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Moment of inertia - Steiner's theorem 
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Measuring program: 
 Measurement of the moment of inertia of a circular disc, determination of the axis of gravity of an irregular shaped body. 
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1 Introduction 

The aim of this experiment is to improve the understanding of the analogy between translational and rota-

tional motion. For this purpose, a set-up is used which enables the measurement of moments of inertia of 

bodies with respect of optional axes. 
 

First, the corresponding quantities of the translational and rotational motion are called to memory by 

means of Table 1. 

 
Table 1: Comparison of translational and rotational motion. 

Translational motion Rotational motion 

Name Symbol Unit Name Symbol Unit 

Position vector r m Angle 
1
  rad 

Velocity 
d

dt


r
v  m s

-1 
Angular velocity 1 

d

dt

φ

ω  rad/s
-1 

Acceleration 
d

dt


v
a  m s

-2 
Angular acceleration 1 

d

dt

ω
 rad/s

-2 

Mass m kg Moment of inertia
2
 

2dI R m   kg m
2 

Momentum mp v  kg m s
-1 

Angular Momentum 
I

m



   

L ω

L r p r v
 kg m

2
 s

-1
 

Force 

d

d
m

t
 

p
F a

 

N Torque 

d d

d d
I

t t
 

 

ω L
T

T r F

 N m 

2 Theory 

We consider a rotary disk D of the radius r, around which a thin thread has been wound according to Fig. 

1. The thread is connected to a mass m via a pulley R. The disk is held at rest by the pin T of the magnet 

B. After closing the switch S, a current flows from the power supply U through the coil of the magnet. 

The holding pin T is pulled back by the resulting magnetic field, thereby unlocking the disc. The falling 

mass m then causes an accelerated rotation of the disk about the rotary axis H. 
 

Now we require an equation by means of which we can calculate the moment of inertia ID of the rotary 

disk from known or measurable quantities. 

 

                                                      
1 The direction of the axial vectors , and d/dt is by definition the direction of the axis of rotation. The sign obeys the right-hand rule: the 

incurved fingers show the direction of rotation, so the thumb shows the direction of , and d/dt. Polar vectors (normal vectors), as e.g. the 
position vector (r) and the velocity vector (v), change sign upon performing a point inversion of the coordinate system, whereas axial vectors 

(also called pseudo-vectors) do not. 
2 R is the distance of a mass element dm from the axis of rotation. 
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Fig. 1: Rotary disk for measuring moments of inertia. Refer to the text for labels. 

 

For this purpose we first set up the equation of motion for the rotation of the rotary disk. It is very simple 

in this case: the rotary disk has the angular acceleration d/dt due to the rotational moment r × F. In anal-

ogy to NEWTON’s law F = m a we thus obtain (cf. Table 1): 
 

(1) 
d

d
DI

t
 

ω
r F  

Then it follows from the chosen geometry (r  F) for the absolute values: 
 

(2) 
d

d

DI
F

r t


  

 

In this equation we have to replace F and d/dt by known or measurable quantities. In order to find an 

expression for d/dt, we first observe the motion of the mass m. If the time t is needed for falling through 

a distance l, we obtain for its acceleration a: 
 

(3) a
l

t


2
2

  

 

Because m and the rotary disk are connected via the thread, this must also be the tangential acceleration of 

a mass point on the edge of the rotary disk. Based on the well-known relationship between tangential and 

angular acceleration with Eq. (3), we thus obtain for such a point: 
 

(4) 
2

d 2

d

a l

t r r t


   

 

Inserting Eq. (4) into Eq. (2) yields: 
 

(5) 
2 2 2

2
D D

l a
F I I

r t r
   

 

We still need a relationship for the force F, which accelerates the disk, since it cannot be measured 

directly. For this we look at the net force acting on the set-up. The accelerating force of gravity G = mg 

(g: gravitational acceleration) must accelerate the mass m, overcome frictional forces at pulley the R and 

the rotary disk D, and set the pulley and rotary disk into an accelerated rotation. For this, the following 

forces are necessary: 
 

 Fm : Accelerating force for m 

 FRR: Frictional force at the pulley 

 FR : Accelerating force for the pulley 

 FRD: Frictional force at the rotary disk 

 F: Accelerating force for the rotary disk 

Dr

m

R

F


H

B

l

= U
S

T
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Thus we obtain: 
 

(6) m RR R RDG mg F F F F F       

 

The force which accelerates m, Fm = ma, is therefore considerably smaller than the force of gravity 

G = mg. 
 

To simplify matters we now assume that the force of friction and the accelerating force are replaced by 

one force acting on the pulley, which is necessary for the translational acceleration of an equivalent mass 

me (here: me  2.2 g): 
 

(7) :R RR eF F m a   

 

We therefore obtain for the required force F from Eq. (6): 
 

(8) ( )e RDF mg m m a F     

 

Inserting this equation into Eq. (5) we obtain: 
 

(9) 
2

( )e D RD

a
mg m m a I F

r
     

 

For better readability we introduce a force 
 

(10) : ( )E eF mg m m a    

 

with the measurable quantities m and a and the known quantities me and g such that Eq. (9) becomes: 
 

(11) 
2E D RD

a
F I F

r
   

 

The unknown quantity FRD which cannot be measured directly is still bothering us in this equation for 

determining ID. If we assume, however, that the friction at the rotary disc is a rolling and sliding friction 

independent of the velocity (the so-called COULOMB friction), which only depends on the mass of the 

rotary table including the bodies on it, then FRD can be considered a time-independent constant. In this 

case Eq. (11) represents a simple linear equation of the form 
 

(12) y cx b   
 

with 
 

(13) 
2

, , ,E D RD

a
y F x c I b F

r
     

 

Plotting the related quantity FE (to be calculated according to Eq. (10)) against a/r
2
 (with a from Eq. (3)) 

for constant r and different accelerating masses m (Eq. (11)), we obtain a line with the slope ID. Thus we 

have found a way to measure the moment of inertia without knowing the quantity FRD. 
 

We now observe the case in which an additional body is placed on the rotary disk. Suppose IK is the mo-

ment of inertia of this body (mass mK) when it rotates about one of its gravity axes (principal axis); if this 

gravity axis corresponds with the rotary axis H of the rotary disk, then the overall moment of inertia I of 

the system rotary disk/body is: 
 

(14) D KI I I   

 

If the axes H and C run parallel at a distance s we obtain according to STEINER's theorem
3
: 

                                                      
3 JAKOB STEINER (1796 - 1863) 
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(15) 
2

D K KI I I m s    

 

Eq. (11) then reads: 
 

(16) 
2E RD

a
F I F

r
   

 

Using Eq. (3) it follows: 
 

(17)    
2 2

2

2
E RD E RD

r r
I F F F F t

a l
     

 

We can use this relationship to determine the position of a gravity axis running parallel to the rotary axis 

of the disk for a body of arbitrary shape lying on the rotary disc. We take the following steps: according 

to Eq. (15) I is minimal when s = 0, i.e., for the case that the gravity axis of the body is identical to that of 

the rotary axis of the disc. According to Eq. (17) a minimum of I is equivalent to a minimum of the fall 

time t and t
2
, respectively. Shifting the body on the rotary disc (varying s), the fall time t must therefore 

show a minimum at a certain position. The related function t = f(s) describing this behaviour will now be 

determined. For this we insert Eq. (15) into Eq. (17), solve for t
2
 and obtain for t as a function of s: 

 

(18) 
 

   

1 2

2 2

2 2

2 2D K k

E RD E RD

K K

I I l l m
t s

F F r F F r


 

 
 

 

or in a clear way with the auxiliary quantities K1 and K2: 
 

(19) 
2 2

1 2t K K s   

 

Question 1: 

- Which function (curve) does Eq. (19) represent? (Hint: Conic sections) 
 

In order to determine the position of the required gravity axis C by means of Eq. (19) we proceed as fol-

lows: Choose a coordinate system XY on the rotary disc, the origin of which coincides with the axis of 

rotation H (cf. Fig. 2). A line of holes is created along the y-axis of the rotary disk. A pin is fixed at an 

optional point P on the body, for which we find the position of the gravity axis. The pin and line of holes 

are placed such that the body can be shifted in the Y direction on the rotary disk without changing its 

orientation with regard to the coordinate system XY (cf. remarks at the end of Chap. 3.2).  
 

Let point P (the pin) have the coordinates (0, yP) after placing the body on the rotary disc. For the distance 

s of the gravity axis C from the rotary axis H we then obtain: 
 

(20)  
22

Ps x y y     

 

According to Eq. (19) the fall time t for the accelerating mass m has a minimum when s is minimal, 

which, according to Eq. (20) with fixed x, is the case for yP = y. 
 

If we shift the body in y direction on the rotary disk and plot the fall time t over the shift yP, we can 

determine the quantity y by finding the minimum in the produced curve. In an analogous way, the quan-

tity x can be determined and proceeding from the optional point P, we can state the position of the 

desired gravity axis. 
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Fig. 2: Rotary disc (yellow) with sample body (white, top view). H is the axis of rotation, C the gravity axis of 

the sample body
4
 and P is the sample body’s point of fixation along the vertical line of holes on the disc. s 

is the distance between C and H. 

3 Experimental procedure 

Equipment: 
Rotary disc on tripod, 5 acceleration masses (m = (1,00  0,01) g) with plate (m according to imprint, error negligible), brass disk with 
locking pins, irregularly shaped sample body with locking pins, power supply (PHYWE (0 - 15 / 0 - 30) V), magnetic holder, stand material 

for magnetic holder, switch, light barrier, electronic universal counter, digital oscilloscope TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 

1102B - EDU, precision spirit level (accuracy 0.1 mm on 1 m), balance, metal measuring tape, sliding calliper, deceleration rod, thread. 
 

Attention: 

The rotary discs have very sensitive precision bearings which are easy to damage through improper handling. 

Only move the rotary discs with careful fingers! Take care that the thread does not get entangled in the bearing 

by timely deceleration! Only decelerate the discs using the small rod available! 

Hint: 

Usually the rotary discs are levelled exactly by the technical assistant using a precision water level prior to the 

lab course.  

3.1 Moment of inertia of a disc 

The moment of inertia IK of a brass disk (radius rK, mass mK) rotating about its symmetry axis C (Fig. 3) is 

to be determined by means of the set-up in Fig. 1. It is then calculated according to Eq. (14) as follows: 
 

(21) K DI I I   

 

In order to obtain IK, first the moment of inertia of the rotary disc (ID) has to be determined by means of 

Eq. (11) and then the moment of inertia of the rotary- and brass disks together (I) by means of Eq. (16). 

For this purpose  
 

a) for the rotary disc 

b) for rotary disk with brass disc 
 

the fall time t (mean value from at least four single measurements each) is measured for five different 

acceleration masses and for a predetermined distance l (to be measured!). The fall time is measured by 

means of an electronic universal counter. The counter is started by the impulse, which causes the release 

of the holding pin of the magnetic holder, which is responsible for keeping the rotary disk in the starting 

position. The stopping impulse for the universal counter is given by a light barrier, which the accelerated 

masses pass at the end of the specified distance l. 
 

Subsequently FE is plotted against a/r
2
 for a) and b) according to Eq. (11) and Eq. (16) in one diagram 

and the regression lines are calculated (measure r carefully using a metal measuring tape)
5
. An error 

                                                      
4 Note that the white area represents the top view of the sample body. For this reason, C does not need to be located at the centre of gravity of 

the white area. 
5
  The acceleration a is in the order of magnitude of 10-2 ms-2 and thus small compared to g. Only small differences therefore arise for FE (Eg. 

(10) in the cases a) and b).  
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analysis for the individual values of FE and a/r
2
 is not required. The friction forces FRD on the rotary disc 

as well as the moments of inertia ID and I are calculated from the parameters of the regression line 

(including error) and from that IK according to Eq. (21) (also including error). 
 

 
 

Fig. 3: Rotation of a disc of radius rK and mass mK about its symmetry axis C. 
 

 

Question 2: 

- How can the moment of inertia I of a disk with the mass mK and the radius rK rotating about its sym-

metry axis C (cf. Fig. 3) be calculated from the relationship 2 dI R m   (cf. Chapter 1)? How large is 

the theoretically expected moment of inertia for the brass disk used (measure rK and mK!)? What are 

the possible sources of deviations between theory and experiment? 

3.2 Determining the position of a gravity axis of an irregularly shaped body 

According to the explanations given for Eqs. (18) - (20) the position of a gravity axis C running parallel 

to the rotary axis H of an irregularly shaped sample body shall be determined. For this purpose the pin 

mounted on the body is put into ten different holes of the hole row along the y-axis of the rotary disk and 

the coordinate yP is determined
6
. At each position, the average fall time t (mean of 4 single measure-

ments) for a predetermined distance l is measured for one mass m each. Afterwards, t is plotted against yP 

including error bars (standard deviation of the mean) and the value y is graphically determined, where t 

has a minimum.  
 

Alternatively, the position of the minimum of t may be determined by a non-linear fit
7
. The target func-

tion is, according to Eq. (19), given by:  
 

(22)  
2

1 2 Pt K K y y   
 

 

with the fit parameters K1, K2 and y. This fit directly provides the value yP = y for which the fall time t 

is minimal. 
 

Analogously, it would be possible to determine x and to state the position of the centre of gravity C in 

the xy-plane relative to the point P. In order to save time, however, we will confine ourselves to measur-

ing only the distance y between P and C. 
 

Remarks:  

In order to make sure that the orientation of the sample body does not change when shifting along the 

y-axis, two pins are mounted on the body. Therefore, it has to be determined first, which of the two 

pins marks the position of point P.  

                                                      
6 The distance between two holes on the disc is 10 mm (error free). 
7  Nonlinear fits are dealt with in part II of the basic laboratory course in the SoSe, see http://physikpraktika.uni-

oldenburg.de/download/GPR/pdf/Nichtlineare_Fits.pdf. Here the application is optional.  

rK

C



http://physikpraktika.uni-oldenburg.de/download/GPR/pdf/Nichtlineare_Fits.pdf
http://physikpraktika.uni-oldenburg.de/download/GPR/pdf/Nichtlineare_Fits.pdf

