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Phase effects in a quantum control experiment on the two-photon transition 4s ← ← 3s of atomic sodium
are studied. In our experiment, we combine the generation of phase-locked interferometrically generated pulses
with pulse-shaping techniques to study in detail the interplay of optical and quantum-mechanical phases.
Subtle differences in the physical realization of the pulse sequences produce large difference in the control
objective—the 4s population. The control mechanisms of more complex pulse sequences generated by periodic
and discontinuous phase-modulation functions are investigated systematically and analyzed on the basis of
quantum-mechanical interference.
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The availability of ultrashort laser pulses and the ability to
manipulate them have sped up the field of observation and
control of atomic and molecular dynamics, with prospects
for applications in physics, biology, chemistry, and engineer-
ing [1–4].

As one observation and control instrument, interfero-
metrically generated pairs of femtosecond pulse sequences
have been established. Pulse sequences which are, for in-
stance, used in multidimensional spectroscopy approaches
are especially suitable to study temporal phase effects in
quantum-mechanical systems since the first pulse excites the
system and defines the initial temporal phase while the sec-
ond pulse(and eventually further pulses) interacts with the
system, delivering relative temporal phases with interfero-
metric accuracy[5–12]. In addition, pulse-shaping tech-
niques[13–15] further expanded the range of applications of
femtosecond laser pulses as an efficient tool for quantum
control [16–23].

Here, we combine both techniques—the interferometric
generation of femtosecond laser pulses and pulse-shaping
technology—to study the role of the optical and quantum-
mechanical phases on a two-photon transition on sodium at-
oms. The insights obtained from pure phase-control experi-
ments using phase-locked pulse sequences are transferred to
the analysis of our pulse-shaping results. This approach per-
mits us to decompose a complex excitation scheme into more
elementary steps that highlight the underlying physical
mechanisms. The use of femtosecond laser pulses to control
a nonresonant two-photon transition has been reported for
interferometrically delayed pulses[6] and pulse shaping
[24,25]. Moreover, adaptive closed-loop optimization of a
two-photon transition has been investigated[26]. The control
of a resonant two-photon transition has been studied in[27].
In addition to phase shaping, polarization shaping[28] has
been implemented to control an atomic two-photon transition
[29] and the multiphoton ionization of molecules[30]. Re-
cently, pulse-shaping techniques were used to control multi-
photon transitions of dyes in microscopy[31]. In our contri-

bution, we analyze the quantum control of a two-photon
transition with two pulses, one of which is phase modulated
in addition. In particular, we demonstrate that the effect of a
single phase-modulated pulse can be efficiently controlled by
a suitably timed prepulse.

Due to the low laser intensity used in our experiments5
3109 W/cm2d, a weak field treatment of our experiment is
sufficient. Because there are no intermediate resonant states,
the interaction of our femtosecond laser pulses with the so-
dium atoms can be described by the simplified excitation
scheme depicted in Fig. 1. The femtosecond laser pulse ex-
cites the 4s state from the 3s ground state by a two-photon
transition. The 4s state population decays to the 3p state,
which emits the sodium D-lines589 nmd. The sodium D-line
fluorescence serves as the observable. The control objective
is the 4s population after the interaction with the femtosec-
ond laser radiation and is assumed proportional to the so-
dium D-line fluorescence. We note that the observation of
strong field effects using this excitation scheme might be
obscured by averaging over spatial regions of different inten-
sities. For example, in[32,33] it was demonstrated that the
effect of spatial averaging can be circumvented by multipho-
ton detection schemes as only regions of higher intensities
are sampled.

Our contribution is structured as follows. In Sec. I, the
experimental setup is shown. In Sec. II, the theory is dis-
cussed. In Sec. III, our experimental results are presented.
The contribution concludes with a summary in Sec. IV.

*Electronic address: baumert@physik.uni-kassel.de

FIG. 1. Simplified excitation scheme of the sodium atoms. The
two-photon excitation from the 3s ground state to the 4s state is
two-photon resonant at 777 nm. Subsequent fluorescence from the
4s to the 3p and the 3p to the 3s states is depicted.
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I. EXPERIMENTAL SETUP

A scheme of our experimental setup is shown in Fig. 2.
The ultrashort laser pulses of about 30 fs full width at half
maximum duration at 788 nm, 1 kHz repetition rate, and
1 mJ maximum energy per pulse were provided by a multi-
pass titanium-sapphire amplifier. The incoming laser beam
was directed into a Mach-Zehnder interferometer in order to
generate a pair of pulses. The length of one arm was adjust-
able using a computer-controlled high-resolution delay line,
whereas the beam in the other arm passed through our pulse
shaper[34]. Thus, the delayt between both arms and the
spectral phasewsvd of the pulse passing through the pulse
shaper were adjustable. Interferometric stability conditions
were assured. After recombination, the unfocused laser beam
with roughly 5mJ pulse energy and 2 mm diameter(corre-
sponding to 53109 W/cm2) was sent into a home-made
low-pressure cell containing sodium vapor and argon at 5
310−2 mbar as a buffer gas. The working temperature was
350°C, provided by direct electrical heating. The fluores-
cence radiation was collected through a window in a direc-
tion perpendicular to the laser beam propagation and de-
tected by a photomultiplier tube. Using interference filters,
only the sodium D-line emission was selected. After boxcar
integration, the fluorescence signal was recorded as a func-
tion of the delay and the parameters of the spectral phase
modulation. Besides the fluorescence signal, the intensity as
well as the spectral amplitudes and phases were monitored
using a power meter, spectral interference[35], and
frequency-resolved optical gating[36].

II. THEORETICAL DESCRIPTION

The femtosecond laser pulses are described by their real
temporal electric fields,

Estd = Estd cosfv0 t + xstdg, s1d

consisting of the temporal pulse envelopeEstd and the tem-
poral optical phase with the central laser frequencyv0 and
the relative temporal optical phasexstd. The relative optical
phase in a two-pulse experiment is illustrated in Fig. 3. The
delay t between the pulses determines the temporal separa-
tion between the envelopes of the pulses. The influence of

the relative temporal optical phase can be seen by compari-
son of the electric field of each of the pulses with the carrier
oscillation shown in Fig. 3(b). It shifts the oscillations of the
electric field relative to the envelope and the carrier.

The spectral electric field is given by the Fourier trans-
form of the temporal electric field,

Ẽsvd =E
−`

`

Estde−ivt dt. s2d

A spectral phase modulation of an initial electric fieldẼinsvd
results in the outgoing modulated electric field,

Ẽoutsvd = Ẽinsvd exp fi wsvdg s3d

with the spectral optical phasewsvd of the modulation. For
convenience, spectral phase modulations are always given
for positive frequencies only, although the complete spectral
phase modulation has to fulfillws−vd=−wsvd. The resulting
temporal electric fieldEoutstd is given by the inverse Fourier

transform ofẼoutsvd.
In our experiments, we applied different phase functions

wsvd and analyzed their influence on the final 4s state popu-
lation. The time-dependent 4s state amplitude is given by

c4sstd = uc4sstduexpfi j4sstdg, s4d

whereuc4sstdu2 is the time-dependent 4s state population and
j4sstd is the time-dependent 4s state quantum-mechanical
phase. The finalst→`d 4s state population is denoteduc4s

` u2

and the phasej4s
` . In the following, we use the interaction

picture in order to eliminate the time dependence
exps−iv4s←3std of the amplitudes when the laser is turned
off. Here,v4s←3s<4.85 rad/ fs is the transition frequency be-
tween the 3s and the 4s state.

We applied two different theoretical methods to describe
the interaction of the femtosecond laser radiation with the
sodium atoms in our experiments. The more general one is to
solve the time-dependent Schrödinger equation numerically,
while the more specific is second-order time-dependent per-
turbation theory, which is restricted to the weak-field regime.
The direct numerical solution of the time-dependent
Schrödinger equation was performed to assure the validity of
perturbation theory. In both cases, the sodium D-line fluores-
cence is assumed proportional to the final population of the
4s state after the interaction with the femtosecond laser. The

FIG. 2. Schematic experimental setup. The ultrashort laser
pulses from a titanium-sapphire amplifier(fs amp) are sent into a
Mach-Zehnder-interferometer with a delay line in one arm and a
pulse shaper with aCRI Inc. 128-pixel liquid crystal spatial light
modulator in the other arm. The recombined beam is directed into
the sodium vapor cellsNad.

FIG. 3. Illustration of the relative temporal optical phase in a
two-pulse experiment with(a) the real temporal electric fieldEstd
and its envelope and(b) the carrier oscillation. The two pulses are
separated in time byt. x1 andx2 denote the constant relative tem-
poral optical phases of the pulses.
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final 4s population is investigated as a function of the control
parameters, i.e., the delay and certain parameters of the spec-
tral phase. In the weak-field regime, both methods agree and
reproduce the experimental data.

To solve the time-dependent Schrödinger equation nu-
merically, we employed the short-time-propagator method
adapted for atoms from[37]. This means that the temporal
amplitudescst+Dtd of the sodium atom’s states at a timet
+Dt are calculated by applying the short-time propagator
expf−si /"d Hstd Dtg with the step sizeDt [typically 0.1 fs, in
which Hstd is assumed constant] to the temporal amplitudes
cstd at the timet,

cst + Dtd = expF−
i

"
Hstd DtGcstd. s5d

The propagation amounts to the application of an exponen-
tial operator to the state vector. The HamiltonianHstd con-
sists of the unperturbed atomic HamiltonianH0 and the time-
dependent interaction with the radiation fieldVstd. The latter
is described using the dipole approximationVstd=−mEstd,
wherem describes the dipole moment operator andEstd is
the real temporal electric field. In the next section, we use the
short-time-propagator method to simulate the time-
dependent population of the 4s stateuc4sstdu2 during the laser
field interaction. In our simulations, all states from the
ground state up to the principal quantum number 7 have been
included using level data and transition probabilities from
the NIST Atomic Spectra Database.

Within the weak-field regime, the two-photon transition
from an initial stateuil to a final stateufl can be described by
second order time-dependent perturbation theory[38]. If the
intermediate states are sufficiently far from resonance, the
final amplitudecf

` can be approximated by[6,24,25]

cf
` ~ SfE2stdgsv f id =E

−`

`

E2stdexpfi v f i tgdt s6d

with the transition frequencyv f i—in our casev f i =v4s←3s.
This means that the final populationuc4s

` u2 is proportional to
the spectral components of the second harmonic at the tran-
sition frequencyuSfE2stdgsv f idu2.

For the interpretation of spectral modulations, Eq.(6) can
be rewritten as[24]

ucf
`u2 ~ UE

−`

`

ẼSv f i

2
+ VDẼSv f i

2
− VD

3expFiHwSv f i

2
+ VD + wSv f i

2
− VDJGdVU2

,

s7d

where the spectral electric field isẼsvd= Ẽsvdexpfi wsvdg
with the spectral amplitudeẼsvd and the spectral phase
wsvd. It is shown in[25] that, as a consequence of Eq.(7),
for all spectral phase functionswsvd which are antisymmet-
ric aroundv f i /2, the overall phase vanishes, leading to maxi-
mum population. In the next section, second-order time-
dependent perturbation theory and the numerical solution of

the time-dependent Schrödinger equation are used to inter-
pret the experimental results.

III. EXPERIMENTAL RESULTS

In the first set of experiments, the delay of the interfero-
metric pulse pair is varied while no spectral phase modula-
tion is applied(see Sec. III A). Alternatively, a time delay
between two pulses can also be realized applying a linear
spectral phase(linear group delay modulation) [39]. There-
fore, in the second set of experiments, the interferometric
delay is set to zero and the Na D-line fluorescence is inves-
tigated as a function of the group delay(see Sec. III B). The
differences between temporal delay and spectral group delay
modulation are presented and analyzed. On the basis of this
analysis, we show how the effect of a delay line is imple-
mented with phase-modulation techniques. The results ob-
tained in the time delay versus the group delay experiments
indicate the importance of the relative temporal optical phase
between the two pulses. To bring out this effect with greatest
clarity, absolute spectral phase-modulation scans are per-
formed at different interferometric delays in the third set of
experiments(see Sec. III C). Delay, group delay modulation,
and absolute phase modulation form the basis for the under-
standing of more complex spectral phase modulations. In the
last set of experiments, we study periodic sinusoidal and dis-
continuous p-jump spectral phase modulations with two
pulses and discuss the observations in light of the previous
results(see Secs. III D and III E).

A. Interferometric delay

Without spectral phase modulation, the combined electric
field is the sum of two identical pulsesEstd+Est−td sepa-
rated by the delayt which is set by the delay line. Inserting
this into Eq.(6) results in

ucf
`stdu2 ~ uSqmstd + Soptstdu2 s8d

with

Sqmstd = s1 + expfi v f i tgdSfE2stdgsv f id s9d

and

Soptstd = 2 SfEstdEst − tdgsv f id

= 2E
−`

`

EstdEst − tdexpfi v f i tgdt, s10d

where Sqmstd and Soptstd denote the quantum-mechanical
and the optical contribution. The optical contribution van-
ishes if the pulses do not overlap in time.

For different ranges of the delay, different types of inter-
ferences are observed in the experiment. In Fig. 4(a), delays
aroundt=0 are presented. Here, optical interferences with a
period of 2.6 fs corresponding to half of the transition fre-
quency are observed. Since both the pulses overlap in time,
they interfere optically, i.e., the shape of the electric fields
varies with t. The separate analysis of the optical and the
quantum-mechanical contribution gives further insights(Fig.
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5). The optical contribution has a slowly varying absolute
value vanishing for large delays and is oscillating with half
the transition frequency[see Figs. 5(a) and 5(b)]. The abso-
lute value of the quantum-mechanical contribution oscillates
with the transition frequency. Its phase is linear with a slope
equal to the transition frequency[see Fig. 5(c)]. In the case
of a population maximum,Sqmstd and Soptstd sum up con-
structively. As an example, the delay of 2.6 fs is marked in
Figs. 5(b) and 5(c) by small black circles. Here, both the
optical and the quantum-mechanical contribution have zero
phase. At the population minima seen in Fig. 4(a), Sqmstd
andSoptstd interfere destructively. Here, the optical and the
quantum-mechanical contribution have a phase difference of
p. This can be seen, for example, at the delay of 1.3 fs,
which is also indicated by small black circles in Figs. 5(b)
and 5(c).

With increasing delay, the overlap of both pulses de-
creases and, thus,Soptstd decays to zero[Fig. 5(a)] and the
additional maxima ofSqmstd appear in the combined signal.
This is why the quantum interferences[6] of Sqmstd with a
period of t4s−3s<1.3 fs corresponding to the transition fre-
quency are more pronounced for increasing delays[see ad-
ditional maxima in Fig. 4(b)]. At large delays, when both
pulses are completely separated in time, there are no optical
interferences, i.e., the optical partSoptstd is zero. Only quan-
tum interferences are observed. The population is therefore
given by uSqmstdu2 [see Fig. 4(c)].

To elucidate the physical mechanism, the time-dependent
population of the 4s state is investigated using the short-
time-propagator method[see Eq.(5)]. In Figs. 4(d)–4(f), the
time-dependent 4s population and corresponding temporal
pulse envelopes and their relative optical phases are plotted

FIG. 4. Interferometric delay: The upper row shows the sodium D-line fluorescence signal(~4s population) as a function of the delay:
close to the optical overlap(a), for intermediate(b), and large delays(c). The signal is normalized so that a single bandwidth limited pulse
generates a unity signal. Solid lines are calculated using Eq.(6) while the dashed lines with the dots present measured data. In the lower row,
time-dependent 4s populations calculated with Eq.(5) for different delays are shown. The chosen delays are indicated by the arrows in
(a)–(c). For each range of the delay[(d)–(f)], examples of destructive(upper part) and constructive interference(lower part) have been
calculated. Besides the 4s populations(solid black lines with values at the left side of each graph), the corresponding temporal pulse
envelopesEstd (solid gray lines with gray values at the right side of each graph, outgoing ticks) and their relative temporal phasesxstd
(dashed lines with values at the right side of each graph, ingoing ticks) are depicted. For the electric fields, Gaussian pulses of 30 fs full
width at half maximum duration at a central wavelength of 788 nm are used.
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for different delays. Figure 4(d) refers to the optical regime
with small delays. Both pulses interfere optically due to their
temporal overlap so that the final 4s state oscillates between
maximum and zero at a period of 1.3 fs. Quantum interfer-
ences give rise to different population dynamics depicted in
Figs. 4(e) and 4(f). Since both pulses still overlap at a delay
around 50 fs, the combined action of optical and quantum
interferences is observed. The upper part of Fig. 4(e) shows
that the 4s state is populated by the first pulse and depopu-
lated by the second pulse att=60.3 fs. The lower part at a
delay of 60.9 fs corresponds to constructive quantum inter-
ference. Purely quantum interferences at large delays are
shown in Fig. 4(f). The first pulse populates the 4s state
without optically interfering with the second pulse. Depend-
ing on its relative optical phase, the second pulse further
populates or depopulates the 4s state. Note that the optical
phases are not −p /2 and −p in Fig. 4(f) since the laser
frequency and the transition are nonresonant.

B. Group delay modulation

In contrast to Sec. III A, here we use a linear spectral
phase to shift the laser pulse in time. We consider a linear
group delay modulation

wsvd = TGDsv − vrefd s11d

with the group delay GD and the reference frequencyvref.
As known from femtosecond optics[40,41], a group delay
modulation shifts the envelope of the temporal electric field
by the group delay for all reference frequencies,

EGDstd = Est + TGDdcosfv0 t + TGD · sv0 − vrefdg. s12d

The experimental results show that the final 4s population
cannot be controlled by shifting the pulse envelope. In Fig.
6(a), the group delay is scanned with the reference frequency
taken at half the transition frequency, i.e.,vref<v4s←3s/2
<2.42 rad/ fs(corresponding to 777 nm). Almost no modu-
lation of the 4s state population is observed, although the
pulse envelope is shifted in time in a range of 100 fs simi-
larly to the interferometric delay, scan. In the case ofvref
=v4s←3s/2, the quantum-mechanical interferences are al-

ways constructive. In the frequency domain, this result is
interpreted in terms of the antisymmetry ofwsvd around
v4s←3s/2. Thus, the quantum-mechanical phase difference is
not changed by the group delay. In the next experiment,vref
was set to 2.35 rad/ fs(corresponding to 800 nm). Here, slow
modulations with a period of 2p / u2vref−v4s←3su <45 fs are
observed since the spectral phase aroundv4s←3s/2 and,
therefore, the quantum-mechanical phase change slightly
[see Fig. 6(c)]. The difference between the interferometric
delay and the group delay spectral modulation becomes
clearly apparent in the time-dependent pictures. In Fig. 4(e),
the two pulses have been separated by the delay line while
they have been separated by the spectral group delay modu-
lation in Figs. 6(b) and 6(d). In both cases, the temporal
separations between both pulses have been chosen equal to
60.3 fs and 60.9 fs, respectively. In the case of the interfero-
metric delay, the relative temporal phases of the electric field
vary significantly from 60.3 fs to 60.9 fs and, thus, the final
4s populations. However, for the group delay modulations,
these phases vary only slightly, resulting in nearly constant
final 4s populations. This means that the relative temporal
phase between the pulses controls the final 4s population.
These results highlight the differences between delays pro-
duced by a delay line and delays generated with spectral
phase-modulation techniques. In particular, we find that by
choosingvref=0, a delay line can be emulated by the pulse
shaper, resulting in the same types of interferences[cf. Figs.
6(e)–6(g) with Figs. 4(a)–4(c) and Eq.(12)].

C. Absolute phase modulation

To further elucidate the role of the relative temporal
phase, we performed absolute spectral phase scans at differ-
ent delays. In the absolute spectral phase-modulation experi-
ments, the spectral phase is constant for all frequencies,

wsvd = w0, s13d

and w0 is the control parameter. In the time domain, the
absolute spectral phase modulation corresponds to a shift of
the relative temporal optical phase byw0 while the pulse
remains at the position given by the delay,

FIG. 5. Interferometric delay: optical contributionSoptstd and quantum-mechanical contributionSqmstd for a Gaussian pulse
(30 fs full width at half maximum temporal duration at a central wavelength of 788 nm). In (a), uSoptstdu2 is depicted. In addition to the
square of the absolute value, the wrapped phases(gray lines with values at the right side of the graphs) are shown for the optical(b) and the
quantum-mechanical contribution(c), respectively. The small black circles indicate delays where the optical contribution and the quantum-
mechanical contribution interfere destructivelys1.3 fsd and constructivelys2.6 fsd, respectively.
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Eabsstd = Est − tdcosfv0 st − td + w0g. s14d

This means that exclusively the relative temporal phase dif-
ference between both pulses is varied by scanningw0 (cf.
Fig. 3). In Figs. 7(a), 7(b), and 7(d), scans of the absolute
phase at different positions of the delay line—small, inter-
mediate, and large delay—are presented. In the case of the
small delay when both pulses overlap in time, optical inter-
ferences are observed, while for intermediate and large de-
lays the quantum interferences with the quantum-mechanical
phase difference ofDj4s

` =2w0 become the dominant type of
interference. This means that the temporal separation be-
tween both pulses determines the type of interferences while
the temporal phase difference between both pulses is the
control parameter for the final 4s population. The influence
of the temporal phase can be further seen in the time-
dependent populations in Fig. 7(c). Depending onw0, the
second pulse depopulates or further populates the 4s state.
The combination of a delay line with linear and absolute
spectral phase modulations provides the physical background

to analyze more complex phase-modulation functions, as dis-
cussed in the following.

D. Sinusoidal modulation

Sinusoidal spectral phase modulations of a single pulse
have proven to be effective in controlling multiphoton pro-
cesses[24]. Applications to larger molecules and two-photon
microscopy have been reported as well[18,31]. Moreover,
sinusoidal modulations were combined with an evolutionary
algorithm to control a different two-photon transition in so-
dium [26]. Sinusoidal spectral modulation is given by

wsvd = A sinfTsv − vrefd + fg s15d

with the amplitudeA, the time constantT, and the phasef of
the sine function. This spectral modulation results in a pulse
sequence in the time domain. Using the identity

FIG. 6. Spectral group delay modulations: Group delay scans and time-dependent 4s populations forvref=2.42 rad/ fs and 2.35 rad/ fs
are presented in(a)–(d). The arrows in(a) and(c) indicate the group delays used in the time-dependent 4s populations shown in(b) and(d):
NGD=60.3 fs and 60.9 fs.(e)–(g) show different ranges of the group delay forvref=0 so that a delay line is emulated.
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exphi A sinfTsv − vrefd + fgj

= o
n=−`

`

JnsAdexphinfTsv − vrefd + fgj, s16d

whereJnsAd is the Bessel function of the first kind and order
n, the modulated temporal electric field is given by

Esinstd = o
n=−`

`

JnsAd Est + nTdcoshv0 t + n fT sv0 − vrefd

+ fgj. s17d

Therefore,T is equal to the temporal separation between the
pre- and post-pulses and the amplitudeA determines how
much energy is transferred from the central pulse to the pre-
and post-pulses. Changing the phase of the sine functionf
alters the temporal relative optical phases of the subpulses
and, thus, determines whether the amplitude of the 4s state
interferes constructively or destructively during the pulse se-
quence. First, we obtain similar results to Ref.[24] for only
one phase-modulated pulse, i.e., the other arm of the inter-
ferometer is blocked. In Figs. 8(a) and 8(b), scans off for
wsvd=A sinf200 fs sv−v4s←3s/2d+fg with A=0.8 and A
=p are presented. The temporal separationT=200 fs was
chosen so that the subpulses do not overlap in time. There-
fore, no optical interferences between the subpulses are
present. For both sine amplitudes, the population has a maxi-
mum for f=0 becausewsvd is antisymmetric around
v4s←3s/2. In Fig. 8(c), time-dependent populations of the 4s

state are presented for a sine amplitudeA=p. Depending on
their relative temporal phases, the subpulses populate and
depopulate the 4s state as seen in the previous section for the
case of two pulses and absolute spectral phase modulation.
In Fig. 8(a) sA=0.8d, there is no completely destructive in-
terference because the energy of the central pulse is too high
and therefore the population created during the central pulse
cannot be eliminated by destructive interference due to the
pre- and postpulses.

After the systematic study of the influence of the param-
eter of the sinusoidal spectral phase modulation with one
pulse, the more complex two-pulse experiment with one
pulse sinusoidally modulated and the other pulse shifted in
time by the delay line is investigated. The delay line is set to
about 300 fs so that the pulse from the delay line comes
before the sinusoidally modulated pulse and does not tempo-
rally overlap with a subpulse from the pulse sequence gen-
erated by the sinusoidal modulation. In Figs. 8(d) and 8(e),
the experimental results of the Na D-line fluorescence as a
function of f at two slightly different delays are presented.
The results shown in Fig. 8(d) with t=300.6 fs are very
similar to the single-pulse experiment[cf. Fig. 8(a)], whereas
the signal modulation in Fig. 8(e) with t=300.1 fs is signifi-
cantly reduced. The change of the modulation for different
temporal delays is explained by further analysis of the
quantum-mechanical interferences using Eqs.(6) and(8), re-
spectively. If the unshaped pulseE1std and the shaped pulse
E2std do not overlap in time, the optical interference term
vanishes so that the final 4s population is given by

FIG. 7. Absolute spectral phase modulations: Scans of the absolute spectral phasew0 at the delayst=0 fs, 49.6 fs, and 200 fs between
the two pulses are shown in(a), (b), and (d). The arrows in(b) indicate the absolute phases used in the time-dependent 4s populations
presented in(c). Besides the 4s populations(solid black lines with values at the left side of each graph), the corresponding temporal pulse
envelopesEstd (solid gray lines with gray values at the right side of each graph, outgoing ticks) and their relative temporal phasesxstd
(dashed lines with values at the right side of each graph, ingoing ticks) are depicted in(c).
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uc4s
` u2 ~ uSfE1

2stdgsv f id + SfE2
2stdgsv f idu2

=uSfE1
2stdgsv f idu2 + uSfE2

2stdgsv f idu2

+ 2uSfE1
2stdgsv f idu uSfE2

2stdgsv f iducossDj4s
` d.

s18d

In Eq. (18) , uSfE1
2stdgu2 is constant,uSfE2

2stdgu2 depends
on the spectral phase modulation, while
2uSfE1

2stdgu uSfE2
2stdgu cossDj4s

` d describes the quantum-
mechanical interaction of both pulses by the quantum-
mechanical phase differenceDj4s

` =j4s,2
` −j4s,1

` wherej4s,1
` and

j4s,2
` are the quantum-mechanical phases resulting from the

nonmodulated and the modulated pulse, respectively. In Fig.
8(a), the quantum-mechanical phasej4s,2

` resulting from the
modulated pulse is plotted in addition to the population. For
the used sinusoidal modulation, it does not depend onf.
Therefore, the quantum-mechanical phase differenceDj4s

`

depends solely on the delay and is equal tov4s←3s t for all
f. As a consequence, depending on the delay, the shaped
pulse interferes quantum mechanically constructively or de-
structively with the delay line arm pulse for allf—resulting
in strong or weak modulation. This means that a suitable
timed initial pulse strongly influences the degree of control-
lability that can be achieved with the phase-modulated pulse.
Here, the sinusoidal phase modulation served as a first ex-
ample.

The analysis of the results obtained in the experiment on
an unmodulated pulse and a delayed sinusoidally spectral
phase-modulated pulse is generally applicable for other types

of spectral phase modulations as well. In the next section, we
investigate the combined action of an unmodulated pulse and
a p-jump spectral phase-modulated pulse as a second ex-
ample.

E. p-jump modulation

p-jump modulation means that the spectral phase is set to
zero for all frequencies smaller than a reference frequency
vp and to p for all frequencies larger thanvp. In a two-
photon transition experiment, such a modulation can gener-
ate dark pulses, i.e., pulses which result in the final popula-
tion being equal to zero[25]. First, we investigate the effect
of a singlep-jump modulated pulse similar to the experi-
ments of[25]. Then, we expand to the corresponding two-
pulse experiment. Here, we demonstrate how the effect of
single-pulse control can be inverted by another suitably
timed pulse.

The temporal electric field of ap-jump modulated pulse
has a “double half-pulse structure” depending onvp [see
Fig. 9(b)]. The results of the single-pulse experiment where
vp is scanned are plotted in Fig. 9(a). For vp=v4s←3s/2, the
population is maximum since the spectral phase modulation
is antisymmetric. At each side ofv4s←3s/2, a dark pulse can
be observed. The corresponding time-dependent populations
are shown in Fig. 9(b). The first half-pulse populates the 4s
state while the second half-pulse populates or depopulates
the 4s state.

The results of the two-pulse experiment are shown in
Figs. 9(c) and 9(d). In Fig. 9(c), vp is varied while the delay

FIG. 8. Sinusoidal spectral phase modulations:(a) and(b) show scans off for a single pulse. Besides the 4s population(solid black line),
the final quantum-mechanical phasej4s,2

` (solid gray line), i.e., after the interaction with the single modulated pulse, as a function off is
presented in(a) with gray values at the right side of the graph. In(c), two time-dependent 4s populations and the corresponding temporal
pulse envelopes and phases have been calculated for differentf (single pulse). (d) and(e) are scans off with two pulses at different delays:
300.6 fs and 300.1 fs.
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between both pulses is set to 300.6. The result is a central
hole for vp=v4s←3s/2. Slightly changing the delay to 300.0
completely inverts the control. As a consequence, the ob-
served hole in Fig. 9(c) is converted into a hill as seen in Fig.
9(d).

As before, this effect is explained by analyzing the final
quantum-mechanical phasej4s,2

` after the interaction with the
single modulated pulse. In the single-pulse experiment, the
quantum-mechanical phase at the inner part between the dark
pulses differs byp from the phase at the outer part[see the
phase in Fig. 9(a)]. In the case of Fig. 9(c), the additional
pre-pulse is 300.6 fs before the shaped pulse. At this delay,
the final quantum-mechanical phase resulting from the inter-
action with only the nonshaped prepulse isj4s,1

` =0, while
j4s,2

` from the shaped pulse has the structure shown in Fig.
9(a). Thus, the quantum-mechanical phase differenceDj4s

` is
−p for the inner part aroundvp=v4s←3s/2 and zero for the
outer part, i.e., there is destructive interference for the inner
part and constructive interference for the outer part. There-
fore, the resulting 4s state population in the two-pulse ex-
periments is a hole as shown in Fig. 9(c).

In Fig. 9(d), the delay is 300.0 fs so thatj4s,1
` is −p. In

this case, destructive interference occurs at the outer part
sDj4s

` =pd while there is constructive interference for the in-
ner partsDj4s

` =0d, i.e., destructive and constructive interfer-
ence between the inner and the outer part are exchanged and
the hole is converted into a hill. This demonstrates that de-
spite the complex structure of the two-pulsep-jump modu-
lation scan, the results can be explained by reduction to the
single-pulse experiment and the delay line scan in combina-
tion with the quantum-mechanical phase difference.

IV. SUMMARY

Phase control of a two-photon transition with shaped fem-
tosecond laser pulse sequences was studied in detail on the
two-photon transition 4s← ←3s on sodium atoms. The final
4s state population was the control objective while the so-
dium D-line fluorescence was the observable. Besides the
final 4s populations as functions of the control parameters,
the dynamics of the 4s population during the laser interaction
were discussed for all experiments. First, regarding the rela-
tive temporal optical phases and the 4s population dynamics,
the analogies and differences between an interferometric de-
lay generated by a delay line and the linear spectral group
delay phase modulation by a pulse shaper were presented.
Thereby, we demonstrate how the physical effect of a delay
line is properly emulated by the pulse shaper. Additional in-
vestigation of the absolute spectral phase modulation dem-
onstrated the role of the relative temporal optical phase. The
relative temporal phase was the fundamental control param-
eter of the excited state’s population while the temporal sepa-
ration between the pulse envelopes determined the type of
interferences. The dynamics induced by a pulse sequence
generated by a sinusoidal spectral phase modulation were
reduced to this interpretation. The corresponding two-pulse
experiment with an additional delayed pulse showed that the
additional pulse can significantly influence the controllabil-
ity. Depending on its delay, the additional pulse determines
the amount of control exerted by the shaped pulse. This ef-
fect highlighted the role of the quantum-mechanical phase.
One pulse defines the reference quantum-mechanical phase
while the other pulse excites with a relative phase. This leads
to constructive and destructive quantum-mechanical interfer-

FIG. 9. Spectralp-jump modulations. In(a), the 4s population and the final quantum-mechanical phasej4s,2
` for a single pulsep-jump

scan is presented.(b) shows the time-dependent 4s populations, the temporal pulse envelopes, and optical phases for two differentvp

indicated by the arrows in(a). Phase wrapping of the optical phase is employed for display.(c) and (d) are two-pulsep-jump scans for
different delays.
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ences, especially seen in the time-dependent 4s populations.
Besides the sinusoidal modulation, the discontinuous

p-jump modulation was extended to a two-pulse experiment.
Here, an additional pulse was capable of inverting the con-
trol effect by a single shaped pulse. Again, the control effects
were discussed in terms of the quantum-mechanical phase.

We demonstrated that by decomposing complex excita-
tion scenarios into more elementary steps, the basic physical
mechanisms are revealed. One of the fascinating aspects of

the combination of phase-locked pulses with phase-
modulation techniques is the ability to “control the control”
with a precisely timed prepulse.
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