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A hitherto not considered physical mechanism of quantum control with
intense shaped femtosecond laser pulses is investigated. Phase modulated pulses
are used to exert control on the strong-field ionization of potassium atoms. We use
a sinusoidal phase modulation function to manipulate the intensity of the Autler–
Townes (AT) components in the photoelectron spectrum. The effect of all sine
parameters is studied systematically. In addition, controllability is investigated
using parameterized pulse shapes to generate a two-dimensional quantum control
landscape. Our results show that the selective population of dressed states is the
underlying strong-field physical mechanism. Due to its robustness with respect to
the laser parameters, the selective dressed state population is an important general
control mechanism.

1. Introduction

Quantum control opens new perspectives in many fields of physics with applications
ranging from laser science, quantum optics, atomic and molecular physics,
solid state physics, photochemistry to biophysics or quantum computing due to
the ability to manipulate quantum systems in a predefined way using shaped laser
pulses. Various quantum control schemes have been proposed and experimentally
demonstrated, which are reviewed in [1–5], examples of which are the Brumer–
Shapiro scheme [6] and the Tannor–Kosloff–Rice scheme [7]. Despite their general-
ity, most of these schemes are operative in the weak-field regime. An alternative
approach based on adaptive pulse manipulation was suggested by Judson
and Rabitz [8]. The use of pulse-shaping techniques [9] together with closed loop
adaptive feedback learning algorithms enabled laboratory implementations of this
idea to optimize a huge variety of physical observables [10–15]. However, in many
cases it was found intricate to deduce the underlying physical mechanism from the
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electrical fields obtained by this procedure. Therefore, the emphasis of this
contribution is on the analysis of the underlying physical mechanisms in particular
when intense laser fields are employed. Here, we investigate quantum control on
potassium atoms, excited by intense phase modulated laser pulses. Atoms serve as a
model system and can be viewed as an approximation to more complex situations.
In our experiments, the K 4p 4s transition is coherently excited with phase
modulated femtosecond laser pulses and subsequently ionized with the same pulse
in a two-photon process (cf. figure 1). The resulting photoelectrons are detected
with energy resolution to probe the dressed state population via the intensity of the
Autler–Townes components. We use sinusoidal phase modulation functions
in frequency domain since the corresponding pulses in time domain provide pulse
sequences with well defined relative phases. The importance of the relative phase
in experiments using optical pulse sequences was demonstrated in the mid-1980s
using cw radiation [16–18]. Nowadays, sinusoidal phase modulation is a standard
tool in quantum control experiments [19–21] and serves as a prototype for
more complex phase functions.

2. Excitation and ionization scheme

In this section we present the excitation/ionization scheme of potassium atoms
used in our experiment. Figure 1 shows the excitation scheme of our experiment.
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Figure 1. Energy level diagram for excitation of K atoms. Shaped laser pulses with the
envelope jEoutðtÞj and a carrier frequency !0, slightly detuned from the resonance frequency,
create a coherent superposition of the 4s and the upper 4p states. Photoelectrons with a
kinetic energy Ekin¼ �hh!e from simultaneous two-photon ionization are measured.
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The same shaped pulse is used to drive the neutral dynamics and also ionize the
excited state potassium atoms. Our experiments are modelled theoretically by solving

the time dependent Schrödinger equation for the light induced neutral atomic
dynamics in order to consider strong-field effects using the short time propagator
method as also applied in [21]. Photoionization is treated using perturbation theory
since the neutral-to-ionic transitions are usually much weaker than resonant
atomic transitions. The amplitudes cð!eÞ for photoelectrons with a kinetic energy
of �hh!e from the ionization of the 4p excited state read [22, 23]

cð!eÞ ¼

ð1
�1

cbðtÞE
2ðtÞeið!eþ!IP�!4pÞt dt, ð1Þ

where cb(t) describes the time dependent excited state amplitude. From equation (1)
it is seen that the amplitudes cð!eÞ are the Fourier transform of the excited state

amplitude cb(t) windowed by the square of the electrical field E2ðtÞ. In that sense
cb(t) maps the transient population of the 4p state and the quantum mechanical
phase information of the excited state amplitudes leaves a fingerprint in the
photoelectron spectrum. In order to model the experimental results (section 4) we
consider both the s1=2! p1=2 and s1=2 ! p3=2 transitions for linear polarized laser
light. The unmodulated field EinðtÞ envelope is obtained from the measured spectrum

allowing for a residual, uncompensated linear chirp. The field EinðtÞ is phase
modulated in frequency domain to calculate EoutðtÞ.

2.1 Sinusoidal phase modulation

In order to discuss the physical mechanism of quantum control using sinusoidal
spectral phase modulation, some time domain properties of the modulated pulses
are briefly summarized. We start with the unmodulated electrical field EinðtÞ

envelope. The phase modulation function in frequency domain reads

’ð!Þ ¼ eiA sin ð!�!refÞ�Tþ�½ �, ð2Þ

where A describes the amplitude of the phase modulation function, T the frequency
of the sinusoidal oscillation, !ref the origin of the sine function on the phase
mask and � an absolute phase offset. The modulated electrical field envelope

EoutðtÞ in time domain reads [21]

EoutðtÞ ¼
X1

n¼�1

JnðAÞ Einðtþ nTÞ einð�!Tþ�Þ, ð3Þ

where Jn describes the Bessel function of the first kind and order n, and
�! ¼ !0 � !ref describes the difference between the laser carrier frequency !0 and
the reference frequency of the phase modulation function !ref. Thus, sinusoidal
phase modulation in frequency domain creates a pulse sequence in time domain

(cf. figure 1) with well defined relative phases.
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3. Experimental

The experiments were carried out in a high-vacuum chamber where a beam of atomic
potassium K (4s) intersects perpendicularly with the femtosecond laser pulses
leading to photoionization. The released photoelectrons are detected employing a
kinetic energy time-of-flight electron spectrometer with an energy resolution of
25meV at a kinetic energy of 1 eV. The 785 nm, 30 fs FWHM laser pulses are
provided by an amplified 1 kHz Ti:sapphire laser system and phase modulated using
a home-built liquid crystal pulse shaper [24]. The sinusoidally modulated pulses
with a typical energy of 0.25 mJ are focused with a 30 cm lens into the interaction
region.

4. Results

In this section we present the photoelectron spectra obtained by variation of the time
separation of the subpulses T, the absolute phase of the sine function � and the
modulation amplitude A (cf. figure 2). The reference frequency !ref corresponds to a
wavelength of 785 nm.

4.1 Variation of the time T

Figure 2 (Time) shows a false colour representation of the measured (a) and
simulated (b) photoelectron spectra where the parameter T is varied from 0 to
405 fs in steps of �T¼ 5 fs. For each value of T a time-of-flight spectrum was
measured. The splitting of the two peaks in the photoelectron spectrum at around
0.35 eV (slow photoelectrons) and 0.48 eV (fast photoelectrons) of about 130meV

−0.5

0.0

0.5

Kinetic Energy [eV]

0.3 0.41000 900 800

Time-of-Flight [ns]

(a) (b)

0.5

Kinetic Energy [eV]

no
rm

al
iz

ed
Ph

ot
oe

le
ct

ro
ns

(c)
1 A=0.4

0
0.3 0.4 0.5

A=−0.4

0.3 0.4 0.5

Am
pl

itu
de

 A

A=−0.4

A=0.4

Kinetic Energy [eV]

0.3 0.41000 900 800

Time-of-Flight [ns]

(a) (b)

0.5

Kinetic Energy [eV]

no
rm

al
iz

ed
Ph

ot
oe

le
ct

ro
ns

(c)

0

2

4

6

8

10

12

Ph
as

e 
φ 

[ra
d]

0.5
φ = 7 rad

0
0.3 0.4 0.5

φ = 5 rad

0.3 0.4 0.5

7rad

5rad

Kinetic Energy [eV]

185fs

135fs

0.3 0.41000 900 800
0

100

200

300

400

Time-of-Flight [ns]

Ti
m

e 
T 

[fs
]

(a) (b)

0.5

Kinetic Energy [eV]

no
rm

al
iz

ed
Ph

ot
oe

le
ct

ro
ns

(c)
0.5 T=185 fs

0
0.3 0.4 0.5

T=135 fs

0.3 0.4 0.5

ωe

slow
0.35eV

fast
0.48eV

Time Phase Amplitude

Figure 2. Photoelectron spectra for the variation of the time separation of the subpulses T
(time), the absolute phase of the sine function � (phase) and the modulation amplitude A
(amplitude). In each panel (a) shows the measured photoelectron spectra and (b) the
simulations. The lower panels (c) and (d ) show sections through the measured (dotted lines)
and calculated (bold lines) photoelectron distributions.
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is due to the AT effect [25] that maps the corresponding dressed state population.
The intensities of both the slow and fast photoelectrons oscillate with variation of
T with a period of about 100 fs. The oscillation of the slow photoelectrons is shifted
by 50 fs with respect to the oscillation of the fast photoelectrons. It is seen from
the photoelectron distribution that by variation of T either dressed state can be
selectively populated. Sections through the photoelectron distribution along the
energy axis for T ¼ 135 fs and T ¼ 185 fs yield the photoelectron spectra shown in
figure 2(c). The comparison with the calculated photoelectron spectra shows
good agreement. The spectrum at T ¼ 135 fs demonstrates the selective population
of the upper dressed state.

4.2 Variation of the phase /

Figure 2 (Phase) shows the measured (a) and simulated (b) photoelectron spectra
upon variation of the absolute phase � of the sinusoidal modulation in the range
0–12.25 rad for fixed values of A¼ 0.17 and T¼ 55 fs. With variation of �, the
intensity distribution periodically changes the intensity of the slow and the
fast photoelectrons. Figure 2(c) shows sections along the kinetic energy axis at
� ¼ 7 rad and � ¼ 5 rad. At � ¼ 5 rad, fast photoelectrons are produced with more
efficiency which corresponds to the selective population of the upper dressed
state during the laser pulse. The period of the oscillatory dressed state population
upon variation of � is 2�. This property is not related to the atomic system but is
a consequence of the 2� periodicity of the phase mask.

4.3 Variation of the amplitude A

Figure 2 (Amplitude) shows the measured (a) and simulated (b) photoelectron
spectra upon variation of the parameter A within the range �0:8 to 0.8 for fixed
values of �¼ 1.7 rad and T¼ 55 fs. Sections through the photoelectron distributions
shown in figure 2(c) at A¼ 0.4 (left) and A ¼ �0:4 (right) are plotted to demonstrate
the agreement between the experimental results and the simulated photoelectron
spectra. For negative modulation amplitudes the upper dressed state is selectively
populated with high efficiency showing little modulation upon changes of the
amplitude. For positive values of A both dressed states are populated approximately
equally.

4.4 Quantum control landscape

So far, the photoelectron spectra were investigated as a function of a single
parameter. The full picture of attainable control is obtained when all relevant
control parameters are varied and a quantitative fitness parameter for optimal
control is defined. In this spirit, Rabitz recently suggested [26] obtaining a deeper
insight into optimal control by exploring so-called quantum control landscapes,
i.e. by the analysis of the topology of the search space for the optimal pulse shape.
Generally, the high dimensionality of this space precludes its characterization in
realistic experiments. However, we reduce the parameter space by utilizing para-
meterized pulse shapes, e.g. the sine function, to approach such a quantum control
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landscape experimentally. Here we use the contrast of the integrated signal of the
slow photoelectrons (S) versus the respective signal of the fast photoelectrons (F) as
shown in figure 3 (left) as a fitness quantity. The parameters A and T of the sine
function are varied in the measurement. A three-dimensional representation of the
measured fitness function f ¼ ðF� SÞ=ðFþ SÞ is shown in figure 3 (right). Even for
the two-dimensional parameter space, the control landscape displays a complicated
structure. However, areas of selective population of dressed states – showing up
as the maxima ( f¼ 0.3) and minima ( f¼�0:5) in figure 3 (right) – can be identified.
In particular, at A¼ 1.5 and T¼ 175 fs a broad area of lower dressed state
population is found whereas two localized areas of upper dressed state populations
are observed (maxima in figure 3).

5. Discussion

In this section the atomic dynamics induced by sinusoidally phase modulated 30 fs
(FWHM) laser pulses using the modulation parameters T ¼ 100 fs, � ¼ �=2, A ¼ 0.3
and �! ¼ �=50 fs�1 is investigated. In order to depict the underlying physical
mechanisms we consider the resonant excitation of a two-level atom. In figure 4(a)
the time dependent Rabi frequency �(t) – which is proportional to the driving field
envelope EðtÞ – and the temporal phase �(t) are depicted. The envelope of the
modulated electrical field jEðtÞj consists of a sequence of five subpulses separated
by 100 fs. We first discuss the dynamics of the bare state population induced by each
subpulse as shown in figure 4(b). The first subpulse (n¼ 2) leaves the ground state
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Figure 3. Left: the AT-photoelectron spectrum is divided into the slow (S ) and fast (F )
photoelectrons to map the topology of the parameterized control space spanned by the
amplitude A and the delay time T for a fixed absolute phase of �¼ 1.6. Right: three-
dimensional representation of the measured fitness function f ¼ ðF� SÞ=ðFþ SÞ.
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population unchanged. The second subpulse (n¼ 1) has a pulse area of �=2, leaving
the system in a coherent superposition of both states with a population of
jcaj

2 ¼ jcbj
2 ¼ 0:5. The third subpulse (n¼ 0) has the highest intensity but leaves

the population unchanged (cf. figure 4b at t � 0). It was demonstrated in [27] that
for certain relative phases of two pulses within a sequence, even resonant intense
femtosecond pulses do not affect the population of an atom prepared in a super-
position state, but rather control the quantum mechanical phase of both states.
The fourth subpulse (n ¼ �1) is in phase with the second subpulse (n¼ 1) and
therefore continues the time evolution induced by the second subpulse. Next, we use
the dressed state picture [17, 28, 29] to analyse the light induced dynamics (figure 4d )
since the measured photoelectron spectra reveal the population of the dressed
states. During the first subpulse, both dressed states are equally populated
jd1j

2 ¼ jd2j
2 ¼ 0:5. Since the first subpulse creates a superposition state, the second
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Figure 4. Simulation for resonant strong-field excitation using a sinusoidal phase
modulated 30 fs FWHM Gaussian laser pulse. The modulation parameters are A¼ 0.3,
T¼ 100 fs, � ¼ �=2 rad and �! ¼ �=50 fs�1. (a) Envelope of the electrical field jEðtÞj in units
of the AT splitting �hhj�ðtÞj ¼ j�EðtÞj (bold, left scale) and temporal phase �(t) of the electric
field (dashed, right scale). The subpulses are indicated with labels from n ¼ 2 to �2. (b) Time
evolution of the bare state population (ground state jcaj

2 dashed, and excited state jcbj
2 bold).

(c) Simulated photoelectron spectrum: the dashed line indicates the kinetic energy of
weak-field photoionization �hh!e and the bar shows the AT splitting at the most intense
subpulse (n¼ 0, compare value of �hhj�ðtÞj in (a) at t¼ 0). (d) Population of the dressed states
(lower state jd1j

2 dashed, and upper state jd2j
2 bold).
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subpulse permits us to exert control on the population of the dressed states.
This subpulse prepares the system in a state with jcaj

2 ¼ jcbj
2 ¼ 0:5. Due to the

phase jump of ��=2 at �50 fs, selective population of the lower dressed state is
achieved during the third subpulse. Because this subpulse has the highest intensity,
two-photon ionization is most probable. As a consequence, the photoelectron
spectrum maps the lower dressed state as seen in figure 4(c). By variation of
the relative phases – for instance due to the choice of other parameters of
the modulation function – the upper dressed state is selectively populated.

6. Conclusions

We investigated the physical mechanism of strong-field quantum control on an
atomic model system for sinusoidal phase modulated femtosecond laser pulses.
Sinusoidal phase modulation serves as a prototype for more complex pulse shapes.
In order to study how quantum control is exerted with sinusoidal modulation, the
sine parameters delay (T), phase (�) and amplitude (A) were systematically varied.
Efficient control of the AT components was achieved in each scan. Since the
measured AT spectrum maps the dressed state population, the results show our
ability to control the population of individual dressed states at will. The analysis of
the measurements revealed that the precise control of the relative temporal phase
of the pulses enabled the selectivity. For the first time the topology of a quantum
control landscape was obtained by employing parameterized pulse shapes to reduce
the dimensionality of the optimization problem. The observed control mechanism
showed remarkable robustness with respect to the experimental implementation.
Selective dressed state population is observed in the presence of serious deviations
from the idealized physical picture such as off-resonant excitation, chirps or real
(non-Gaussian) laser spectra (not discussed in this contribution). The robustness
found experimentally is supported by simulations which indicate that the same
mechanism is still operative when more than two atomic levels are considered.
Therefore, we believe that the selective population of dressed states is a general
principle in strong-field quantum control which is also applicable in larger systems.
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