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1 Introduction 

In the first part of this experiment, an insight into the different methods of measuring ohmic
1
 resistances 

will be given. In particular, it will be shown to which degree real properties of measuring instruments 

affect the results of a measurement, and which methods yield the best results in individual cases. 
 

In the second part of the experiment, the characteristics of real voltage sources are investigated. The main 

question here is how an important characteristic of such voltage sources, namely their internal resistance, 

can be measured.  
 

Additionally, the specific resistance of tap water is measured, and the linear relationship between changes 

in resistance and voltage in a bridge circuit is analysed. 

2 Theory 

2.1 Kirchhoff's Laws 

Knowledge of KIRCHHOFF's laws
2
 is a prerequisite for analysing electric networks (circuits) (see Fig. 1). 

 

KIRCHHOFF´s first law (current law) reads: 
 

The sum of all currents at a branch point equals zero. 
 

For this law the sign convention is valid that currents towards and off a network node are marked by con-

trary signs. It is of no importance, whether the affluent currents are marked positively and the effluent 

currents are marked negatively. 
 

Applied to the circuit in Fig. 1, KIRCHHOFF’s first law at the nodes A and B reads as follows: 
 

(1) 1 2 3 2 3 1A : 0 B: 0I I I I I I       

 

KIRCHHOFF´s second law (voltage law) reads: 
 

In a closed loop of a network the sum of all components of the voltage equals zero. 

 

                                                      
1 Named after GEORG SIMON OHM (1789 - 1854) 
2 GUSTAV ROBERT KIRCHHOFF (1824 – 1887) 
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Fig. 1:  Circuit with a direct voltage source with terminal voltage U, the resistorsR1,...,R3 as well as two nodes A 

and B and two loops a and b. 
 

 

For the application of this law a sign convention is essential as well. It reads: 
 

a) A direction („counting arrow”) is assigned to each voltage running from the positive to the nega-

tive terminal (e.g. voltage source). 
 

b) A direction („counting arrow”) is assigned to each current, which marks the direction of move-

ment of the positive charge carriers, i.e., the current flows from the positive to the negative pole 

per definition. According to OHM’s law, the direction of the voltage UR over a resistance R corre-

sponds to the direction of the current IR, flowing through R and causing the voltage drop UR. 
 

c) For the application of the voltage law a direction of rotation has to be fixed (i.e., clockwise or 

counter-clockwise). Voltages with counting arrows corresponding with the direction of rotation 

are counted as positive, the others as negative. 
 

Applied to the circuit in Fig. 1, the KIRCHHOFF’s second law in the loops a and b for a counter clockwise 

direction of rotation reads: 
 

(2) 2 1 2 3a : 0 b : 0U U U U U      

 

With KIRCHHOFF’s two laws and the related sign conventions all electric networks which are employed in 

the course of the introductory laboratory course can be described. 
 

Question 1: 

- How can the formulas for the parallel and series connection of ohmic resistances be derived from 

KIRCHHOFF's laws? Which are the corresponding relationships? 
 

It is not always easy to recognize whether resistances and other components in a network are in parallel or 

in series connections. Two rules derived from KIRCHHOFF's laws can be useful in making that decision: 
 

 Resistances are in parallel if they show the same voltage drop. 

 Resistances are in series if the same current flows through them. 

2.2 Methods for Measuring Ohmic Resistances 

2.2.1 Determining the Resistance from the Markings 

Fig. 2 depicts some common retail versions of resistors which are labeled with various kinds of markings 

(letterings or color codes). In the simplest case, the value of the resistor is printed directly on the casing. 

Some inscriptions commonly used for this purpose are “120R” for 120 , “4R7” for 4.7 , “3k3” for 

3.3 k, or “5M6” for 5.6 M. 

R

R R
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a b
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I  , U3 3
I  , U2 2
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Fig. 2: Common retail versions of resistors with various types of markings. Top load resistors (power rating of 

several W), bottom resistors for low power applications (< 1 W).  
 

Equally simple is reading the colour key printed on most types of resistors. This colour key on the resistor 

consists of chromatic rings, which are always arranged in such a way that the first chromatic ring is closer 

to the one end of the resistor than the last chromatic ring is to the other end. Table 1 shows how the value 

of a resistance can be determined by means of the colour coding. 

 
Table 1: Colour key for ohmic resistances. 

 

3 - 4 rings 1
st
 ring 2

nd
 ring  3

rd
 ring 4

th
 ring  

5 - 6 rings 1
st
 ring 2

nd
 ring 3

rd
 ring 4

th
 ring 5

th
 ring 6

th
 ring 

Colour ↓ 1
st
 number 2

nd
 number 3

rd
 number Multiplier /  Tolerance / % Temp. coeff. / 10

-6
K

-1
 

black  0 0 1   250 

brown 1 1 1 10  1  100 

red 2 2 2 10
2
  2  50 

orange 3 3 3 10
3
   15 

yellow 4 4 4 10
4
   25 

green 5 5 5 10
5
  5

*)
  20 

blue 6 6 6 10
6
   10 

violet 7 7 7 10
7
   5 

grey 8 8 8 10
-2*)

   1 

white 9 9 9 10
-1*)

  10
*)
  

none      20  

silver    10
-2

  10  

gold    10
-1

  5  
 

             *) where the conductivity of gold and silver enamel interferes 
 
 

Question 2: 

- What is the value of a resistor for the colour coding Red (first ring) - Violet - Brown - Gold? 

- What is the colour coding for a resistor of (3.9 k  10 %)? 

2.2.2 Determining the Resistance by Means of a Current / Voltage Measurement 

When the two ends of an ideal voltage source (cf. Chapter 2.3), which delivers an adjustable terminal 

voltage U, are connected with the connecting wires of a resistor R, the current I flows through the resistor 

and OHM’s law reads: 
 

(3) R
U

I
   

 

By measuring the voltage U using a voltmeter and the current I using an ammeter, R can thus be deter-

mined. Such a measurement can be carried out using the two circuits A and B according to Fig. 3. 
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Fig. 3: Two possible circuits for measuring the resistance R by means of a current/voltage measurement. R is 

connected with a direct voltage source with terminal voltage U. The current is measured with the ammeter 

A, the voltage is measured with the voltmeter V. 
 

 

If ideal measuring instruments were available, i.e., ammeter with a negligible internal resistance and a 

voltmeter with an infinitely high internal resistance, both circuits would yield the same result. However, 

an ammeter has an internal resistance of RA > 0 and a voltmeter has an internal resistance of RV < . Con-

sequently, a value for the resistance R with an error R is determined with each circuit. We will now 

determine the relative error R/R for both circuits. 
 

Let IA be the current through the ammeter, IR the current through the resistor, and IV  the current through 

the voltmeter. UA is the voltage drop across the ammeter, UR is the voltage drop across R and UV is the 

voltage drop across the voltmeter. According to KIRCHHOFF's current law we then obtain for the circuit A: 
 

(4) I I IA R V   0  
 

and thus 
 

(5) VRA III   

 

Using this circuit, the value determined for the resistor RM is given by 
 

(6) 
V V

M
A R V

U U
R

I I I
 


 

 

The deviation R from the actual value R 
 

(7) R
U

I

R

R

  

 

is hence given by: 

 

(8) R R RM   

 

Inserting Eq. (6) into Eq. (8) and using circuit A, we obtain after some rearrangement and taking into 

consideration UV = UR (voltage law) for the relative error: 
 

(9) 
VRR

R

R

R





 

 

According to KIRCHHOFF's voltage law we obtain for circuit B: 
 

(10) U U UV A R   0  

 

and thus  
 

V

Schaltung  A

U

A

R V

Schaltung  B

U

R

AI   , UA A

I   , UV VI   , UR R I   , UV V

I   , UA A

I   , UR R

+ 
_

+ 
_
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(11) U U UV A R   
 

Considering IA = IR, the measured resistance RM is: 
 

(12) RR
I

UU

I

U

I

U
R A

A

RA

R

V

A

V
M 


  

 

For the actual resistance R we refer again to Eq. (7). Inserting Eq. (12) into Eq. (8), we obtain for the rela-

tive error, if using circuit B: 
 

(13) 
R

R

R

R

A   

 

Question 3: 

- Sketch the graph of the relative error as a function of the resistance R for circuits A and B in a dia-

gram. Is one of the circuits better than the other one, in principle? If not: in which case would the indi-

vidual circuits be preferred? 

- The two circuits are called „current-correct” and „voltage-correct” circuits, respectively. Which name 

belongs to which circuit? Why? 

2.2.3 Measurement of Resistance Using an Ohmmeter 

Instead of determining the resistance from a current/voltage measurement, it can also be directly meas-

ured using an analogous ohmmeter (pointer instrument). In the simplest case such an ohmmeter consists 

of a voltage source (battery), to which the resistance R is connected, a variable internal resistance Ri and 

an ammeter, by means of which the current through the resistance R is determined. This current causes a 

needle deflection, which is then read off an appropriate OHM scale. This scale is inversely proportional to 

the current scale due to the relationship R = U/I. 
 

Since the voltage source does not always provide the same voltage (ageing of battery), the ohmmeter has 

to be calibrated by adjusting Ri before beginning the measurement. For this purpose the contacts are 

shorted out and the needle deflection is adjusted to 0  using a regulating screw. 
 

Modern digital ohmmeters are structured differently. Generally, they are integrated into multimeters. Such 

instruments contain complex electronic circuits with integrated microprocessors for measuring the 

required parameters (current, voltage, resistance, frequency among others) and LCD elements displaying 

the measured values. 

2.2.4 Measurement of Resistance Using the WHEATSTONE Bridge 

By means of a WHEATSTONE bridge
3
 the value of a resistance R can be determined without errors being 

caused by inadequate (real) measuring instruments for the current, voltage or resistance; however, a 

gauged comparative resistance is required for this purpose. 
 

We consider a WHEATSTONE bridge-circuit like the one in Fig. 4. A homogenous resistance wire, usually 

of constantan
4
 with the specific resistance   ([] = m), the total length l = l1 + l2, and the cross-sectional 

area A is connected to the resistor R to be measured and a gauged comparative resistor R3 as shown in the 

figure. The resistances of the two wires are:  
 

(14) 
1 2

1 2and
l l

R R
A A

    

 

The voltage U, taken from a direct-voltage source, is connected to this resistance network. The current 

flowing between the point P and the shiftable tapping point Q along the resistance wire is measured using 

an ammeter A. 

                                                      
3 CHARLES WHEATSTONE (1802 – 1875) 
4 Constantan is an alloy consisting of approx. 60 % copper and approx. 40 % nickel, the specific resistance of which is nearly constant across a 

wide temperature range (  45  10-8 m at 20 °C). 
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Fig. 4: Wheatstone bridge with constantan resistance wire (yellow). R (green) is the resistor to be measured, R3 is   

the resistor used for comparison. 
 

There is a position of the tapping point Q, where no voltage is found between P and Q and therefore no 

current flows. In that case the voltages over R3 and R1 as well as at R and R2 are equal. Such a WHEAT-

STONE bridge is called „adjusted” and we obtain: 
 

(15) 3 1 1

2 2

R R l

R R l
   

 

and thus 
 

(16) 2
3

1

l
R R

l
  

 

Thus, in the case of an adjusted WHEATSTONE bridge, the resistance R can be determined by measuring 

the lengths l1 and l2 and knowing the gauged resistance R3 from Eq. (16); insufficiencies of electric instru-

ments are then of no importance. This is the advantage of this measuring method, a so-called compen-

sation method.  
 

Question 4: 

- In Fig. 4, enter all the points where the circuit branches in the unbalanced WHEATSTONE bridge as well 

as the currents that flow, including their signs. 

- In Fig. 4, draw all of the loops of the unbalanced WHEATSTONE bridge as well as the voltages in these 

loops, including their signs.  

2.2.5 Bridge Circuit for Measuring Alterations to Resistance 

Bridge circuits are, among other applications, used to convert small alterations to resistance ∆R into pro-

portional voltages. This is a standard method in many areas of sensor-measuring-technology. 
 

We consider, for example a bridge circuit with strain gauges (SG). SGs may be used for constructing 

force sensors. We will get to know such a force sensor in the experiment “Sensors...”. Its theoretical 

foundation, however, shall already be described here.  
 

The principle of a strain gauge is the elongation of a thin electrical conductor of length l by means of an 

external force F
5
, which simultaneously causes a decrease of its cross-sectional area A (Fig. 5). This alters 

its resistance R, which is, according to Eq. (14), given by: 
 

(17) 
l

R
A

  

 

For a conductor with a circular cross-section of diameter d we get: 

 

(18) 
2

4

π

l
R

d
  

                                                      
5 A positive elongation is a stretching, a negative one a compression. 

U

1l

R1

2l

Q

R3

A

P

R2

R

      

+ 
_
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Fig. 5: Diagram of a strain gauge (SG) on metal foil basis. A thin metal foil (yellow) is plated on the carrier foil 

(gray) in meander form in order to increase the effective length of the conductor while keeping the size of 

the SG small. The carrier foil is pasted on the work piece to be investigated and follows its deformations 

upon application of a force F. 
 

 

The elongation changes the length l by Δl, the diameter d by Δd, and, depending on the material, possibly 

the specific resistance ρ by Δρ. The resulting change in the ohmic resistance is given by the total differ-

ential ΔR: 
 

(19) 
2 2 3

1 4 4 4
2

π

R R R l l
R l d l d

l d d d d
   



    
             

    
 

 

The relative change in resistance is thus: 
 

(20) 2
R l d

R l d





   
    

 

The relative change in length l/l is defined as the elongation . 
 

(21) 
l

l





 
The POISSON-number

6 is defined as the negative quotient of the relative change of the cross section 

d/d and the relative change of length l/l, thus: 
 

(22) :

d d

d d
l

l




 

   


 

 

Factoring out the value of ε = Δl/l in Eq. (20) and substituting Eq. (21) and Eq. (22) into Eq. (20) gives: 

 

(23) 1 2 :
R

k
R




  



 
 
    
 
 
 

 

 

The expression within the brackets is the so called k-factor of a strain gauge and depends on the material 

of the strain gauge, examples are k  2 for constantan and k  4 for platinum
7
. The relative change in 

resistance by elongation increases with larger values of k.  

                                                      
6 SIMÉON DENIS POISSON (1781 – 1840) 
7 For monocrystalline silicone (Si), k  100. Si-based SGs are, for example, used in pressure sensors which we will get to know in the 

forthcoming experiment “Sensors…”.   

F
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With the aid of a bridge circuit, this alteration to resistance ∆R is converted into a voltage U. For a quan-

titative description of the bridge circuit, we look at the circuit shown in Fig. 6, which is set up analogous 

to the WHEATSTONE bridge represented in Fig. 4. 
 

 
Fig. 6: Bridge circuit for measuring small alterations to resistance of R1 (here SG). The voltage U in the 

bridge diagonal is measured with a voltmeter V. 
 

In case the internal resistance of the voltmeter V extends to infinity, the following relationships are valid: 
 

(24) 
1 331

2 2 4 4

R RUU

U R U R
   

 

(25) 1 2 0 3 4 0U U U U U U     

 

By combining Eqs. (24) and (25) we obtain: 
 

(26) 
1 3

1 0 3 0

1 2 3 4

R R
U U U U

R R R R
 

 
 

 

The voltage U in the bridge diagonal is: 
 

(27) 
1 3

1 3 0

1 2 3 4

R R
U U U U

R R R R

 
    

   

 

 

We now consider the special case of starting out with equal resistances R1,...,R4, one of which (R1) is sub-

sequently altered by the small amount ∆R. In case of a bridge circuit with a strain gauge, R1 would be the 

resistance of the strain gauge and R the change in resistance caused by mechanical deformation, hence: 

 

(28) 1 2 3 4 :R R R R R R R       

 

With this, it follows that the voltage U from Eq. (27) is given by: 
 

(29) 0
0 0

1 1

2 2 2
2

UR R R R R R
U U U

RR R R R R R R R

R

 
        

                    
 

 

 

Eq. (29) shows that the relationship between U and R is non-linear. If, however, ∆R << R, it holds: 
 

(30) 
1 1

22
R

R






 

V 0=U

R1 R3

R4R2

+

-

U1

U2
U4

U3
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and thus: 
 

(31) 0

4

U R
U

R


  

 

Near the point of balance (R << R), the alteration to resistance ∆R is thus related to a voltage U in an 

approximately linear manner, the amplitude of which can be influenced by the operating voltage (supply 

voltage) of the bridge, U0. 
 

In the set-up described above, one of the four resistors is replaced by a SG. Accordingly, this setup is 

commonly called a quarter bridge. In practice, one often uses a bridge circuit where two resistors are 

replaced by SGs which move in opposite directions of each other for a given deformation (Fig. 7). This 

arrangement is called a half bridge. One example is using two SGs to measure forces with a bending rod 

(Fig. 8), which we will investigate in more detail in the experiment „Sensors...”. The two SGs are placed 

in the bridge circuit, so that the upper one that is being elongated replaces R1 and the lower one being 

compressed replaces R2. It follows that: 
 

(32) 1 2 3 4R R R R R R R R R         

 

By inserting Eq. (32) in Eq. (27), it follows for the half bridge: 
 

(33) 0

2

U R
U

R


  

 

This equation makes the advantage of a half bridge compared to a quarter bridge clear: First, the relation 

between U and R is linear. Second, for the same change in resistance R, the half bridge produces an 

output voltage U of twice the magnitude. Thus, the sensitivity of the half bridge is twice as high.  

In a full bridge, all four resistors are replaced by SGs, which change pairwise (R1/R4 and R2/R3) in oppo-

site directions. In this case we find for the voltage U: 

 

(34) 0

R
U U

R


  

 

It is clear, that the sensitivity increases again by a factor of two. 
 

 
Fig. 7: Bridge circuit with two SGs (half bridge). 

 

 

 
 

Fig. 8: Bending rod (green) with two strain gauges (yellow, German abbreviation is DMS). The rod (green) is 

fixed by a block (gray) on the left. The force F deforms the rod, so that the upper SG is elongated and the 

lower one is compressed. A mechanical barrier (red) serves to protect the apparatus from overstraining. 

V 0=U

R1 R3

R4
R2

+

-

U1

U2
U4

U3

F

DMS
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2.3 Properties of Real Voltage Sources 

2.3.1 Internal Resistance of Real Voltage Sources 

An ideal voltage source provides a constant terminal voltage U, which is equal to the constant source 

voltage U0, independently of the electrical load (the current it provides) at its connecting terminal. Such 

ideal voltage sources cannot be realized technically. On the contrary, we are dealing with real voltage 

sources such as batteries, power units or function generators, the terminal voltage of which decreases with 

increasing load. In order to describe this property of real voltage sources we use a model in which the real 

voltage source is exchanged for an ideal voltage source G and an internal resistance Ri in series; Fig. 9 

shows the corresponding equivalent circuit. When such a voltage source is connected with a load with an 

external load resistance Rl according to Fig. 10, the load current I flows through Rl as well as through Ri. 

This current causes a voltage drop IRi at Ri by which the terminal voltage U is reduced compared to the 

source voltage U0. Thus we obtain: 
 

(35) U U IRi 0
 

 

If the source voltage U0 is to be measured using an ideal voltmeter V in a circuit according to Fig. 10, then 

the load current I has to be towards zero. This is achieved by a large load resistance Rl. 
 

Exchanging the current I in Eq.(35) for U/Rl (according to OHM's law) we obtain for the relationship 

between U and Rl: 
 

(36) U U
R

R R

l

l i




0
 

 

     
  

Fig. 9: Equivalent circuit of areal voltage 

source without a load. 
 Fig. 10: Equivalent circuit of a real voltage source 

with load resistance Rl . 

 
 

From this equation we derive particularly for the case Rl = Ri that the terminal voltage decreases to half of 

the source voltage. This allows us to determine the internal resistance of a real voltage source. 
 

Question 5: 

- Sketch the graph of the terminal voltage U as a function of the load resistance Rl. 

2.3.2 Matching a Device to a Real Voltage Source 

2.3.2.1 Power Matching 

While connecting an electrical device to a voltage source it is often desirable that the internal resistance of 

the device be dimensioned such that the maximal power can be taken from the voltage source (power 

matching; applied e.g. in the transmission of high-frequency signals
8
). The internal resistance of the 

device is the load resistance Rl, which is the voltage source load. The power P supplied to that resistance 

is given by: 

(37) P UI
U

Rl

 
2

 

                                                      
8 Power matching in communication engineering at the same time prevents spurious signal reflections, which will be examined more closely in 

the experiment “Signal transfer…” (summer term). 

0=U
G

Ri

U

0

V

R

=U
G

i

U Rl

I
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Inserting Eq. (36) into Eq. (37) yields: 
 

(38) 
 

P U
R

R R

l

l i




0

2

2
 

 

Maximal power consumption is achieved when the internal resistance of the device equals the internal 

resistance of the voltage source, hence if we have: 

 

(39) R Rl i  
 

Question 6: 

- Sketch the graph of P as a function of Rl. How do we get from Eq. (38) to Eq. (39)? What is the maxi-

mum power that can be drawn from the voltage source? 

2.3.2.2 Voltage Matching 

The object of voltage matching, applied in high-current technology and in sound engineering, is to draw 

the highest possible voltage U from the voltage source. According to Eq. (36) the necessary condition for 

this is: 
 

(40) R Rl i  

2.3.2.3 Current Matching 

The object of current matching is to draw the strongest possible current I from the voltage source. This is, 

for example, used for charging accumulators. According to the OHM’s law we obtain: 
 

(41) 

li RR

U
I


 0  

 

so that the condition for the strongest possible current reads: 
 

(42) R Rl i  
 

In this case the current is nearly independent of the load resistance.  

3 Experimental Procedure 

Equipment: 
Voltage supply (PHYWE (0 - 15 / 0 - 30) V), function generator (TOELLNER 7401), several digital multimeters, digital oscilloscope 

TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 1102B, resistance decade, slide rheostat (Rges  11,5 ), unknown resistance in holder, box for 

bridge circuit, pair of copper plates in holder, water basin on vertically adjustable holder, metal measuring tape, calliper gauge, paper wipes. 

 

Attention: 

When connecting resistances with voltage sources it has to be considered that the maximally allowable dissipa-

tion power Pmax of the resistor must not be exceeded (P = UI = U
2
/R < Pmax). Details about the load capacity Pmax 

of resistors are either found on the available components (e.g. resistor decade) or can be obtained from the 

technical assistant. 
 

Take care when operating the power supply unit that no unintentional current limitation is adjusted. 
 

Multimeters of the type FLUKE 112 provide only a limited resolution for current measurements. Therefore, they 

are used only as ohmmeters or voltmeters in this experiment, not as ammeters. 
 

In multimeters of the type MONACOR DMT-3010, fuses are blown easily in case of an operating error. Apply 

special caution to operating them! 
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3.1 Hints to the Measuring Instruments 

The used measuring instruments offer the possibility to switch the measuring range manually and partly 

also automatically, which serves to indicate the measured value on the scale or numerical display of the 

measuring instrument with the highest possible accuracy. For example, using a digital voltmeter a voltage 

of 1.78 V will be indicated as 1.78 V in the measuring range „2 V”, but will be indicated as 2 V in the 

measuring range „200 V”.  
 

When switching the measuring range of an ammeter a precision resistor („shunt”) is added in parallel to 

the internal resistance of the instrument. This resistor is rated such that the current flowing through the 

ammeter remains just about the same for all measuring ranges. Analogously, when switching the meas-

uring range of a voltmeter, a precision resistor is added in series to the internal resistance of the instru-

ment, which is rated such that the voltage drop is just about the same for all measuring ranges of the 

voltmeter. 
 

Data on the internal resistances for measuring currents (RA) and for measuring voltages (RV), which are 

dependent on the measuring range, are available for some of the measuring instruments used in the intro-

ductory laboratory course. Instead of an internal resistance RA, a voltage drop U is often stated (e.g. 

20 mV, 200 mV etc.). In this case RA = U / Imax, Imax representing the maximum current in the adjusted 

measuring range. 
 

For other measuring instruments, there are no data available on the internal resistances RA and/or RV. In 

those cases it can be assumed that RV is so large (e.g. 10 M) and RA is so small (e.g. 0,5 ) that their 

influence on the measurement result is negligible. 
 

Specifications of the total measurement error of a measuring instrument and the precision of a measured 

value, respectively, are found on the instruments or in the instrument manuals. These values generally 

consist of two parts. Their first - most significant - part is stated in percent of the measured value. Their 

second part can be stated in percent of the measuring range or in units of the last decimal of the measured 

value.  
 

The following examples serve for explanation: 
 

1.) A direct voltage of 2.348 V is measured with the multimeter FLUKE 112 in the measuring range 

6.000 V. According to the manual the precision for this voltage range is: ± (0.7 % of the measured 

value + 0.003) V. For the mentioned example, the precision thus is ± (0.007 × 2.348+ 0.003) V = 

± 0.019 V (rounded to two significant digits). This value is also the maximum error for the measured 

value. 

2.) A direct voltage of 297.34 mV is measured with the multimeter AGILENT U1272A in the measuring 

range 300.00 mV. According to the manual the precision for this voltage range is:  (0.05 % + 5). 
The percent value refers to the measured value, the “5” refers to the last shown digit of the measured 

value (here the 4 in 0.04 mV). The maximum error therefore is: 

 (0.0005  297.34 + 0.05) mV =  0.20 mV (rounded to two significant digits). 

3.2 Measurement of Resistances 

The value of an unknown resistor R (in the order of magnitude of 1 k) including the maximum error is 

to be determined by applying some of the methods described in Chapter 2.2. The following steps are to be 

taken consecutively: 
 

a) Measurement using different ohmmeters: The value of the resistance R is to be measured with at 

least five ohmmeters. Partly also ohmmeters of the same type may be used. A number j is assigned to 

every ohmmeter. Prior to the measurements, the measuring instruments have to be adjusted to the 

measuring range that enables the most precise measurement to be made. The maximum error Rj is 

given for each measured value Rj. The Rj are presented in a graph over j including error bars. 
 

b) Measurement of current/voltage: As an example, circuit A is set up according to Fig. 3. A voltage 

supply serves as the voltage source. Its internal resistance can be neglected for this measurement. For 

at least ten different voltages on the voltage supply the corresponding current is measured using an 
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ammeter and the voltage using a voltmeter. Prior to these measurements, the range covering the val-

ues to be measured has to be considered and the measuring ranges have to be adjusted accordingly. 

 

For each pair of values (U, I) a resistance R = U/I is determined. Subsequently, the mean R  and its 

standard deviation 
R

  are calculated from these data. 

 

Subsequently, the measured voltage values U are plotted against the measured current values I in a 

diagram and the maximum errors of U and I are entered in the form of error bars. The parameters of 

the regression line through the measured points are calculated and the regression line is drawn into 

the diagram
9
. The slope of the regression line R ( R) is a good estimate for the unknown resistance 

value. This estimate is compared with the previously found mean of R  ( 
R

 ) and it is checked, 

whether both methods yield comparable results. 
 

c) WHEATSTONE bridge: A WHEATSTONE bridge is set up according to Fig. 4. Again a voltage supply 

serves as the voltage source, and a resistance from a resistor decade as calibration resistance R3. This 

resistance is chosen to be about the same as the resistance to be measured: R. In that case l1  l2 is 

valid for an adjusted WHEATSTONE bridge and the error becomes minimal for determining R. The 

error of the value of R calculated using Eq. (16) is given by the maximum error. 

 

After having determined the resistance by applying the different methods, all measured results from 

Chap. 3.2 are to be presented in a graph analogous to Chap. 3.2 a) and compared. 

3.3 Measurement of Internal Resistance of a Function Generator 

With a circuit according to Fig. 10, the internal resistance (also called output resistance) of a function gen-

erator (FG) is to be determined. The equivalent circuit of the function generator consists of an ideal 

voltage source G and the internal resistance Ri (order of magnitude 50 ) in series. 
 

A sinusoidal voltage is adjusted at the function generator (amplitude UFG  4 V, frequency approx. 1 kHz) 

and initially a load resistance Rl = 100 k and thus Rl >> Ri (resistance decade) is connected. The voltage 

amplitude U over Rl is measured using an oscilloscope. Its internal resistance of about 1 M can be 

neglected. U0  UFG is valid for Rl = 100 k with sufficient precision. 
 

Subsequently, the load resistance is reduced by correspondingly switching the resistor decade to values 

between 1 k and 20 . For each value of Rl, the voltage amplitude U is measured and subsequently U is 

plotted over Rl. By means of graphic interpolation
10

 of the curve the value for Rl is extrapolated at which 

U has been decreased to half of U0. This resistance corresponds to the required internal resistance Ri of the 

function generator (see Chapter 2.3.1). 
 

Hint: 

The maximum current at the lowest possible resistance (20 ) is Imax = 4 V / 20  = 200 mA. The maximum 

momentary power at the resistance thus is P =U I = 0.8 W and hence is below the load limit of the resistance 

decade of 1 W.  

3.4 Specific Resistance of Tap Water 

Let us examine the set-up shown in Fig. 11. Two rectangular copper plates of width b are mounted in 

parallel at a distance l. They are dipped into a water basin containing normal tap water. By lifting the 

water basin the plates can be plunged into the water to a variable depth d. w being the specific resistance 

of the water, the ohmic resistance Rw of the water between the plates is given by (cf. Eq. (14)): 
 

                                                      
9  The calculation of the parameters of the regression line and its grafic representation are done using Origin. Hints are given in the 

accompanying seminar. 
10  „Graphic interpolation“ means: A regression curve is drawn by hand through the measurement. Then the line U = U0/2 is drawn and its 

intersection point with the regression curve is determined. The R value of the intersection point is read on the abscissa. Its maximum error R 

follows from the reading accuracy of R.  
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Fig. 11: Set-up for measuring the specific resistance of tap water (amperemeter and voltmeter not drawn). 
 

 

By measuring the current I (ammeter) at an applied voltage U (voltmeter) between the plates Rw (circuit 

A, cf. Fig. 3) is determined for a number of values of the immersion depth d, within the range between 

50 mm and 20 mm. For the single values of U, I and Rw errors must not be specified. Then, Rw is plotted 

against 1/d. A regression line is drawn in the diagram and the specific resistance w of the tap water 

including the maximum error is calculated from its slope (measure l and b!).  
 

Remarks: 

In order to avoid polarization effects in the water, no direct voltage but a sinusoidal alternating voltage without 

DC offset (turn off “DC-Offset” on the FG) is used, which can be obtained from a function generator (Ueff ≈ 2 V 

at d ≈ 50 mm, frequency approx. 50 Hz). In spite of this, the water as an ionic conductor does not behave in the 

manner that we know from metallic conductors. For example, its resistance decreases with temperature, while 

for metallic conductors, it increases. Therefore, we must assume that the measurement yields only a reference 

value for W. In addition, w deviates considerably depending on the quality of the tap water, so it is difficult to 

compare the measured value with a literature value.
11

 
 

Measuring with an alternating voltage requires the multimeters to be switched into AC mode! 

3.5 Bridge Circuit for Measuring Alterations to Resistance 

A bridge circuit is set up according to Fig. 6 (R1,...,4  ≈ 100 , power supply voltage U0 ≈ 5 V). R2…4 are 

soldered in a box. R1 is adjusted with a resistance decade. The voltage U is measured in the bridge 

diagonal for approximately ten alterations to resistance ∆R of the resistor R1 within the range between 

 1  and  10 , hence for R1 in the interval (90 – 110) . U is plotted over ∆R and the linearity of the 

relationship is verified according to Eq. (31). 

 

                                                      
11 The specific resistance of tap water at 20 °C is in the order of magnitude of approx. (10 – 20) m. For comparison: the specific resistance of 

copper at 20 °C is about 1.7  10-8 m (Please search for the corresponding references from the literature and include them in your report). 
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