 81, 053422 (2010)

detuning δω . The Gaussian temporal electrical field envelope
is given by

EG(t) = εt e
− ln 4 ( t

�t
)2
, (11)

where �t describes the full width at half maximum (FWHM)
of the temporal intensity profile, and the electrical field strength

εt = E0
4

√
2 ln 4

π�t2
, (12)

is so chosen as to normalize the field to a pulse energy
proportional to ∫ ∞

−∞
[EG(t)]2 dt = E2

0 . (13)

By modulating the Gaussian spectrum

ẼG(ω) = εω e− ln 4 ( ω
�ω

)2
, (14)

having a spectral intensity FWHM of �ω = (2 ln 4)/�t and a
normalized field strength of

εω = E0
4

√
π�t2

ln 2
, (15)

with the spectral modulation function described in Eq. (2) we
obtain the modulated temporal field as

EG
mod(t)

= EG(t)

{
cos

θ

2
+ sin

θ

2
Erfi

[√
ln 4

(
t

�t
+ i

δω

�ω

)]}
,

(16)

where Erfi(z) denotes the complex error function. To yield a
physically more transparent description of the modulated pulse
shape described in Eq. (16), we approximate

Erfi(x + iy) ≈ exp(−y2 + 2 i x y) Erfi(x), (17)

for x � y. In the temporal wings [when the unmodulated
contribution proportional to cos(θ/2) has decayed] we obtain
for t/�t � δω /�ω

EG
mod(t) ≈ EG(t) Erfi

(√
ln 4 t

�t

)
× e− ln 4( δω

�ω
)2

ei δω t sin
θ

2
.

(18)

The phase factor exp(i δω t) in the lower part of Eq. (18) leads
to the asymptotic constant detuning of �(t) = δω . Further
simplification of the upper part of Eq. (18) by approximating
the asymptote of Dawson’s function exp(−y2)Erfi(y) by
1/(

√
πy) yields

EG
mod(t) ∼

t→±∞
Ẽ( δω )

2
√

π

ei δω t

t
sin

θ

2
, (19)

revealing both relevant properties of the modulated pulse: (i)
the decay of the modulated pulse envelope proportional to 1/t

and (ii) the asymptotic detuning of �(t) = δω , both of which
are relevant to the experiment and illustrated in Fig. 2.

FIG. 2. (Color online) Modulated pulse shapes (envelope
|Emod(t)| red shaded and instantaneous detuning �(t) bold blue line,
right scale) for various values of the phase-step amplitude and spectral
detuning from the laser central frequency. The unmodulated Gaussian
field has a FWHM of �t = 30 fs. In the temporal wings, the envelope
rises and decays as 1/|t | and the instantaneous detuning converges
to the spectral detuning of the phase-step δω . The insets show the
corresponding spectral phase (thin blue line) and amplitude (gray
shaded background). The central panel shows the well-known π jump
at central frequency (θ = π and δω = 0) with a subpulse separation
of τ ≈ 1.57 �t .

For the θ -step spectral modulation of a Gaussian laser pulse
at the central frequency (i.e., δω = 0) Eq. (16) reduces to

EG
mod(t) = EG(t)

[
cos

θ

2
+ sin

θ

2
Erfi

(√
ln 4 t

�t

)]
, (20)

which is a special case of Eq. (9) since

ÊG(t) = −EG(t) Erfi

(√
ln 4 t

�t

)
, (21)

is the Hilbert transform of the unmodulated Gaussian EG(t).
Figure 2 illustrates modulated Gaussian electric fields,

decomposed into their envelope |Emod(t)| (red shaded) and
instantaneous detuning �(t) (bold blue lines), for various
combinations of the modulation parameters θ and δω . Note
that the middle column of the 3 × 3 matrix of figures
corresponds to Fig. 1. The center of the matrix displays the
well-known π jump at central frequency [θ = π and δω = 0,
cf. Fig. 1(b)], being the Hilbert transform of the Gaussian
input field. This field has a double-pulse structure with a
temporal separation of about τ ≈ 1.57 �t and an intensity
FWHM of each subpulse of approximately 1.04 �t . The
change of sign of the envelope is responsible for the phase
jump of π in between both subpulses. As a consequence,
the instantaneous detuning exhibits a delta peak at t = 0.
Since both subpulses have the same pulse area, the total pulse
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area is zero. This is an exceptional realization of a zero-area
pulse [37] because it is generated by spectral phase modulation,
which leaves the modulus of the pulse area 
∞, in general,
unchanged


∞
mod =

∫ ∞

−∞
Emod(t) dt = Ẽmod(0) = M̃(0)Ẽ(0)

= M̃(0)
∫ ∞

−∞
E(t) dt = M̃(0)
∞. (22)

The dashed black line proportional to 1/t indicates the
hyperbolic rise and decay of the field at early and late times
[cf. Eqs. (7) and (19)]. Variation of θ to either π/2 or
3π/2 [cf. Figs. 1(a) and 1(c)] leads to a superposition of the
unmodulated field and its Hilbert transform, shifting the zero of
the envelope to early and late times, respectively. For θ = π/2
this results in the formation of a weak prepulse followed
by a strong postpulse, whereas for θ = 3π/2 the result is a
time-reversed copy (i.e., a strong prepulse followed by a weak
postpulse). However, since in both cases the spectral phase
function is still antisymmetric with respect to the laser central
frequency, the modulated temporal field envelopes Emod(t) are
real valued [38] and no change of the instantaneous detuning
occurs (apart from the delta peaks due to the π jump in
the temporal phase). It was shown [19,38] that in two-level
systems real-valued resonant pulses are incapable of exerting
control on dressed-state populations. In general, however, in
multilevel systems there is no distinct single resonance and
hence “real-valued pulses” are no longer well defined. As
a consequence, antisymmetric spectral phase functions will
generally affect the dressed-state populations. Manipulation
of the instantaneous detuning �(t) is achieved in particular
by variation of the step detuning δω . Most importantly, δω

defines the asymptotic value of �(t) in the wings of the
pulse [cf. Eqs. (8) and (19)] as can be seen throughout the
left and right columns where δω <

> 0. Around t = 0
the two subpulses merge to one pulse, and consequently,
the π jump of the temporal phase is blurred, yielding a
strong nonlinear variation of the instantaneous detuning. For
θ = π the field is symmetric in time, whereas the choice
of θ = π/2 or 3π/2 introduces a temporal asymmetry to
both the field envelope and detuning. Since changing the
step amplitude from π/2 to 3π/2 (equivalent to −π/2)
amounts to phase conjugation of the pulse spectrum
[i.e., Ẽmod(ω) → Ẽ∗

mod(ω)] the corresponding temporal field
is likewise phase conjugated and additionally time re-
versed: Emod(t) → E∗

mod(−t). As a consequence, both the
envelope and the instantaneous detuning are reversed in
time [i.e., |Emod(t)| → |Emod(−t)| and �(t) → �(−t)] since
the time derivative of the conjugated and time reversed
temporal phase is d/dt[−ζ (−t)] = ζ̇ (−t) = �(−t). On the
other hand, changing the sign of the step detuning δω →
− δω corresponds to a reversal of the spectral phase-
modulation function with respect to both axes. Taking
into account the symmetry of the pulse spectrum, this
implies phase conjugation and frequency reversal of the
spectrum, Ẽmod(ω) → Ẽ∗

mod(−ω), and hence phase conjugation
of the modulated temporal field: Emod(t) → E∗

mod(t). This
entails that the instantaneous detuning is inverted, �(t) →

−�(t), while the envelope of the temporal field remains
unaltered.

In summary, changing the sign of θ leads to time reversal
of the modulated temporal field (i.e., of both the envelope and
the instantaneous detuning) whereas changing the sign of δω

mirrors only the detuning with respect to the t axis. In the case
of θ = π , the modulated spectrum is unaltered upon phase
conjugation implying gerade symmetry of the temporal field
in terms of envelope and detuning as seen in the middle row
of Fig. 2.

III. EXPERIMENT

The experimental setup for strong-field excitation of a three-
level system in potassium atoms is shown in Fig. 3. Intense
795 nm, 30 fs FWHM laser pulses provided by an amplified
1 kHz Ti:sapphire laser system were phase modulated by
a home-built pulse shaper [39,40], applying a θ -step phase
mask, Eq. (2). The shaped output pulses were attenuated
to pulse energies of 0.6–1.4 µJ and focused by a 300 mm
lens into a potassium atomic beam. Photoelectrons released
in a resonance-enhanced multiphoton ionization (REMPI)
process during the laser-atom interaction were detected by an
energy-calibrated magnetic bottle time-of-flight spectrometer
with a kinetic-energy resolution of 15 meV at 0.5 eV. Prior
to the experiments we performed an in situ compensation
of the residual spectral phase of the input pulse in the
interaction region of the photoelectron spectrometer. To this
end, we parameterized the compensation phase in terms of

FIG. 3. (Color online) Schematic of the experimental setup.
Ultrashort infrared laser pulses, phase modulated by a Fourier
transform pulse shaper, are focused into a vacuum chamber to
intersect a potassium atomic beam. Photelectrons released during the
light-atom interaction are detected by a time-of-flight magnetic bottle
spectrometer. The right frame displays the excitation and ionization
scheme of potassium atoms interacting with the shaped light field:
The transitions 4p1/2,3/2 ← 4s1/2 (bold gray) are driven strongly near
resonance, giving rise to three dressed states (black), the energies and
populations of which are probed via two-photon ionization by the
most intense part of the excitation pulse.

053422-4



THREE-STATE SELECTIVE POPULATION OF DRESSED . . . PHYSICAL REVIEW A 81, 053422 (2010)

FIG. 4. (Color online) Measured photoelectron spectra for a fixed
step amplitude of θ = π and the spectral step position ωs scanned
across the two potassium fine-structure resonances 4p1/2 and 4p3/2.
Both resonances (red peaks in the top frame) are much narrower
then the spectral resolution of our pulse shaper of about 1 nm and
lie in the blue wing of the laser power spectral density (PSD; light
red shaded background in the top frame). (a) and (c) show sections
through the scan slightly below and slightly above both resonances,
respectively. The arrows mark the bare state (i.e., weak-field position
of the photoelectron peak). In (a) predominantly low-energetic
photoelectrons are detected, indicating selective population of the
lower dressed state, whereas in (c) the high-energetic photoelectrons
are promoted, revealing selective population of the upper dressed
state. Selective population of the third, intermediate dressed state is
realized when the phase step occurs in between the two resonances
as indicated by the photoelectron spectrum in (b) having a sharp and
pronounced maximum at medium kinetic energies.

a fifth-order Taylor polynomial and employed an adaptive
optimization procedure to maximize the photoelectron yield
from multiphoton ionization of xenon atoms. The optimal
compensation phase was additionally applied to the pulse
shaper throughout the following experiments to ensure a flat
spectral phase of the input pulse.

In a first experiment we studied energy-resolved photoelec-
tron spectra as a function of the absolute step frequency ωs by
sweeping a θ = π step across the laser spectrum. Figure 4
shows the photoelectron spectra obtained in the vicinity of the
two potassium fine-structure resonances 4p1/2 and 4p3/2. The
experimental results show that—in addition to the common
Autler-Townes doublet—a third dressed state is observed in
the photoelectron spectra. By suitable choice of ωs , we were
able to exert efficient control on three distinct photoelectron
spectra each mapping the selective population of one out of
three dressed states. In the second experiment we chose two
distinct step frequencies (one slightly below, the other one
slightly above both resonances) to be kept fixed while the
step amplitude θ was varied. Resulting photoelectron spectra
presented in Fig. 7 demonstrate that the step amplitude θ is an
efficient control parameter as well.

IV. PHYSICAL MECHANISM

A. The physical system

The physical mechanism of the potassium experiment
involves three atomic states: 4s1/2, 4p1/2, and 4p3/2. The laser-
excited system is described by the Hamiltonian [15,41,42]

H = h̄

⎡⎢⎣ ω1
1
2�12

1
2�13

1
2�∗

12 ω2 0
1
2�∗

13 0 ω3

⎤⎥⎦ . (23)

The excitation pulse couples both transitions 4p1/2 ← 4s1/2

and 4p3/2 ← 4s1/2. The control parameters are the amplitude
θ of the phase step and its position ωs in the pulse spectrum.

The central laser frequency is ω0 = 2.3844 fs−1 (λ0 =
790 nm) and the characteristic width of the spectrum is
�ω = 0.092 fs−1, which corresponds to an intensity FWHM
of �t = 30 fs. Note that we abbreviate the unit of angular
frequencies rad/fs by fs−1. For simplicity, we assume that
the dipole moments of the transitions 4p1/2 ← 4s1/2 and
4p3/2 ← 4s1/2 are equal (the actual small difference of 3.4 a.u.
to 4.8 a.u. [43] does not alter the picture in the present context).
The eigenfrequencies of the three states are ω1 = 0 (4s1/2),
ω2 = 2.446 fs−1 (4p1/2), and ω3 = 2.457 fs−1 (4p3/2).

The phase step in the Fourier transform produces a complex
Rabi frequency �(t) = |�(t)| ei arg �(t), with the argument
being the total temporal phase arg �(t) = ω0t + ζ (t). After an
appropriate phase transformation of the probability amplitude
of state 4s1/2, c1(t) = b1(t)ei[ω0t+ζ (t)], the time derivative of
the total temporal phase [being the instantaneous frequency
ω0 + �(t)] translates into a time-dependent energy of state
4s1/2,

H (t) = h̄

⎡⎢⎣ω0 + �(t) 1
2 |�(t)| 1

2 |�(t)|
1
2 |�(t)| ω2 0
1
2 |�(t)| 0 ω3

⎤⎥⎦ . (24)

This representation of the Hamiltonian is used in the dressed-
state analysis in the following. The corresponding state vectors
will be denoted by |1〉, |2〉, and |3〉, respectively. The above
phase transformation amounts to a reference frame rotating
with the instantaneous frequency of the driving laser field.

In accordance with Eq. (8), the phase-step chirped energy
of state |1〉 tends asymptotically toward the absolute position
of the phase step ωs at early and late times

ω0 + �(t) −→
t→±∞ωs. (25)

This property is essential for the analysis in the following.
The experimental conditions are also such that the pulsed
interactions in the two transitions have large pulse areas

∞ [here the pulse area is defined by the integral over the
Rabi frequency implying multiplication of Eq. (22) with the
dipole moment]. The Autler-Townes splitting of 257 meV
≈ 0.39 fs−1 indicates a pulse area of about 
∞ = 6π for
a Gaussian pulse. This implies that the evolution is nearly
adiabatic (i.e., the adiabatic condition) [15,41]∣∣∣∣� d

dt
|�| − |�| d

dt
�

∣∣∣∣ � 2(�2 + |�|2)3/2, (26)
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is essentially fulfilled. The physical mechanism is therefore
the one of adiabatic dressed-state evolution.

B. Dressed-state picture for π phase step

The photoelectron (PE) signal is explained most naturally in
the dressed-state picture by examining the eigenstates (referred
to as adiabatic or dressed states) of the Hamiltonian (24).
There are three such dressed states, as displayed in Fig. 5.
The spectral phase step induces a time-dependent chirp in the
energy of state |1〉, depicted by the gray solid-dotted line,
which tends asymptotically to ωs , Eq. (25). Because this state
is the only one populated initially, the value of ωs determines
which dressed state is initially populated; the (adiabatic)

FIG. 5. (Color online) Dressed-state energies of potassium atoms
for three values of the phase step position ωs = 2.442, 2.452
and 2.462 fs−1. The other parameters are �0 = 0.39 fs−1, �ω =
0.092 fs−1, and θ = π . Since all three step frequencies are larger than
the laser central frequency, the modulated fields correspond to the
middle right frame of Fig. 2. The black dashed-dotted, the red solid,
and the blue-dashed curves show the dressed-state energies, whereas
the thin gray solid lines depict the bare state (diabatic) energies. In
particular, the gray solid-dotted curve depicts the phase-step chirped
energy of state |1〉, which is the initially populated bare state. The
Rabi frequency is depicted as the gray shaded background. Vertical
arrows in the middle frame exemplify the energy separation of the
dressed states during the most intense part of the pulse. This splitting
is generally mapped into the photoelectron spectrum since most of
the photoelectrons are released during this time window.

evolution then proceeds through this state, which in turn
determines the kinetic energy of the detected photoelectrons.
We have three distinct cases.

(1) ω2 < ω3 < ωs . The energy of state |1〉 is initially
above the energies of states |2〉 and |3〉 (Fig. 5, top frame,
ωs = 2.462 fs−1). Consequently, the evolution proceeds via
the highest dressed state and the resulting PE’s have the
highest kinetic energy, as seen in Fig. 4 for ωs ≈ 2.462 fs−1.
This observation is supported by the calculated dressed-state
populations shown in the top frame of Fig. 6, which indicate
very efficient population of the upper dressed state throughout
the most intense part of the pulse. In fact, some population
escapes to the lower dressed state because the avoided crossing
around t = −38 fs in Fig. 5 (marked by the vertical dashed
line) is relatively narrow since the intensity is just beginning
to increase and the evolution is not sufficiently adiabatic yet.
Because the fine-structure splitting of the atomic bare states
4p1/2 and 4p3/2 is much smaller than both the peak Rabi
frequency and the phase-step-induced shift �(t) (cf. Fig. 5),
these two states are nearly at two-photon resonance [15]
(i.e., 4p1/2 ↔ 4s1/2 ↔ 4p3/2). As a consequence—and also
depicted in the plot of the time evolution of the bare state
populations shown in the inset to the upper panel of Fig. 6—the
atom evolves like a three-state system consisting of a ground
state coupled to two degenerate excited states. Because such
a system is equivalent to an effective two-state system [44]
the intermediate dressed state is (almost) dark (i.e., decoupled
from the other dressed states) implying that it is excluded
from the population redistribution. Therefore the population
that escapes from the initially populated upper dressed state
flows into the lowest dressed state, bypassing the intermediate
(nearly dark) dressed state as evident from Fig. 6, top frame.
In the experimental results, Fig. 4, the population of the lower
dressed state is indicated by the low-energy PE signal for step
frequencies ωs > 2.465 fs−1.

(2) ω2 < ωs < ω3. The energy of state |1〉 is initially
between the energies of states |2〉 and |3〉 (Fig. 5, middle frame,
ωs = 2.452 fs−1). In this case the evolution proceeds via the
intermediate dressed state and the PE’s have a medium kinetic
energy, as seen very distinctively in Fig. 4 for ωs ≈ 2.452 fs−1.
As we pointed out above, the intermediate dressed state is
almost dark and hence it is nearly decoupled from the other
two dressed states. Consequently, only marginal population
escapes to the other dressed states, which is evident from
the calculated dressed-state populations (see Fig. 6, middle
frame) and, in particular, from the absence of low-energy and
high-energy PE’s in the PE spectrum Fig. 4(b). Moreover,
the avoided crossing at t = −38 fs is now wider (due to the
temporal broadening of the pulse), and does not influence
significantly the population distribution. These PE spectra
are particularly remarkable because they show a single peak
while the potassium atoms are excited (almost) resonantly
with an intense femtosecond laser pulse capable of producing
an Autler-Townes splitting of about 250 meV.

(3) ωs < ω2 < ω3. The energy of state |1〉 is initially below
the energies of states |2〉 and |3〉 (Fig. 5, bottom frame,
ωs = 2.442 fs−1). The evolution proceeds via the lowest
dressed state and the PE’s have the lowest kinetic energy,
as seen in Fig. 4 for ωs ≈ 2.442 fs−1. The avoided crossing
at t = −45 fs is wider than for ωs = 2.462 fs−1 and hence,
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FIG. 6. (Color online) Dressed State (DS) populations for a step
amplitude of θ = π and three values of the phase-step position ωs =
2.442, 2.452, and 2.462 fs−1, corresponding to the scenarios displayed
in Fig. 5. The inset to the upper panel shows the time evolution of the
bare state populations.

the escaped population to the other dressed states is less.
As a result, the lower dressed state is selectively populated
throughout the pulse, as confirmed by the simulation shown in
the bottom frame of Fig. 6 and evident from the low-energy
PE’s observed in the experiment [cf. Fig. 4(a)].

The conclusion is that the position ωs of the π step can be
exploited as an efficient control parameter for the population
of a particular dressed state. We point out that the sharp
edges in the PE spectrum in Fig. 4 indicate highly adiabatic
evolution: the value of the phase-step position ωs determines
unambiguously (except at the edges, i.e., resonances ωs = ω2

or ω3) which dressed state is populated initially, and since
the evolution is highly adiabatic, no significant population
escapes to the initially unpopulated dressed states (except for
some population in the case ωs = 2.462 fs−1). Another curious
observation from Fig. 4 is that the central PE peak, situated
at medium kinetic energies, is closer to the high-energy peak
than to the low-energy one. This feature is explained by looking
again at the dressed-state energies (black dashed-dotted, red
solid, and blue dashed curves) in Fig. 5: The intermediate

FIG. 7. (Color online) Experimental PE spectra for fixed step
positions of (a) ωs = 2.443 fs−1 and (b) ωs = 2.459 fs−1 and various
step amplitudes θ . These results show that once a certain energy
channel is selected via the phase-step frequency (at θ = π , cf. Fig. 4)
the target channel can be switched efficiently via the step amplitude,
reminiscent of a toggle switch.

dressed-state energy is closer to the upper dressed-state energy
than to the lower one, as indicated by the vertical arrows in the
middle frame of Fig. 5. This observation demonstrates again
that the PE spectra map the energies and populations of the
dressed states rather than those of the bare states [18].

C. Variable phase-step amplitude

Figure 7 shows the experimental PE spectra for varying
phase-step amplitude θ at two different step positions: one
for ωs = 2.443 fs−1 [ωs < ω2 < ω3, Fig. 7(a)] and another
for ωs = 2.459 fs−1 [ω2 < ω3 < ωs , Fig. 7(b)]. This figure
demonstrates that the amplitude of the phase step can be used
as a control parameter as well, similarly to the position of the
phase-step discussed previously.

The observed features in the PE spectrum are explained
by examining the dressed-state energies. Figure 8 presents
the dressed-state picture for a fixed position of the phase
step, ωs = 2.443 fs−1, and for three values of the phase-step
amplitude: (i) θ = 3π/4, (ii) θ = π/6, and (iii) θ = −π/2,
which correspond to three distinct regions in Fig. 7(a). For this
value of ωs , as discussed in regard to Fig. 5, it is the lowest
dressed state that is populated for amplitude θ = π . For other
values of θ , the temporal symmetry of the dressed-state picture
of Fig. 5 is distorted, which leads to the emergence of avoided
crossings; the latter may alter the evolution path. In the upper
frame of Fig. 8 (for θ = 3π/4) an avoided crossing is identified
around t = −40 fs. This avoided crossing, however, is too
broad and hence it does not alter the course of the evolution
which proceeds via the lowest dressed state and results in
low-energy PE’s. In the middle frame of Fig. 8 (for θ = π/6),
the avoided crossing occurs again around t = −40 fs but turns
out to be narrower, so that some population escapes to the
upper dressed state; consequently, a double-peak structure
emerges in the PE spectrum. In the lowest frame of Fig. 8
(for θ = −π/2), there is no (pronounced) avoided crossing at

053422-7



WOLLENHAUPT, BAYER, VITANOV, AND BAUMERT PHYSICAL REVIEW A 81, 053422 (2010)

FIG. 8. (Color online) Time evolution of the dressed-state ener-
gies for a fixed position of the phase step ωs = 2.443 fs−1 and for
three values of the phase-step amplitude θ : 3π/4, π/6, and −π/2.
The black dashed-dotted, the red solid, and the blue dashed curves
show the dressed-state energies while the gray solid-dotted curve
depicts the phase-step chirped energy of the (bare) state |1〉. The Rabi
frequency is depicted as the gray shaded background. Arrows show
the respective evolution path in each case, and the vertical dashed
lines indicate the positions of the relevant induced avoided crossings.

early times but only one around t = +38 fs, which is of no
significance for the PE signal.

Figure 9 presents the dressed-state picture for a phase-step
at ωs = 2.459 fs−1, and for three values of the amplitude: (iv)
θ = π/2, (v) θ = −π/8 and (vi) θ = −π , which correspond
to three high-signal islands in Fig. 7(b). For this value of ωs , it
is the highest dressed state that is initially populated for θ = π

(Fig. 5), which gives rise to the high-energy PE peak. As
θ varies, avoided crossings emerge again in the dressed-state
picture and they may change the course of the evolution. In the
upper and lower frames of Fig. 9 the induced avoided crossings
around t = −36 fs and t = −38 fs, respectively, are too broad
and their presence is not of great significance because not much
population escapes to the other dressed states: the population
follows the highest dressed-state energy. In the middle frame
of Fig. 9 (for θ = −π/8), the avoided crossing occurs much
earlier, around t = −52 fs, when the pulse amplitude is too
weak to widen it. This crossing is therefore very narrow.
Consequently, the evolution is diabatic there (it follows the

FIG. 9. (Color online) Time evolution of the dressed-state ener-
gies for a fixed phase-step position of ωs = 2.459 fs−1 and for three
values of the step amplitude θ = π/2, −π/8, and −π . The notation
is the same as in Fig. 8.

solid-dotted curve) and most of the population escapes to the
lowest dressed state; as a result, a low-energy peak is created
in the PE spectrum around θ = −π/8.

V. CONCLUSION

In this contribution we studied coherent control of elec-
tronic excitation on a model system both experimentally
and theoretically. Control was exerted by a complex shaped
femtosecond laser pulse generated by a generalized spectral
step-phase modulation function. In the experiment we studied
PE spectra from a 1 + 2 REMPI of potassium atoms, which
served as a tool to map the dressed-state energy and population
dynamics during the interaction. In addition to the common
Autler-Townes doublet, a third dressed state was observed
in the PE spectra. By using the suitable choice of both
control parameters (i.e., the spectral phase-step amplitude θ

and position ωs) we were able to switch among three distinct
PE spectra each mapping selective population of one out of
three dressed states. Our observations demonstrated the ability
to switch the population among each of the three dressed states
with high selectivity. Therefore, our experiments present a
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generalization of earlier work toward SPODS in multilevel
systems.

In the theoretical part, we presented a detailed analysis of
the properties of the generalized spectral phase-step modula-
tion relevant to understand the physical control mechanism
in the time domain. Our study of the atomic excitation in
terms of adiabatic dressed states revealed that the course
of the evolution of the system, and hence the resulting PE
signal, can be explained and predicted by analyzing the time
evolution of multiple dressed-state energies. For adiabatic
evolution conditions, as in the present experiment, the course
of the evolution is established by identifying the induced
avoided energy level crossings: a wide avoided crossing

brings no transitions between the dressed states, whereas a
narrow avoided crossing makes the system evolve diabati-
cally and the population switches from one dressed state to
another.
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