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1 Introduction 

This experiment mainly deals with the quantitative measurement of forces. In the first part, the relation-

ship between force and deflection in a mechanical harmonic oscillation is investigated. The second part of 

this experiment deals with the distance law in the dynamic effect between two magnets. The third and 

final part explains the relationship between force and momentum and impulse of force, respectively. 

2 Theory 

2.1 Harmonic Oscillation: Force and Deflection 

Let us observe a set-up according to Fig. 1, which we have already got to know in the experiment “Sen-

sors for force…“ in a similar form. A spring FE is attached to a force sensor S. A sphere K is suspended 

on the lower end of the spring via a rod ST. Additionally, a reflective disc R is mounted on the rod. 
 

 
Fig. 1: Set-up for measuring the force and deflection in a harmonic oscillation. For notations cf. text. 

 

When the sphere is at rest, there is an equilibrium in the force of gravity of ST, K and R that points 

downwards and the resilience pointing upwards. The center of the sphere is then in its equilibrium posi-

tion at x = 0. An additional force F0, which points downwards, deflects the sphere downwards by the dis-

tance x0 
1
. At time t = 0, the sphere is released and is accelerated upwards by the tensile force F of the 

spring. According to HOOKE’S law with the spring constant D we thus obtain for F:  
 

(1) 0F D x   
 

Subsequently, the sphere performs a harmonic oscillation in the x-direction. The deflection from its equi-

librium position, x(t), which can be measured using a laser distance sensor LDS, is described by the fol-

lowing equation neglecting friction effects
2
: 

                                                      
1  Since F0 and all other observed forces act only in x-direction, a description with scalar quantities is sufficient. 
2  A detailed mathematical description of the oscillation is given later on in the experiment “Forced mechanical oscillations“. 
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(2)    0 cosx t x t  

 

where  is the angular frequency of the oscillation which is given by: 
 

(3) 
D

m
   

 

m is the decisive mass for the oscillation, given by:  
 

(4) 
K ST R FE

1

3
m m m m m     

 

mK, mST, mR and mFE are the masses of the sphere, the rod, the reflective disc and the spring
3
 respectively.  

 

The velocity v(t) of the sphere is obtained by differentiating x(t) for time: 
 

(5)    0 sinv t x t    

 

The acceleration a(t) is obtained by differentiating the velocity for time: 
 

(6)    2

0 cosa t x t   

 

Hence it follows for the force F(t) exerted on m by the spring: 
 

(7)        2

0 0cos cosF t m a t m x t F t        

 

with 
 

(8) 2

0 0F m x   
 

Question 1: 

- The force F(t) has a positive or a negative sign depending on the position x(t) of the sphere. Within 

which range does the spring act as a tension spring or as a pressure spring? 
 

At the equilibrium position of the sphere, the force sensor S measures the weight G of FE, ST, R, and K. 

If the sphere is pulled down from its position of rest by the force F0, S measures the force according to 

NEWTON’S 3rd axiom
4
 actio = reactio   

 

(9)  S 0 0F G F G F t      

 

with F(t) according to Eq. (7). After the sphere has been released, S measures the force  
 

(10)    SF t G F t   

 

After subtraction of G, S thus yields F(t) according to Eq. (7) with reversed sign. 

2.2 Distance Law for Magnetic Force 

As is generally known, the gravitational force FG between two masses m1 and m2 at distance r is defined 

by NEWTON’s law of gravitation: 
 

(11) 1 2
G 2

ˆ
m m

G
r

F r   

where G is the gravitational constant and r̂ is the unit vector parallel to the connecting line between the 

center of both masses
5
. As the force decreases with the square of the distance r, this is called a 1/r

2
 law. 

                                                      
3  The relationship according to Eq. (4) is explained in the experiment “Forced mechanical oscillations“. 
4  ISAAC NEWTON (1643 – 1727) 
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Also the COULOMB law, which describes the force FE between two electrical charges q1 and q2 in a 

vacuum, is a 1/r
2
 law. It reads: 

 

(12) 1 2
E 2

0

1
ˆ

4π

q q

r
F r  

 

where 0 is the electric constant and r and r̂  are defined in analogy to the law of gravitation. We obtain 

an attracting force for charges with unequal signs and a repulsive force for charges with equal signs. 
 

 
 

Fig. 2: The distance law for magnetic forces. P1 and P2 represent the pole strengths of the magnets with 

diameters that are small compared to their lengths. The distance r between the two magnets is measured 

between the poles. 

 

Under certain conditions, a 1/r
2
 law is valid for the force between two magnets, too. Let us consider two 

bar magnets according to Fig. 2, the diameters of which are small compared to their lengths. Under this 

condition, the “strength” of such magnets can be described by pole strengths P that act with different 

signs at the magnetic north and south pole of the respective magnet and can be assumed to be point-like
6
. 

The force between two magnets is then described by COULOMB‘S law for magnets: 
 

(13) 0 1 2
M 2

ˆ
4π

P P

r


F r  

 

where 0 is the magnetic constant and r and r̂  are defined in analogy to the law of gravitation. The force 

is attractive in cases of opposite poles and repulsive in cases of like poles. 

2.3 Momentum and Impulse of Force 

The state of motion of a body of mass m moving linearly at a uniform velocity v, is described by the 

momentum 
 

(14) mp v  
 

According to NEWTON’s 1st axiom, a change of the momentum is only possible, if a force F acts on the 

body. According to NEWTON’s 2nd axiom, the temporal change of the momentum caused by F is given 

by 
 

(15) 
d

dt


p
F  

 

Eq. (15) can also be written in the form 
 

(16) d dtp F  
 

It means that the force F acting on a body during the time period dt causes a change of the momentum dp. 

The product F dt is called impulse of force. Hence, it holds: 
 

 impulse of force = change of momentum 

                                                                                                                                                                           
5  To be exact, Eq. (11) is only valid for point-like masses at distance r. However, the same relationship is found in approximately sphere-like 

masses with symmetrical mass distribution around the center (e.g. in the system earth and moon). Then r describes the distance between both 

centers.  
6  The magnetic pole strength P is defined differently in the literature. Here, it denotes the quantity with the unit [P] = A m. 

r
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Fig. 3: On the elastic collision of two bodies K1 and K2. 

 

We now observe the elastic collision between a body K1 with the mass m1 and a resting body K2, the mass 

m2 of which is much bigger than m1, as illustrated in Fig. 3. K1 is initially assumed to move linearly at a 

velocity v1 towards K2 (v2 = 0) and to collide with K2 at the angle . Following the collision, K1 moves 

away from K2 at the velocity
'

1v . The prime (‘) denotes quantities following the collision here and in the 

following. In the case m2  ∞ that is observed here,
'

2 0v  holds true. Hence, the momentum of K1 

prior to and following the collision is: 
 

(17) 
1 1 1

' '

1 1 1

m

m





p v

p v
 

 

with
'

1 1v v . Therefore, the kinetic energy of K1 prior to and following the collision is almost identical. 

 

(18) 
22 '

1 1 1 1

1 1

2 2
m v m v  

 

Virtually, no kinetic energy is transmitted to K2 under the given conditions.  
 

The change in momentum K1 experiences by the collision is: 
 

(19)  ' '

1 1 1 1 1m    p p p v v  

 

It must be equal to the momentum received by K2: 
 

(20) 
' '

2 2 2m  p p v  

 

Eq. (20) is not in contradiction to the fact that K2 does approximately not receive any kinetic energy by 

the collision due to 
'

2 0v . This is quite evident from the relationship between kinetic energy and 

momentum: 
 

(21) 

' 2
' 2 2

kin,2 2 2

2

1

2 2
E m

m
 

p
v  

 

For m2  ∞ the kinetic energy thus approaches zero even for a finite momentum 
'

2p . 

 

The change of momentum p of K1 must be equivalent to the total (integral) impulse of force that K2 

exerts on K1 during the collision process. According to Eq. (16) this impulse of force is given by: 
 

(22)  
0

dt t



  p F  
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Here, F(t) is the force acting during the time period  of the collision. Initially, it acts as a brake on K1 

reducing its velocity v1 to 0 and thereafter accelerates it to velocity
'

1v . In order to understand the collision 

process better, we can imagine K2 to be a spring pressed together by K1 until its velocity is 0 and then 

relaxing again thereby accelerating K1 to velocity
'

1v . 

3 Experimental Procedure 

Equipment: 
Force sensor working on DMS principle (measuring range (0 - 5) N), measuring amplifier for force sensor, set of weights for calibrating the 
force sensor, 2 power units (PHYWE (0 - 15 / 0 - 30) V), digital oscilloscope TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 1102B - EDU, 

spring with sphere, rod and reflective disc, laser distance sensor (BAUMER OADM 12U6460/S35), bar magnets in Al mountings with stay 

bars, PVC distance piece, guide for bar magnet, adjustable table, air cushion track, sled for air cushion track with screen and Al cubes, hybrid 
light barrier (BETA-SENSORIK GLS-30BP/R), hook for force sensor, stand on base, rods, pillar of stand, cross joints, caliper gauge. 

3.1 Calibration of the Force Sensor 

The force sensor used in the following experiment works on the same principle as the sensor used in the 

experiment “Sensors for force…“. These two sensors differ only in their measuring range (here: 5 N, pre-

viously: 100 mN). Because of this reason the damping must be switched off. The calibration of the sensor 

is performed using at least five mass pieces within the range m  (50 – 500) g.  
 

The output voltage U of the force sensor
7
 is measured with an oscilloscope

8
. G = mg is plotted over U 

using the value g = 9.8133 m/s
2
 for the earth’s acceleration g that can be assumed to be exact. A regres-

sion line is drawn through the data, whose parameters are later used for converting voltage to a force.  

3.2 Force and Deflection for a Harmonic Oscillation 

The force F(t) and the deflection x(t) for a harmonic oscillation are to be measured using a set-up accord-

ing to Fig. 1. First, the masses of the spring and of the system rod/reflective disc/sphere are determined by 

weighing. Then, all the components are attached to the force sensor, which is mounted on a stand as 

shown in Fig. 1. The laser distance sensor LDS is also attached to the stand and its position is adjusted 

such that the reflective disc remains within its measuring range during the oscillation. Subsequently, the 

sphere is manually pulled downwards by about 20 mm as vertically as possible and then released.  
 

The output voltage of the LDS, ULDS(t), and the output voltage of the force sensor, US(t), are recorded 

with a storage oscilloscope triggered to ULDS. The time-base of the oscilloscope is adjusted so that 5 - 10 

oscillation periods are visible on the screen. Following the transient oscillation a typical oscillation pro-

cess is stored in single-sequence mode. A screenshot is taken and attached to the report.  
 

With the aid of the time cursors, the period of the oscillation is determined and the angular frequency  is 

calculated. The amplitudes (index 0) of ULDS(t) and US(t) of a selected partial oscillation are measured 

using the voltage cursors:  

(23)    LDS,0 LDSmax LDS,min ,0 S,max S,min/ 2 / 2SU U U U U U     

 

With the calibration factor k of the LDS for voltage differences,  
 

 0,0962 V/mmk  , 
 

which is assumed to be exact, the oscillation amplitude x0 can be extracted and the force F0 can be 

calculated with Eq. (8). Mass m is calculated according Eq. (4) and  is measured by an oscilloscope. 

From Us,0 and the calibration function of the force sensor F0 can also be estimated. Both results should be 

compared. 
 

Question 2: 

- What could be the reasons for differences of both quantities? 

                                                      
7  To simplify matters, the term “output voltage of the force sensor“ is used here and in the following for the output voltage of the measuring 

amplifier connected with the actual force sensor. 
8  Since the voltage U is measured with the oscilloscope in the following measurements, U is also measured with the oscilloscope instead of a 

multimeter here, in order to avoid differences between the measured values caused by different calibrations of oscilloscope and multimeter. 
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3.3 Force of Attraction Between two Magnets 

Using a set-up according to Fig. 4 we examine the validity of the distance law for the force of attraction 

between two magnets according to Eq. (13). Both magnets are mounted in aluminum tubes which are 

screwed to rods. Initially, only the upper magnet, with the pole strength P1, is attached to a force sensor S 

together with the rod. An almost frictionless guide A confines its motion to a vertical direction. The out-

put voltage US,0 of the force sensor is measured. This voltage US,0 corresponds to the case r  ∞, hence 

only caused by the weight G of rod and magnet. From US,0 G is calculated with the data of the calibration 

function and subtracted from all other forces measured later on.  
 

 
Fig. 4: Set-up for measuring the attraction force between two magnets with the pole strengths P1 and P2. All 

components are mounted on one stand ST enabling a precise vertical mounting. For other notations refer 

to the text. 

 

Subsequently, the lower magnet with the pole strength P2 is mounted on an adjustable table V, so that it 

can be moved in vertical direction. First, the lower magnet is adjusted so that the longitudinal axes of both 

magnets exactly superimpose each other. Then, a defined distance l is set between both magnets using a 

PVC piece (length l  20 mm, to be measured). The respective scale position of the shiftable table is 

noted down and defined as s = l. Then, the shiftable table is adjusted to the scale position s = 10 mm and 

US(s) is determined
9
. Subsequently, we reduce s to about s = 2 mm in steps of approx. 0.5 mm measuring 

again US(s) each time. 
 

The values of US(s) are converted into forces F(s) with the data of the calibration function. After sub-

tracting G we obtain the forces FM(s) caused by magnetic attraction:  
 

(24)    MF s F s G   

 

According to Fig. 5, each force F acting on the bending rod in the force sensor leads to a minor deflection 

d of the rod in the direction of F at the point of impact Q of F. d(F) can be described by a polynomial of 

the 2
nd

 order in good approximation:  
 

(25)   2

1 2d F a F a F   

The parameters a1 and a2 can be taken from the available work papers. Considering the deflection d the 

real distance r between both magnets at a position s on the shiftable table is: 
 

(26) r s d   
 

FM is log-log plotted over r (Origin). A regression line is drawn into the diagram through the measured 

values for r > 5 mm with the fixed slope - 2. If the 1/r
2
 law expected from Eq. 13 is valid, all measured 

values must lie on this line. For small distances r, however, the measured values will distinctly deviate 

from the regression line, because the assumption of point-like pole strengths P is no longer justified for 

small r. 
 

                                                      
9  Example: Let l = 20.1 mm. At this distance between P1 and P2 the scale position 74.5 mm is read at the shiftable table V. This value is 

defined as s = l = 20.1mm. Afterwards V shall be moved to the position s = 10 mm. Accordingly a value of (74.5 – 10.1) mm = 64.4 mm has 

to be adjusted at its scale.  
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Question 2: 

- From which distance r upwards can we find a 1/r
2
 dependence in good approximation?  

 

 
Fig. 5: Deformation of the bending rod in the force sensor upon impact of a force F at the contact point Q. Q is 

deflected by the distance d due to F. 

3.4 Elastic Collision on an Air Cushion Track  

The relationship impulse of force = change of momentum for an elastic collision is to be quantitatively 

investigated on an air cushion track LK (Fig. 6), on which a mounted sled can be moved almost friction-

less. Since all motions proceed along the axis of the air cushion track ( = 0° according to Fig. 3), it is 

sufficient to observe the scalar quantities velocity (v) and momentum (p).  

 
Fig. 6: Set-up for measuring the momentum and impulse of force during an elastic collision on an air cushion 

track LK. K1: Sled with screen B and two Al cubes AW. S: Force sensor with spike P on mounting H. T: 

steel base for LK with regulating footing A. L: Length of measuring range. LS: hybrid light barrier.  

 

The sled K1 with the mass m1 is manually accelerated to velocity v1. It then moves towards the force sen-

sor S that is connected to the massive steel base T of LK with a rigid mounting H. This set-up guarantees 

the conditions defined in Chapter 2.3 for the collision partner K2 (consisting of S, H and T), namely 

m2  ∞ and thus 
'

2v   0 are met. The force F(t) acting between K1 and K2 during the collision is meas-

ured with the force sensor S and recorded with the aid of a storage oscilloscope.  
 

A screen B of the width d is mounted in the center of the sled, which interrupts a hybrid light barrier LS 

for the period tLS while passing it. By measuring d (caliper gauge), tLS (storage oscilloscope), and m1 

(laboratory scales) the velocities and momentums of K1 prior to and following the collision can be deter-

mined. 
 

Instructions for performance: 
 

- For a precise measurement of F(t) the force sensor is provided with a spike P that enables an approxi-

mately point-like contact with an aluminum cube AW mounted on the sled
10

. Prior to the measurement 

the sensor must be adjusted in a way that the spike hits the center of the cube. 
 

- In order to prevent the sled from being accelerated or decelerated along the track following the manual 

acceleration, it is necessary to adjust the track exactly horizontal. This cannot be achieved over its 

entire length, but can be achieved over a distance of L  (10 – 15) cm between LS and S, which is suf-

ficient for the measurement. The track is adjusted by regulating the footing A of the steel base, exclu-

sively, which was adjusted in advance by the technical assistant
11

.  
 

- The sled K1 may be accelerated only so strongly, that F(t) is always below 5 N in order not to exceed 

the measuring range of the force sensor. Thus, the velocity ν1 of the sled must not become too high 

und hence tLS must not become too small. tLS > 120 ms is a good rule-of-thumb value. 
 

Fig. 7 shows a typical oscilloscope image following a collision process: The signals ULS of the hybrid 

light barrier were recorded at CH1 (which is used for triggering), while the sled moved forth and back, 

                                                      
10  The sled must be provided with equal Al cubes on both sides in order to achieve a symmetrical mass distribution. 
11  When the air supply is switched on, A should be be adjusted in such a way, that the mounted sled is not accelerated within the range L. 
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and the signal US of the force sensor at CH2. A screenshot of the oscilloscope image is attached to the 

report. Then, the signals are stored on a Compact-Flash Card or USB stick and subsequently converted to 

ASCII format. For details see Appendix (Chapter 4). Subsequently, these data can be imported to 

Origin for further analysis. 

 
 

Fig. 7: Screenshot of the signals by the hybrid light barrier LS (CH1, top) and the force sensor S (CH2, below).  

 

The pulse widths tLS of the signals of the hybrid light barrier for the sled moving forth and back are 

determined either by means of the time cursors on the oscilloscope or in Origin using the Data 

Reader tool. The total momentum change of the slide during the experiment, can be calculated 

according to Eq. (19) : 
 

(27) 
'

1 1 1 '

LS LS

1 1
p p p m d

t t

 
     

 
 

 

Question 4: 

- Please demonstrate, how to get to equation (27).  
 

 

For calculating the maximum error of the change of momentum m1 and d can be regarded as error-free. 
 

For measuring the impulse of force the integral in Eq. (22) is replaced by a sum: 
 

(28)  i

i

p F t t    

where the F(ti) are the discrete values of the force sensor at times ti (sampling points of the oscilloscope) 

that can be calculated from the recorded voltage values US(ti) by applying the calibration function. The 

sum over the F(ti) is easy to determine using the Origin tool Statistics on columns
12

. t is 

the constant temporal distance between two consecutive measuring values at times ti and ti+1, which 

results from the adjusted time-base sweep on the oscilloscope (x SEC/DIV) and the number of recorded 

measuring values (2,500).  
 

(29)  10 DIV SEC/DIV / 2500t x    

 

It is difficult to determine the start and end of the impulse of force, and thus its duration , precisely. 

Therefore, the sum according to Eq. (28) is not added up over , but over the complete time interval 

recorded, i.e. over all of the 2,500 measured values recorded with the oscilloscope. At this procedure we 

must take the following into account: 
 

Outside the time interval , F(ti) = 0 should be valid. Actually, F(ti) ≠ 0 can be caused by a small offset in 

the force signal and by electronic noise, which may lead to a significant error for summation over many ti. 

Therefore, we first calculate the mean F0 of the force signal over the time interval, which surely lies 

                                                      
12  Right mouse-click on the marked column, choose the menu Statistics on columns, tick Sum under the submenu Quantities. 
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before the start of the collision
13

. Subsequently, this value F0 is subtracted from all measured values F(ti) 

and only then the sum is calculated according to Eq. (28). 

In order not to make the calculation of the maximum error of the impulse of force too elaborate, a maxi-

mum error of 5 mN may be assumed for each single force value F(ti) and the maximum error of Δt can be 

neglected. 
 

Finally, we have to examine, whether the change of momentum according to Eq. (26) corresponds to the 

impulse of force according to Eq. (28). The reasons for possible deviations between both quantities are 

discussed. 

4 Appendix 

The following steps are necessary for storing data from the oscilloscope on an USB stick or Compact-

Flash card, and for later converting them to ASCII data files: 
 

First, the following keys of the oscilloscope are pressed once: 
 

Basic adjustments: 
 

SAVE/RECALL    Action    Save all 

PRINT    Save all 

Choose directory  Select GPRnn  Change directory  Back 
 

Storage: 
 

SAVE / PRINT 
 

After pressing the SAVE / PRINT key, four files are stored in the sub-directory ALLnnnn, where nnnn is a 

consecutive number (starting at 0000) that is increased by 1 each time the key SAVE / PRINT is pressed. 

The four files are: 
 

FnnnnTEK.SET  ASCII file with operational parameters of the oscilloscope 

FnnnnTEK.TIF  Image file with screenshot 

FnnnnCH1.CSV  Data of CH1 (voltage U1 as a function of time t among others) 

FnnnnCH2.CSV  Data of CH2 (voltage U2 as a function of time t among others) 
 

For quantitative analysis, only the two last files available in CSV format are important.
14

 With the aid of 

the available Matlab script
15

 GPRTools.m, there option Tektronix CSV to ASCII, the signal 

courses U1(t) for CH1 and U2(t) for CH2 are extracted from these files and converted into ASCII format
16

. 

Subsequently, these data are stored in the directory ALLnnnn under the following file names: 
 

FnnnnCH1_all.txt Column 1: t, column 2: U1(t) for CH1 
FnnnnCH2_all.txt Column 1: t, column 2: U2(t) for CH2 

 

These files can be imported to Origin via File  Import  … . 

                                                      
13  Mark lines in the column with values for F(ti), in which ti lies before the start of the collision. Then choose  Statistics on 

columns, there choose submenu Quantities and tick Mean. 
14  CSV is the abbreviation of character separated values. This means that the single entries in the file (numerical values, character strings,…) 

are separated by a defined character. Here, the comma is the separating character. 
15  After logging onto a PC in the laboratory the Matlab script is available on the desktop and can also be accessed under StudIP.  
16    With newer versions of Origin, CSV files can be directly imported. 


