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1 Introduction 

It is the object of this experiment to study the properties of a „harmonic oscillator“ in a simple mechanical 

model. Such harmonic oscillators will be encountered again in different fields of physics, for example in 

electrodynamics (see experiment “Electromagnetic resonant circuit”) and atomic physics. Therefore it is 

very important to understand this experiment, especially the importance of the amplitude resonance and 

phase curves. 

2 Theory 

2.1 Undamped Harmonic Oscillator 

Let us observe a set-up according to Fig. 1, where a sphere of mass mK is vertically suspended (x-direc-

tion) on a spring. Let us neglect the effects of friction for the moment. When the sphere is at rest, there is 

an equilibrium between the force of gravity, which points downwards, and the dragging resilience which 

points upwards; the centre of the sphere is then in the position x = 0. A deflection of the sphere from its 

equilibrium position by x causes a proportional dragging force FR opposite to x: 
 

(1) 𝐹𝑅  ~ − 𝑥 
 

The proportionality constant (elastic or spring constant or directional quantity) is denoted D, and Eq. (1) 

becomes the well-known HOOKE’s law
1
: 

 

(2) RF D x   
 

Following deflection and release the dragging force causes an acceleration a of the sphere. According to 

Newton’s second law 
 

(3) R KF m a  
 

In combination with Eq. (2) we therefore obtain: 
 

(4) 
2

2

d

d
K K K

x
m a m m x D x

t
      (t: time) 

 

the three terms on the left side merely representing different ways to write the relation force = mass  

acceleration. Eq. (4) is the important differential equation (also called the equation of motion), by means 

of which all systems can be described which react with a dragging force on a deflection from their posi-

tion of rest or equilibrium that is proportional to the degree of deflection. Such systems will be encoun-

tered very often in different fields of physics. 

We are interested in learning which movement the sphere makes when it is deflected from its position at 

rest and then released, its initial velocity v at the moment of release being zero. So we look for the func-

tion 

                                                      
1 ROBERT HOOKE (1635 – 1703) 
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Fig. 1: Mass/spring system. 

 
x(t), which is a solution of the differential equation (4) under the condition v(t = 0) = 0. Note that apart 

from multiplicative factors, this function must be equal to its second time derivative. Hence, we attempt 

to solve the differential equation with a function x(t), which describes a so-called harmonic oscillation: 
 

(5)    0 cosx t x t    

 

x0 is the amplitude, (t + ) the phase,  the initial phase and  the angular eigenfrequency of the oscil-

lation (cf. Fig. 2). Inserting Eq. (5) into Eq. (4) and performing differentiation twice with respect to time t, 

we find: 
 

(6)    2

0 0cos cosKm x t D x t          

 

From this follows the value of , for which Eq. (5) is a solution of Eq. (4): 
 

(7) 0:
K

D

m
    

 

Thus, the sphere performs oscillations with the angular eigenfrequency 0 when it is released. Since we 

assume that there is no friction, the amplitude x0 of the oscillation remains constant. x0 as well as the ini-

tial phase  are free parameters which have to be chosen such that Eq. (5) is „adjusted“ to the process to 

be described, i.e. that Eq. (5) reflects the observed motion with the correct amplitude and initial phase. 
 

Equation (7) is only valid if the mass of the spring, mF , is negligible compared to the mass mK of the 

sphere. If this is not true, we have to consider that the spring’s different elements of mass also oscillate 

following its deflection and release. The oscillation amplitudes of these elements of mass, however, are 

very different: They increase from zero at the point of suspension of the spring to a value x0 at the end of 

the spring. An exact calculation
2
  shows that the oscillation of the single elements of mass with different 

amplitudes equals the oscillation of one third of the whole spring mass with the amplitude x0. Therefore, 

the correct equation for the angular eigenfrequency reads: 
 

(8) 
0

1
: with :

1 3

3

K F

K F

D D
m m m

m
m m

    



 

 

In the experiment to be performed the sphere is not directly fixed to the spring but by a bar S2, with an 

attached reflective plate R (Fig. 8). In that case, mK in Eq. (8) has to be replaced by the total mass: 
 

(9) G K S Rm m m m    

 

mS and mR being the masses of S2 and R. 

An example illustrates the described relationships. According to Fig. 1 we observe a sphere of the mass 

mK = 0.11 kg suspended by the bar and reflective plate (mS + mR = 0.07 kg) on a spring with the spring 

constant D = 28 kg/s
2
 and the mass mF = 0.02 kg. The sphere is deflected by x0 = 0.05 m downwards from 

                                                      
2 See for example ALONSO, M., FINN, E. J.: “Fundamental University Physics, Vol. 1: Mechanics“, Addison-Wesley Publishing Company, 

Reading (Mass.) among others. 
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its position at rest. Then we release the sphere and it performs oscillations with the amplitude x0 and the 

eigenfrequency f0 = 0/(2)  1.9 Hz (Eq. (8)). If we start to record the motion x(t) of the sphere exactly 

when it has achieved its maximum upward deflection, the cosine according to Eq. (5) „starts“ at an initial 

phase of  =  = 180° (mind the sign of x in Fig. 1!). This situation is represented in Fig. 2. 
 

 
Fig. 2: Definition of the amplitude x0, period length T = 2and initial phase  of a harmonic oscillation. The 

phase  must be divided by 0 for the presentation on the t-axis.  

 

A system according to the arrangement considered here (also called mass/spring system) that performs 

harmonic oscillations is called a harmonic oscillator. The harmonic oscillator is characterized by a drag-

ging force proportional to the deflection leading to a typical equation of motion in the form of (4) with a 

solution in the form of (5). Equally characteristic of the harmonic oscillator is the parabolic behaviour of 

its potential energy Ep as a function of the position (Fig. 3): 
 

(10) 21

2
pE D x

 

 
Fig. 3: Course of the potential energy Ep as a function of displacement x for the harmonic oscillator. 

2.2 Damped Harmonic Oscillator 

Now we observe the more realistic case of a mass/spring system under the influence of friction. We start 

from the simple case where, in addition to the restoring force FR = -Dx, a frictional force Fb proportional 

to the velocity v is acting on the system. For Fb we can write: 

(11) 
d

d
b

x
F bv b

t
     

b being a constant of friction, which represents the magnitude of the friction. 
 

Question 1: 

- Which unit does b have? Why is there a minus sign in Eq. (11)? 
 

In this case the equation of motion (4) takes on the form: 
 

(12) 
2

2

d d

d d

x x
m D x b

t t
    

 

Usually, this differential equation is written in the form: 
 

(13) 
2

2

d d
0

d d

x b x D
x

t m t m
    

T



x

t

0

0

x (t)

x

Ep

+ x0- x 0
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Here again, it is interesting to know what type of  motion the sphere performs after being deflected once 

from its position at rest and then released with an initial velocity of zero. Thus, we are once again 

searching for the function x(t) which resolves the differential equation (13) under the condition 

v(t = 0) = 0. As a consequence of damping, we expect a decreasing amplitude of the oscillation and there-

fore try a solution with an exponentially decreasing amplitude (cf. Fig. 4): 
 

(14)  0 e costx x t       ( : damping constant) 

 

We insert Eq. (14) into Eq. (13), perform the differentiations, and find that Eq. (14) represents a solution 

of Eq. (13) if the following is true for the parameters  and : 
 

(15) 
2

b

m
   and 

 

(16) 

2

2

0
2

b

m
 

 
   

 
 

 
Fig. 4: Damped harmonic oscillation. 

 

We will now interpret this result. First we note that the amplitude of the oscillation decreases more rap-

idly the larger the damping constant (the damping coefficient)  is. In the case of invariable mass this 

means according to Eq. (15) that the amplitude of the oscillation decreases more rapidly the larger the 

constant of friction b is - which is plausible. 

From Eq. (16) we can read how the angular frequency  of this damped harmonic oscillation changes 

with the constant of friction b. We study the following different cases: 
 

(i) b = 0    = 0 
 

In the case of vanishing friction (b = 0) we have the case of the undamped harmonic oscillator as dis-

cussed in Chapter 2.1.The sphere performs a periodic oscillation at the angular eigenfrequency 0. 
 

(ii) (b/(2m))
2
 = 0

2
   = 0 

 

This is the case of „critical damping“ in which the sphere does not perform a periodic oscillation any 

more. It is therefore called the case of critical damping. The sphere only returns to its starting position 

exponentially (cf. remarks). 
 

(iii) (b/(2m))
2
> 0

2
    imaginary 

 

In the case of „supercritical damping” there is no periodic oscillation either. This case is called aperi-

odical case or over damped case. Here again, the sphere only returns to its starting position, however, 

with additional damping, i.e., more slowly (cf. remarks). 
 

(iv) 0 < b < 2m0   < 0 
 

This most general case, the oscillation case, leads to a periodic oscillation at a angular frequency  

(eq. (16)), which is slightly lower than the angular eigenfrequency 0 of the undamped harmonic 

oscillator. 

t

x (t)

x0 et
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Remarks: 

Under the conditions discussed above (v(t = 0) = 0) there is no considerable difference between the case of 

critical damping and supercritical damping: In both cases the sphere returns to its starting position along an 

exponential path; in the case of supercritical damping there is only a stronger damping. We find a different 

situation in the case v(t = 0)  0. If we do not only release the sphere, but push it thus giving it a certain starting 

velocity, it is possible in the case of critical damping that the sphere oscillates beyond its position at rest once, 

and only then returns to its starting position along an exponential path. In the case of supercritical damping such 

an oscillation beyond that position does not occur. The sphere always returns to its position at rest along an 

exponential path. Detailed calculations (solution of the differential equation (13) under the conditions (ii) and 

(iii)) confirm these relationships. 

2.3 Forced Harmonic Oscillations 

In Chapters 2.1 and 2.2 we have observed how the sphere oscillates if we deflect it once from its position 

at rest and then release it. Now we will investigate which oscillations the sphere performs if the system is 

subject to a periodically changing external force Fe (Fig. 5), for which the following is true: 
 

(17)  1 1sineF F t  

 

F1 is the amplitude of the external force and 1 its angular frequency. The sign is chosen such that the 

forces directed downwards are counted as positive and upward forces are counted as negative. 
 

 
Fig. 5: Oscillation generation of a mass/spring system with an external force Fe, m being the mass according to 

Eqs. (8) and (9). 

 

The external force Fe additionally acts on the spring. The equation of motion thus takes the form (cf. Eqs. 

(12) and (13)): 
 

(18) 
2

2

d d

d d
e

x x
m D x b F

t t
    

and hence 
 

(19)  
2

1 12

d d 1
sin

d d

x b x D
x F t

t m t m m
    

 

It is expected that the motion of the sphere following a certain transient time, i.e., after the end of the 

transient motion, occurs at the same frequency as does the change of the external force. There would be 

no plausible explanation for another frequency. However, a phase shift between the stimulating force 

and the deflection of the sphere could be assumed. We may expect the oscillation amplitude to remain 

constant upon completion of the transient motion since the system is provided with new external energy 

again and again. Based on these considerations the following ansatz is suggested for the differential equa-

tion (19): 
 

(20)  0 1sinx x t    

 

In this case  is the phase shift between the deflection x(t) and the external force Fe. For <0 the deflec-

tion lags behind the stimulating force. By inserting Eq. (20) into Eq. (19) we find that Eq. (20) represents 

+ x

0
m

- x

eF
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a solution of Eq. (19) if the following is true for the amplitude x0 and the phase shift  (derivation cf. 

Appendix chapter 4): 

(21) 

 

1

0
2

2 12 2

0 1

F

mx

b

m


 



 
   

   
 

(22) 
2 2

0 1

1

π
arctan

2b

m

 




 
 

  
  
 

 

 

Contrary to the cases discussed in Chapters 2.1 and 2.2, the amplitude x0 and the phase  are no longer 

freely selectable parameters, rather they are definitely determined by the quantities F1, 1, m, b and 0
2
 = 

D/m. 
 

Eq. (21) shows that the amplitude of the sphere's oscillation, the so called resonance amplitude, depends 

on the frequency of the stimulating force. Plotting x0 over 1, we obtain the amplitude resonance curve. 

Fig. 6 (top) shows some typical amplitude resonance curves for different values of the friction constant b. 

In the stationary case, i.e. for 1 = 0, we obtain the amplitude known from HOOKE's law from Eq.(21): 
 

(23)   1
0 1 000 :

F
x x

D
   

 
 

This is the value by which the sphere is deflected if it is affected by a constant force F1.Substituting F1 

from Eq. (23) into Eq. (21), one obtains for the resonance amplitude x0: 
 

(24) 

 

00
0

2
2 12 2

0 1

x D
x

b
m

m


 



 
   

 

 

The position of the maximum of x0 as a function of 1 is found by means of the condition dx0/d1 = 0. 

From Eq. (24) follows: 
 

(25) 
2

2

0 0,max 1 0 2
for

2

b
x x

m
     

 

Except for the case b = 0, the maximum of the amplitude resonance curve is thus not found at the angular 

eigenfrequencies 0, but at a slightly lower angular frequencies 1 < 0. 
 

The lower part of Fig. 6 shows the so called phase curves which determine the development of the phase 

shift  as a function of the angular frequency 1. From Eq. (22) it follows that  is always negative, i.e., 

the deflection of the sphere always lags behind the stimulating force except for the case 1 = 0. 
 

We will now discuss some special cases: 
 

(i) In the case 1 << 0 the amplitude x0  F1/D is independent of b for „not too large“ b. The amplitude 

resonance curve is nearly horizontal for small excitation frequencies and the phase shift  tends to 0: 

  0°. Thus the motion of the sphere almost directly follows the stimulating force. 
 

(ii) In the resonance case (1 according to Eq.(25)), the amplitude is maximal and given by 
 

1
0,max

2
2

0 24

F
x

b
b

m





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 The smaller b is, the larger x0,max becomes; for b  0, x0,max  . In this case the sphere's deflection 

lags behind the generating force by 90° ( = - /2). 
 

(iii) In the case 1 >> 0, x0  F1/(m1
2
), i.e., the amplitude drops by 1/1

2
. The phase shift is  = -  in 

this case, i.e., the sphere's deflection lags behind the generating force by 180°. 

 
Fig. 6:  Amplitude resonance curves (top) and phase curves (bottom) for a damped harmonic oscillator. 

(F1 = 0.1 N, m = 0.1 kg, D = 2 kg/s
2
, b in kg/s). 

 

From the amplitude resonance curves and the special cases discussed in (i) - (iii) the damping behaviour 

of a mass-spring-system can be read, i.e. of a vibration isolating table, which is frequently used in optical 

precision metrology. The eigenfrequencies of such tables are in the range of about 1 Hz. If an external 

disturbance (e.g. building oscillation) has a very low frequency (1  0), the amplitude of the perturba-

tion is transferred onto the table without damping. Close to the angular eigenfrequency (1  0) it is 

(unintentionally) amplified, whereas in the range of high frequencies (1 >>0) it is damped strongly. 
 

The damping behaviour of such a system can be influenced by changing the mass m. Fig. 7 shows that a 

larger m reduces the angular eigenfrequency with the other parameters remaining unchanged and that the 

damping for frequencies above the angular eigenfrequency can be increased significantly. Thus, oscilla-

tion dampening tables often have large masses in the range of 10
3
 kg. 

 

Finally we will examine at which frequency the maximal energy transfer occurs from the generating sys-

tem to the oscillating system. As we know that the maximal kinetic energy is equivalent to the maximum 

velocity, we first calculate the temporal course of the velocity v of the sphere using Eq. (20): 
 

(26)    1 0 1 0 1

d
cos : cos

d

x
v x t v t

t
          

 

With Eq. (24) we thus obtain for the velocity v0: 
 

(27) 

 

1 00

0 1 0
2

2 12 2

1 0

x D
v x

b
m

m





 

 

 
   

 

 

 

and hence: 
 

(28) 00
0

2

2

1

1

x D
v

D
m b





 
   

 
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v0 becomes maximal when the denominator of Eq. (28) becomes minimal, i.e., if the following is true (for 

b  0): 

(29) 1 0 0,max

1

0 =
D

m v v


    

 

Hence it follows: 
 

(30) 1 0 0 0,max

D
v v

m
      

 

Fig. 7:  Amplitude resonance curves for different masses m (in kg) with other parameters remaining unchanged 

(F = 0.1 N, D = 2 kg/s
2
, b = 0.1 kg/s). 

 

Thus the velocity and also the kinetic energy become maximal (in contrast to the resonance amplitude!) if 

the system is stimulated with its angular eigenfrequency 0. Therefore, this case is called energy reso-

nance, a case in which the generating system can transfer the maximal energy to the oscillating system. 

3 Experimental Procedure 

Equipment: 
Spring (D = (22.7  0.5) kg/s2, mF = (0.0575 10-4) kg), sphere on suspension bar with reflective plate (mG needs to be weighed), excitation 

system on stand with motor and light barrier, electronic speed controller for motor, laser distance sensor (type BAUMER OADM 

12U6460/S35, measuring range (16 – 120) mm), power supplies (PHYWE (0 – 15 / 0 – 30) V) for motor, light barrier and laser distance 

sensor, 2 glasses with different glycerine/water mixtures ( b  0,7  kg/s for the more viscous mixture at T = 20 °C), desk for the glasses, 

digital oscilloscope TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 1102B - EDU. 

3.1 Description of Experimental Set-Up 

The experiments are performed in a set-up according to Fig. 8. This allows for contact-free measurement 

of the amplitude resonance curves and phase curves. This set-up is described in the following, before 

presenting the actual measuring tasks in Chap. 3.2: 

A sphere K of mass mK is suspended on a spring by means of a bar S2. The sphere is plunged into a glass 

B filled with a glycerine/water mixture to damp its oscillation. A reflective plate R is fixed on the bar. A 

laser beam from the laser distance sensor LDS (the operating principle was detailed in the experiment 

“Sensors...”) is incident on the reflective plate. The sensor output is a voltage signal ULDS(t), which varies 

linearly with the distance s between LDS and R. 

The spring is connected to a piston rod P via a joint G1 with a second bar S1 which runs in a guide F. The 

piston rod P is fixed on a rotary disk D via a joint G2. The disk can be rotated at an angular frequency  

via a motor. Thus, the suspension point of the spring is set in a periodic vertical motion and a periodic 

driving force Fe(t) is exerted on the spring. After the end of the transient motion, the sphere, together with 

S2 and R, will also show a periodic vertical motion with amplitude x0. This causes the laser distance sen-

sor to produce a periodic voltage signal ULDS(t) with an amplitude of U0 ~ x0 and an offset UDC which 
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depends on the distance s between LDS and R in the rest position of the sphere. The period T of ULDS is 

given by 
 

(31) 
1

2π
T


  

 

Thus the amplitude resonance curve U0(1) can be measured by varying 1. Using the calibration factor k 

of the laser distance sensor for voltage differences 
 

(32) 0,0962 V/mmk 
 

 

the amplitude resonance curve x0(ω1) can be determined. k may be taken as an error free quantity. 
 

The measurement of the phase curve, i.e. the phase shift  between the driving force Fe(t) and the vertical 

displacement x(t) of the sphere as a function of the angular frequency 1 can be carried out as follows: 

 

With the aid of a marker M and the light barrier LS, which is interrupted by M, an electric pulse ULS(t) is 

generated every time the suspension point of the spring reaches its highest position (time t1 in Fig. 9). 

At this time, the driving force Fe(t) = md
2
x/dt

2 
is at its minimum (keep in mind the sign according to Fig. 

5). At a later time t2, the sphere (not the suspension point of the spring!) reaches its highest position and 

thus the deflection x(t) its minimum (- x0; here too keep in mind the sign according to Fig. 5). In this posi-

tion, the distance s between LDS and R and thus also ULDS(t) is minimal. The phase shift  between Fe(t) 

and x(t) is then given by (cf. Fig. 9): 
 

(33) 
2 1

12 : 2
t t t

t
T T

   
 

      
 

 

Therefore by variation of 1, the phase curve (1) can be measured. 
 

In practice, the amplitude U0(1) and time difference t(1) are measured simultaneously for each angu-

lar frequency 1 with the aid of an oscilloscope. 

Finally one remark on the temporal course of the driving force Fe(t): Except a constant phase shift, it cor-

responds to the temporal course of the vertical motion of the join G1, i.e. the suspension point of the 

spring. This motion is described by the quantity y(t) (cf. Fig. 10).  
 

 
Fig. 8: Sketch of the experimental set-up. 
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Fig. 9:  Temporal course of the output voltages of the light barrier LS (ULS) and the laser distance sensor LDS 

(ULDS).Time t1: suspension point of the spring at highest position, driving force Fe(t) minimal. Time t2: 

Sphere at highest position, x(t) and ULDS minimal. 

 

 
Fig. 10: Definition of quantities for calculating the movement of the join G1 (cf. Fig. 8). 

 

If the piston rod is mounted on the disk at a distance r from the axis of rotation, we obtain: 
 

(34)  cos cosy r l    
 

and 

(35) sin sin sin sin
r

r l
l

       

With 

(36) 

2
2 2

2
cos 1 sin 1 sin

r

l
       

and 
 

(37) 1 t   

 

we finally obtain: 

(38)    2 2 2

1 1cos siny r t l r t     

 

The purely harmonic motion (r cos(1t)) is thus superimposed by a disturbance (square root term in Eq. 

(38)) which, unfortunately, is also time-dependent and therefore makes the motion anharmonic. There-

fore, the driving force Fe(t) is not completely harmonic either. If we choose l >> r, however, 

l
2
 >> r

2
sin

2
(1t) and hence (...)  l. Instead of a time-dependent disturbance we then have to deal with a 

merely additive constant l which no longer disturbs the „harmony“. 
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3.2 Amplitude Resonance Curve and Phase Curve for Strong and Weak Damping 

Using the setup according to Fig. 8, for a sphere with suspension bar S and reflective plate Rand a spring 

with known D and mF (for data see Equipment) the amplitude resonance curve x0(1) and the phase curve 

(1) within the frequency range f1 =  1/2 between 0 Hz and approx. 5 Hz are to be measured for two 

different dampings (glasses containing different glycerine/water mixtures). 
 

The piston rod P of the excitation system is fixed to the disk in the second hole from the centre. The 

anharmonic disturbance according to Eq. (38) can be neglected in this case. 

The output signals of the light barrier (ULS) and the laser distance sensor (ULDS) are displayed on a digital 

oscilloscope, which is triggered by the signal ULS. The period time T of ULS and the peak-peak value 

(USS = 2 U0) of ULDS are determined by using the oscilloscope’s MESSUNG / MEASURE function. From 

these quantities, the angular frequency 1and the amplitudes U0 and, respectively x0 can be determined. 
 

The time difference t = t2 – t1, from which the phase shift  can be calculated according to Eq. (33) is 

measured by using the TIME-CURSOR (cf. Fig. 9). 
 

Hint: 

In order to achieve a mostly uniform motion of the disk, the disk must always be rotated counter clockwise. For 

the same reason, an electronic speed controller (operating voltage 12 V) must be used for adjusting the 

revolution number of the motor within the frequency range between 0 Hz and approx. 1.5 Hz, which is mounted 

between the power supply and the motor. For frequencies exceeding 1.5 Hz the motor can be directly connected 

with the power supply and the number of revolutions can be controlled via the operating voltage (increase 

voltage slowly from 0 V to max. 12 V). 
 

For both glycerine/water mixtures , the amplitude U0(1) of the sphere motion, the period duration T, and 

the time difference t are measured for as many different values of 1 as possible (at least 20), especially 

near the eigenfrequency. The measurements are performed after the end of the transient motion. 

For the case  1  0, the amplitude U0 is determined by manually turning the axis of the motor (while the 

motor is switched off) to the positions “piston rod up”, “piston rod down“ and measuring the corre-

sponding voltages ULDS. 

We plot x0 over 1 for both mixtures in one diagram, and  over 1 likewise in one diagram. The maxi-

mum errors of x0 and  are also entered in the form of error bars (estimate errors from the fluctuations of 

the measurements for USS and T at the oscilloscope). Then freehand regression curves are drawn through 

the measured values and their course is compared with the theoretical expectations. 
 

Remarks: 
In the vicinity of the angular eigenfrequency the measurement under weak damping may become difficult, 

because the amplitudes may be large and the spring (possibly even the mount) may get into uncontrollable 

motion or the sphere may even hit the bottom of the glass. In that case the spring system must be damped 

manually and rapidly proceeded to the next frequency value. 

4 Appendix: Calculation of the Resonance Amplitude and the Phase Shift 

We want to demonstrate that the resonance amplitude x0 and the phase shift  can be calculated with a 

few simple calculation steps, if we change over to complex representation. In complex representation Eq. 

(19) reads: 

(39) 1

2

12

d d 1
e

d d

i tx b x D
x F

t m t m m


    

 

In analogy to Eq. (20) we choose as a complex approach: 
 

(40) 
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Following differentiation and division by 1i t
e


 insertion of Eq. (40) into Eq. (39) yields: 
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Hence it follows with the definition of the angular eigenfrequency  0 according to Eq. (8): 
 

(42) 
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0
2 2
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e :i
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As already demonstrated in the experiment “measurement of capacities...”, Eq. (42) is one representation 

form of a complex number z, whose absolute value (modulus) |z| = x 0 is given by *zz , with z* being 

the conjugate complex quantity of z. Hence it follows: 
 

(43) 
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from which we obtain Eq. (21) by simple multiplication. 
 

For calculating the phase angle we again use (cf. experiment “measurement of capacities...”) the second 

representation of complex numbers, namely z =  + i,  being the real part and  the imaginary part of z. 

As is generally known, the phase angle  can be calculated from these quantities as 
 

(44) 
π for < 0 and 0
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 

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In order to convert Eq. (42) into the form  + i, we extend the fraction in Eq. (42) with the conjugated 

complex denominator: 
 

(45) 
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from which we can read off the quantities  and  : 
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which yields by insertion into Eq. (44): 
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With 
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it finally yields Eq. (22). 


