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1 Introduction 

In this experiment measuring methods are presented which can be used to determine the capacitance of a 

capacitor. Additionally, the behaviour of capacitors in alternating-current circuits is investigated. These 

subjects will be treated in more detail in the experimental physics lecture of the second semester. Simple 

basics, as covered here, need to be known in advance, in order to understand the behaviour of capacitors 

in the electrical circuits used in this laboratory course. 

2 Theory 

2.1 Capacitance of a Capacitor 

Every set-up of two electric conductors separated by a certain distance represents a capacitor. Hence, two 

wires lying beside each other (e.g. laboratory cables) are just as much a capacitor as two parallel metal 

plates or a wire surrounded by a wire mesh at a certain distance (coaxial cable).  
 

 
 

Fig. 1: Scheme of a parallel-plate capacitor. For the labels, please refer to the text. 
 

Let us exemplarily study a capacitor of a particularly simple structure, the  parallel-plate capacitor, con-

sisting of two electrically conductive plates, each with an area A, set up in parallel at a distance d (Fig. 1). 

If such a capacitor is connected with a voltage source with the operating voltage Ub (terminal voltage in 

the unloaded state) there is a short-time charge current: the voltage source pulls electrons from the one 

plate and transfers them to the other plate, i.e., it causes a shift of a charge Q from one plate to the other 

one. This charge displacement causes an electric field E to be built between the plates, the value of which 

is given by E = U/d, U being the instantaneous voltage across the capacitor. This voltage reaches its 

maximum U = Ub after a certain time period. This is when the capacitor is completely charged; one plate 

then has the charge +Q0, the other one, the charge -Q0. 
 

Ub and Q0 are proportional. The proportionality coefficient 
 

(1) 0

b

Q
C

U
  

 

is termed the capacitance of the capacitor. Its unit is FARAD F
1
: 

                                                      
1  Named after MICHAEL FARADAY (1791 - 1867) 
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For a parallel-plate capacitor in a vacuum the capacitance is exclusively determined by the geometry of 

its arrangement. It is directly proportional to the area A of the plate and inversely proportional to the dis-

tance d between the plates:  
 

(3) ~
A

C
d

 

 

Question 1: 

- How can the proportionality C  1/d be illustrated? (Hint: Consider the electric field E and the voltage 

U in a charged parallel-plate capacitor that is separated from the voltage source following charging 

and whose plates are pulled apart afterwards. See to it that the charge remains constant.) 
 

Applying the proportionality coefficient 0 we obtain: 
 

(4) C
A

d
  0

  (in a vacuum) 

 

0 is called the electric field constant (permittivity of vacuum). It is calculated from two internationally 

determined constants, namely the speed of light c (in vacuum) and the magnetic field constant (permea-

bility of vacuum) 0, and can therefore be stated with an optional precision (cf. back page of the cover of 

this script). We confine ourselves to four digits here: 
 

(5) 


0

0

2

121
8 8541 10: ,   

c

As

Vm
 

 

By putting an electric insulator (dielectric) between the plates of the capacitor the capacitance is increased 

by the factor r  1: 
 

(6) C
A

d
r  0

  (in matter) 

 

r is termed relative permittivity (relative dielectric constant), the product  = 0r is called permittivity 

(dielectric constant). r is a numerical value dependent on the insulating material used. It is, e.g. for air at 

20° C and normal pressure  (101,325 Pa): r  1.0006, for water at 20° C: r  81, for different kinds of 

glass: r  5 - 16, and for ceramics (depending on kind): r   50 – 1,000. In a vacuum r = 1.
3
  

 

Question 2: 

- How can we explain the increase in capacitance due to the dielectric? (Hint: Attenuation of the electric 

field.) 
 

Many different types of capacitors are commonly available in retail. They come in a variety of casings, 

and their capacitances span several orders of magnitude. Fig. 2 shows some examples.  

 

                                                      
2   CHARLES AUGUSTIN DE COULOMB (1736 - 1806) 
3  In an alternating current circuit, r is dependent on the frequency of the fed voltage The mentioned values are approximate values for the 

case of low frequencies within a range below 1 kHz. 
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Fig. 2: Common retail versions of capacitors of different types and casings. The capacitances of the depicted 

types vary between several picofarad (pF) and several microfarad (F). 

2.2 Charging and Discharging of a Capacitor 

2.2.1 Discharging 

Let us first take a look at the discharging of a capacitor. We are particularly interested in knowing how 

long the discharging takes and how it develops with time. For this purpose we examine a charged capaci-

tor with capacitance C according to Fig. 3 which is discharged via a resistance R. Such an arrangement is 

called resistance-capacitance element. At an optional time t after closing the switch S we obtain (cf. Eq. 

(1)): 
 

(7) Q t C U t( ) ( )   

 
 

Fig. 3: Discharging of a capacitor via a resistor. 
 
 

Q(t) is the momentary charge of the capacitor and U(t) the momentary voltage across the capacitor. 

According to KIRCHHOFF's law this voltage equals the voltage across the resistance R, so that we obtain 

with the momentary current I(t): 
 

(8) U t R I t( ) ( )   
 

The current I(t) is caused by the decreasing (hence the minus sign) charge of the capacitor with time. 

Hence, 
 

(9) I t
dQ t

dt
( )

( )
   

 

Eqs. (7), (8), and (9) combine to yield the differential equation for the discharging of the capacitor: 
 

(10) Q t RC
dQ t

dt
( )

( )
    

 

The solution of this differential equation under the initial condition Q(t = 0) = Q0 reads: 
 

(11) Q t Q e

t

RC( )  


0  
 

S

C R
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The product RC has the unit [RC] = F = (V/A)(As/V) = s. Thus RC represents a time period , the so-

called time constant  which has the following meaning: at a time t =  = RC the charge has decreased to a 

value Q0/e, which is about the 0.368-fold of the initial value: 
 

(12) 0
0( ) ( ) 0.368

e

Q
t RC Q t Q Q         

 

For the time t = T (half-life time), within which the charge has decreased to half of the initial value, we 

obtain: 
 

(13) Q t T
Q

T RC RC( ) ln .      0

2
2 0 693  

 

If a discharge process shall be observed it is easier to look at the decreasing voltage across the capacitor 

instead of observing the decreasing charge of the capacitor according to Eq. (11). Applying Eqs. (1) and 

(7), Eq. (11) yields: 
 

(14) U t U
t

RC( )  


0 e  
 

The voltage drop, which can be very easily measured using, for example, an oscilloscope, has the same 

temporal variation as the decrease in charge. Hence, Eq. (14) yields an important relation for measuring 

capacitances in practice. Measuring the voltage U(t) at two different times t1 and t2, we obtain (cf. Fig. 4): 
 

(15) 
 

 

1

2

1 1 0

2 2 0

: e

: e

t
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t
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U t U U

U t U U





 

 

 

 

The natural logarithm of Eq. (15) yields
4
: 

 

(16) 

   

   

1
1 0

2
2 0

ln ln

ln ln

t
U U

RC

t
U U

RC

 

 

 

 

Hence, it follows: 
 

(17)     1 2 1
1 2

2

ln ln ln
U t t

U U
U RC

  
   

 
 

 

and finally: 
 

(18) 2 1

1

2

ln

t t
C

U
R

U




 
 
 

 

 

 

 The equation above is the basis for all capacitance measurements in this laboratory session.
5
 

 

                                                      
4 In order to be stringent, it would be necessary to replace ln(U1) by ln({U1}) (likewise for U0 , U1 , etc.) in equation (16) and the following, 

since the logarithm is only defined for a numerical argument (e.g. {U1}), but not for quantities having an associated unit (e.g. U1). To 

simplify the presentation we omit the curly brackets, silently implying the numerical value of the given physical quantity. 
5  Many multimeters employ this principle for measuring capacities. 
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Fig. 4: Course of discharge of a capacity. 

 

2.2.2 Charging 

Let us now observe the charging of a capacitor with the capacitance C with the help of a real voltage 

source according to Fig. 5. The real voltage source can be considered an ideal voltage source G in series 

with the source voltage U0 and a resistance R (the internal resistance of a real voltage source). According 

to KIRCHHOFF's law we obtain an optional time t after closing the switch S (I(t) is the charging current): 
 

 
 

Fig. 5: Charging of a capacitor via a real voltage source. 
 
 

(19) 0 R C

( ) d ( ) ( )
( ) ( ) ( )

d

Q t Q t Q t
U U t U t R I t R

C t C
        

 

Hence it follows with  0 0Q C U : 

 

(20) 0

d ( )
( ) 0

d

Q t
Q t RC Q

t
    

 

The solution of this differential equation reads: 
 

(21) 0( ) 1 e

t

RCQ t Q
 

  
 
 

  

 

The time constant =RC states the time period within which the capacitor is charged to the (1 - 1/e)-fold 

of its maximum charge Q0. 
 

Analogous to the discharging of the capacitor, for the easily observable voltage increase of the capacitor 

we can write: 
 

(22) 0( ) 1 e

t

RCU t U
 

  
 
 

 

Question 3: 

- Plot the development of Eqs. (14) and (22) for the time interval [0; 5] for the values R = 1 k, 

C = 4.7 nF and U0 = 1 V using Matlab. 

U1

U2

U

t 1 t2 t

S

= U0 G

R

C

I
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2.3 Interconnection of Several Capacitors 

The total capacitance of an arrangement consisting of several capacitors can be calculated by applying 

KIRCHHOFF's laws. For a series connection of n capacitors with the capacitances Ci we obtain (cf. Fig. 6 

for n = 2): 
 

(23) 

1

1 1n

iiC C

  

 

For a parallel connection one obtains (cf. Fig. 7 for n = 2): 
 

(24) 

1

n

i

i

C C


  

 

     
 

Fig. 6: Series connection of capacitors. Fig. 7: Parallel connection of capacitors. 
 

2.4 Cosinusoidal Excitation of a RC Element 

So far we have studied the behaviour of a capacitor which is charged or discharged once via a resistance. 

In order to understand the behaviour of capacitors in alternating circuits we will now observe the reaction 

of a RC element, which means a set-up consisting of resistance and capacitor, upon cosinusoidal excita-

tion. We look at a set-up according to Fig. 8. An ideal voltage source provides the alternating voltage 

UG(t) 
6
 with the angular frequency : 

 

(25) G 0( ) cos( )U t U t  

 
Fig. 8: RC element with cosinusoidal excitation. 

 
Analogous to Eq. (19) it follows from KIRCHHOFF's voltage law: 
 

(26)  G 0 R C

d ( ) ( )
cos( ) ( ) ( )

d

Q t Q t
U t U t U t U t R

t C
      

 

Hence it follows: 

(27) 0

d ( )
( ) cos( ) 0

d

Q t
Q t RC CU t

t
    

 

It is our aim to determine the temporal development of UC(t). For this purpose, it is sufficient, according 

to Eq. (7), to find the temporal development of Q(t). From the considerations presented in Chapter 2.2 we 

know that the capacitor cannot be charged or discharged infinitely rapidly. This means that the course of 

charging Q(t) cannot follow the voltage UG(t) instantaneously, but rather with a certain temporal delay. 

Therefore, we expect a phase shift  of Q(t) compared to UG(t). Thus, we try to solve the differential 

equation (27) by setting: 
 

(28) Q t Q t( ) cos( ) 0    

                                                      
6  Of course, the ansatz UG(t) = U0 sin( t) would also achieve its purpose; however, the form with the cos-function has become established in 

physics. 

C1 2C 1C C2

~ U  (t)G

R
C
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By inserting Eq. (28) into Eq. (27) we now have to determine the unknown quantities Q0 and . Follow-

ing some calculations (which are most easily done using complex quantities, see appendix in Chap. 4) we 

obtain for the maximum charge Q0 of the capacitor: 
 

(29) 

 

0
0

2
1

CU
Q

RC




 

 

and for the phase shift  between Q(t) or UC(t) and UG(t): 
 

(30) arctan( )RC     and 
 

(31) tan RC  , 
 

respectively. 
 

From Eq. (30) we learn that  is always negative. The charge Q(t) always lags behind the voltage UG(t). 

For the limit   0 we obtain   0° and for the limit    it follows:  = -90°. 
 

With the relationship: 
 

(32) 
2 2

1 1
cos

tan 1 ( ) 1RC


 
 

 
 

 

we obtain by inserting Eq. (32) into Eq. (29): 
 

(33) 0 0 cosQ CU   

 

Comparing Eqs. (1) and (33) we learn that the maximum charge of the capacitor is lower by a factor of 

cos  under a cosinusoidal excitation than under a direct voltage of magnitude U0. For the limit  0 we 

obtain Q0  CU0 and for the limit    it follows that Q0 = 0. 
 

Question 4: 

- How can these extreme cases be illustrated? 
 

We will now calculate the temporal course of the current I(t) through the loop according to Fig. 8. We 

have: 
 

(34) 
d ( )

( )
d

Q t
I t

t
  

 

Inserting Eq. (28) into (34) and performing the differentiation yields: 
 

(35)    0 0 0( ) sin cos cos
2

I t Q t Q t I t


       
 

        
 

 

 

with the current amplitude I0: 

 

(36) 0
0 0

2

2

1

( )

U
I Q

R
C





 



 

 

and the phase shift  between the current I(t) and the voltage UG(t): 
 

(37)  


 
2
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Using the relationship tan( + /2) = -1/tan, we obtain from Eqs. (37) and (31): 
 

(38) 
1

tan
RC




  

 

Eq. (38) shows that in the case  0 the current I(t) precedes the voltage UG(t) by 90° ( = /2). In the 

case  , however, current and voltage are in phase (  0°). With increasing frequency the phase shift 

between current and voltage decreases from 90° to 0°. 

2.5 Impedance 

The impedance (or apparent resistance) is an important parameter for the description of electrical cir-

cuits. It will be treated in more detail in the experimental physics lecture of the second semester. For this 

reason, we will restrict ourselves here to a few remarks on impedance. 
 

The impedance Z is defined as the total resistance
7
 an electrical circuit poses to an alternating voltage of 

angular frequency . It follows that Z = Z(). The unit of impedance is Ohm: 
 

  Z   

 

An impedance in an AC circuit will, in general, influence the amplitude and the phase of the current in a 

circuit. Thus it is practical to represent it as a complex quantity: 
 

(39)    Re ImZ Z i Z 
 

 

Fig. 9 shows Z as a pointer in the plane of complex numbers. The real part of Z is the (ohmic) resistance R 

of a circuit: 
 

(40)  ReR Z  

 

The imaginary part of Z is called reactance X
8
: 

 

(41)  ImX Z
 

 

Thus, we can write for Z (according to equation (39)): 
 

(42) Z R i X   
 

The magnitude of Z (i.e. the length of the arrow in Fig. 9) is given by: 
 

(43) 
2 2Z R X 

 
 

and the phase, meaning the angle of the arrow with the Re-axis is given by: 
 

(44) arctan
X

R


 
  

   
 

With the above, Z from Eq. (39) or (42) can be written in polar form as: 
 

(45) eiZ Z   

 

In analogy to Ohm’s law |Z| is given by the ratio of the voltage amplitude U0 to the current amplitude I0. 

For the RC-element in Chap. 2.4 it follows (I0 given by Eq. (36)): 

                                                      
7  In general, the total resistance is not a pure ohmic resistance! 
8 In an AC circuit with capacitor C and coil L, the reactance X is composed of an inductive component caused by L, and a capacitive 

component caused by C. More about this in the second semester. 
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Fig. 9: Impedance Z as a pointer in the plane of complex numbers 

 
 

(46) 
20

2
0

1

( )

U
Z R

I C
    

 

Comparison of Eq. (46) with Eq. (43) shows that Z is composed of an ohmic resistance R and a capacitive 

reactance X = 1/(C). In the case   0 we have 1/(C)  , i.e., Z is mainly determined by the capac-

itor which ”blocks“ the circuit in this case. For  , however, the situation is inverse: In that case 

1/(C) 0, i.e., the capacitor does not block and Z is mainly determined by the ohmic resistance R. 

3 Experimental Procedure 

Equipment: 
Digital oscilloscope TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 1102B - EDU, function generator (TOELLNER 7401, output resistance 

R  50 ), Multimeter (AGILENT 34405A), voltage supply, stopwatch, resistor decade, single capacitors on mounting plate (approx. 10 F, 

approx. 10 nF), plate capacitor (aluminium; A  0.20  0.17 m2) with dielectric (PVC plates of variable thickness, d  (1, 2, 3) mm), 5 coaxial 

cables of different length, switch, metal measuring tape, tape measure, calliper gauge. 

 

Hint: 

In the following circuit diagrams those components are drawn in red whose quantities (capacitance or resistance) 

are to be measured (Fig. 10 - Fig. 12) or above which signals are measured (Fig. 15). The dashed frames 

surround the equivalent circuit diagrams of the instruments which are used to measure the required quantities, 

such as the function generator or the oscilloscope. Besides the input and output resistances and the capacitances 

of the instruments, often another capacitor CK is drawn into the circuit diagram. CK represents the capacitance of 

all cables required for the measurement setup (capacitance of connecting cables). 

In order to simplify the text we will often use the terms „input capacitance“ CO, the „capacitance of connecting 

cables“ CK, the capacitor C etc. when we mean „capacitors of the capacitances“ CO, CK or C etc. 

3.1 Determining the Input Resistance of an Oscilloscope from the Discharge 

Curve of a Capacitor 

The input resistance RO of an oscilloscope is to be determined from the discharge curve of a capacitor 

with the capacitance C (Fig. 10). For this purpose, C is charged via the internal resistance RS of a voltage 

source (voltage supply; initial voltage  5 V), then C is separated from the voltage source (open switch S) 

and the discharge of C via RO is observed.  
 

The input capacitance CO of the oscilloscope, the capacitance of connecting cables CK and the capacitance 

C are in parallel. We choose C >> CO + CK, so we can neglect CO and CK (here, C  10 F, measure with 

multimeter AGILENT 34405A). According to Eq. (18) the time difference ∆t = t2 – t1 is measured ten 

times using a stopwatch within which the voltage U decreases from the value U1 to the value U2 (measure 

U1 and U2). The input resistance of the oscilloscope, including the maximum error, is determined from the 

mean value of ∆t according to Eq. (18). The values for U1 and U2 may be assumed to be error free (exact) 

for this purpose. 
 

Im

Re

Z



R

X
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Fig. 10: Equivalent circuit for voltage supply, capacitor C, connecting cables (with capacity CK), and oscilloscope 

with the input resistance RO to be measured.  

3.2 Measuring Capacitances 

3.2.1 Description of the Measuring Method 

The procedure applied in experiment 3.1 to measure the time difference ∆t = t2 – t1 is well suited if the 

time constant  = RC is large. For small time constants it is ideal to periodically charge and discharge the 

capacitor and to measure the time difference ∆t = t2 – t1 by direct observation of the discharging curve 

with an oscilloscope. Periodic charging and discharging can be achieved by connecting the capacitor with 

a function generator (FG) and providing a periodic square-wave voltage UFG
 
with an amplitude U0 (e.g. 

U0 = 4 V). The FG then serves as a voltage source with an incorporated „electronic switch”. Fig. 11 shows 

the related equivalent circuit diagram.  
 

 
Fig. 11: Equivalent circuit for function generator FG, connecting cables (with capacity CK) capacitance C to be 

measured, and oscilloscope. Refer to the text for other labels. 

 
A comparison with Fig. 10 shows two differences: 
 

a) Besides the capacitance of the connecting cables (CK), the input capacitance of the oscilloscope 

(CO) and the capacitance C to be measured the “output capacitance”
9
 CF of the FG has to be taken 

into account. These three capacities together form the total capacitance CA of the measuring set-

up: 
 

(47) A O K FC C C C    

 

b) The FG as an „electronic switch“ does not separate the voltage source with resistance RF ( 50 ) 

from the circuit (like the switch S in Fig. 10), but only causes a periodic charge reversal of the 

capacities CA and C.
10

 Due to RF << RO the charge reversal is performed via RF. Therefore RF 

determines the time constant  of the RC element together with CA and C. In this case, Eq. (18) 

therefore reads: 
 

(48) 2 1
A

1

2

lnF

t t
C C

U
R

U


 

 
 
 

 

                                                      
9  A real square-wave signal from a FG never has edges with slope ∞. Rather, e.g. the falling edge resembles the discharging curve of a 

capacitor with capacitance CF. This quantity is described as output capacitance according to an equivalent circuit here. 
10  It is of no importance to the measurement, whether the capacitor is charged and then discharged or periodically commutated, as in this case. 

This does not influence the time response. 
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Eq. (48) provides the possibility to determine an unknown capacitance C by measuring U1, U2 and 

t = t2 – t1, provided that RF and CA are known. 
 

For the function generators used in the laboratory course RF  50 . This results in a small value of the 

time constant   of the capacitor discharge, leading to a small (and hence difficult to measure) time differ-

ence t = t2 - t1. For this reason, an external resistance RD  1 k from the resistance decade is placed in 

series with RF in a set-up according to Fig. 12 and Fig. 13 in order to achieve a total resistance of  
 

(49) G F DR R R   

 

thus increasing the time difference ∆t. Eq. (48) then becomes: 
 

(50) 2 1
A

1
G

2

ln

t t
C C

U
R

U


 

 
 
   

 

 
Fig. 12: Circuit from Fig. 11 with added resistor RD. 

 

 

 
 

Fig. 13: Picture of the circuit from Fig. showing the function generator on the left, the oscilloscope on the right, 

and the resistance decade with resistor RD in the centre. RD is located between the two black terminals of 

the resistance decade. The yellow terminal is a support contact without an electrical connection to RD. A 

BNC-T connector is inserted in the cable connecting the resistance decade and the oscilloscope in order to 

connect the capacitor for which the capacitance C is to be determined.   

 
From this follows that the capacitance C is given by: 
 

(51) 2 1
A

1
G

2

ln

t t
C C

U
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U


 

 
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 

 

3.2.2 Preliminary Measurements 

In order to determine an unknown capacitance C from Eq. (51), the value of the total capacitance CA of 

the circuit needs to know in addition to the resistance RG. CA is determined by setting up the circuit 

according to Fig. 12 with C = 0 (i.e. without the capacitance C to be measured). A BNC-T piece is 

included in the circuit (Fig. 13) to connect the capacitance C which is to be determined for each subse-

quent measurement. CA can now be determined using Eq. (50). For this purpose, the discharge curve of 

CA is displayed on the oscilloscope and the time difference t = t2 – t1 associated with the voltage drop 
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from U1 to U2 is measured. For measuring these quantities, the digital oscilloscope can be operated in the 

mode → Acquisition → Mean value. In this operation mode, the influence of signal noise is minimized. 
 

U1 and U2 may be taken as exact values for calculating the maximum error of CA. For RG, a maximum 

error of 0.01  RG , in accordance with the accuracy of the resistance decade, may be used. 
 

Once these preparations have been made, unknown capacitances C added to the circuit can be measured. 
 

Hint: 

Eqs. (18) and (51) hold for the discharge of a charged capacitor from an initial voltage U0 to 0 V. The voltage 

levels U1 and U2 are positive at all times t. If, however, a rectangular voltage with amplitude U0 is applied to the 

capacitor, it follows that the maximum voltage is + U0 and the minimum voltage is - U0 (Fig. 14, left ordinate). 

Hence, the resulting reloading curve may include negative voltage values. In this case, Eqs. (18) and (51) cannot 

be applied, since the logarithm function is only defined for arguments having a positive value. 

 

This problem can be solved by recognising that the temporal evolution of a reloading curve from the voltage 

+ U0 to  - U0 has the same shape as the discharge curve of a capacitor having an initial voltage of 2 U0 and a 

minimum voltage of 0 V (Fig. 14, right ordinate). Thus, adding the amplitude U0 to all voltage values recorded 

from the oscilloscope ensures that U1 and U2 are always positive, and hence Eqs. (18) and (51) can be used. 
 

This method requires, that the rectangular voltage signal does not have any DC component (DC-Offset knob on 

the FG must be set to OFF) and that its amplitude U0 is known. It follows that U0 must be measured once. To 

facilitate reading the voltage levels off the oscilloscope, it is recommended to place the signal symmetrically 

about the centre (horizontal) line of the scale (“0” in Fig. 14, left ordinate). In this case, U1 and U2 can be 

determined simply by reading the scale marks on the oscilloscope’s screen and t can be determined by using 

the time cursors.  
 

 
Fig. 14: Charge reversal curve of the capacitor upon applying a rectangular voltage of amplitude U0 without DC-

offset (left ordinate). The same temporal course results for a rectangular voltage with amplitude U0 and 

DC-offset U0 (right ordinate, blue). The horizontal lines indicate the scale ticks of the oscilloscope. 

3.2.3 Determination of the Capacitance of Coaxial Cables 

In this part of the experiment the capacitance C of coaxial cables added to the existing (coaxial-) cables 

(having a total capacitance CK), is to be measured. The simplest method to achieve this is to connect the 

extraneous cables to the BNC-T connector (Fig. 13). C is thus connected parallel to CA.  

Five coaxial cables of different lengths L  1 m (measure the lengths!) are connected in turn to the BNC-

T-piece. For each cable, the quantities U1, U2, t1 and t2 are measured and the capacitance C is calculated 

according to Eq. (51). Stating the errors for the individual values of C may be omitted.  

As a result the mean value of the capacitance of the coaxial cable per meter including the standard devia-

tion of the mean is to be stated and to be compared with the value from literature for coaxial cables of the 

type RG 58 C/U (101 pF/m).  

3.2.4 Determining the Relative Permittivity of PVC 

Following the method described in Chapter 3.2.3 the capacitance of a plate capacitor with the dielectric 

PVC between its plates is to be determined. The objective is to determine the relative permittivity εr of 

PVC from a series of capacitance measurements with varying thickness d of the dielectric. 

The plate capacitor consists of two equal aluminium plates of the area A with a PVC plate of equal size 

and thickness d between them. The capacitor is connected between function generator and oscilloscope in 

addition and in parallel to the existing connecting cables. It is connected to the BNC-T-piece by a coaxial 
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cable having laboratory plugs on the other end
11

. One of the aluminium plates is put on the laboratory 

bench and connected to the „negative pole” of the function generator (outer contact of the BNC-con-

nector). The PVC plate is put on this plate and the second aluminium plate is put on top of it and con-

nected to the other pole of the function generator. 
 

Measurements are done for PVC plate sizes of d ≈ (3, 4, 5, 6) mm (measure d with a calliper gauge and A 

with a metal measuring tape). C is determined for each size (Eq. (51)). For further analysis, C is plotted 

over 1/d. εr can be determined (Eq. (6)) from the slope of the regression line and can be compared with 

the literature value (Eq. (6)).
12

 

3.3 Phase Shift Between Current and Voltage in an RC Element 

Using a set-up according to Fig. 15 the phase shift  between the cosinusoidal output voltage UFG of the 

function generator and the charge and discharge current I of the capacitor with dependence on the angular 

frequency  is to be measured. We can neglect the internal resistances as well as input and output capaci-

tances of the function generator and the oscilloscope for this experiment. 

The output voltage UFG of the function generator can be measured directly using the oscilloscope (sym-

bolized by the “voltmeter” V1 in Fig. 15). The current I is measured via a small detour: I causes a voltage 

drop, UR = R I at R, that is in phase with I and can also be measured with the oscilloscope (V2). 
 

The measurement of  is carried out for an RC element with R  1 k and C  10 nF (measure both val-

ues with multimeter AGILENT 34405A) at frequencies of f = (1, 5, 10, 20, 30, 40, 50, 100) kHz. The 

amplitude of UFG shall amount to approx. 5 V at f = 10 kHz.  
 

 is plotted vs.  with maximum error for . Into the same diagram the theoretical expected values for  

are plotted too and are compared with the measured data. 
 

 
Fig. 15: Set-up for measuring the phase shift between UG(t) and I(t) in a RC element. 

 
Practical hints: 

- When carrying out the experiment it should be considered that the reactance X = 1/(C) of the capacity is a 

function of   so that the voltage amplitudes also vary with  . 

- The phase shift  can best be determined by measuring the time difference t of the passages through zero by 

both voltages UG(t) and UR(t) (compare with the experiment “Oscilloscope...”). 

- Consider at the connecting of the cables for the measurement of UG(t) and UR(t) that the outer contacts of the 

BNC sockets of the oscilloscope are on the same potential! Consequently this also applies to the outer contacts 

of the BNC plugs at the coaxial cables! 
 

Question 5: 

- How large is the phase shift between the voltage at the capacitor (UC) and the current I? How can the 

phase shift be measured?  

 

 

                                                      
11  This additional cable increases the total capacity CK of  the connecting cables in the experimental setup. It is thus necessary to (re-)measure 

the total capacity CA of the measuring apparatus prior to connecting the parallel plate capacitor.  
12  Literature value according to /3/: εr = 3.1 … 3.5 (without stating frequency). 
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4 Appendix 

Calculating with complex quantities, Eqs. (29) and (30) are easy to derive. In a complex form the 

formulas in Eqs. (25) and (28), respectively, can be written as: 
 

(52) G 0( ) ei tU t U   

 

(53)    
0 e

i t
Q t Q

 
  

 

Inserting both equations into Eq. (26) and performing the differentiation we obtain after division by 

ei t
 : 

(54) 0 0 0

1
e ei iU i RQ Q

C

    

 

Hence it follows: 
 

(55) 0
0 e

1
i U

Q

i R
C






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The left side of Eq. (55) is one common way to represent a complex number (polar notation) z of modu-

lus |z| and the phase angle (argument) : 
 

(56) 0 0: e here: e ,iz z z Q z Q     

 

The modulus of z is given by 
 

(57) z z z  

 

z* being the complex conjugated to z which is obtained by changing the sign of the imaginary unit i 

(i  -i and -i  i). For the modulus Q0 we thus obtain: 
 

(58) 
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This is the result given in Eq. (29) .  
 

We use a second common method to represent complex numbers to calculate the phase angle, namely 
 

(59)    Re Im :z z i z i      

 

where  is the real part (Re) and  the imaginary part (Im) of z. From these quantities the phase angle  

can be calculated as 
 

(60) 
π 0 0

arctan
π 0 0

 

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      
   

       
 

 

In order to apply Eq. (60), we have to convert Eq. (55) into the form of Eq. (59), that is we must separate 

the real and the imaginary part from each other. For this purpose we have to eliminate i from the denomi-

nator, for which the fraction is appropriately extended. Eq. (55) then becomes: 
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(61) 
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From Eq. (61) we can read off  and  : 
 

(62) 
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Attention must be paid to the fact that there is a positive sign in the definition equation (59). Thus, the 

negative sign of i in Eq. (61) belongs to the imaginary part . By inserting Eq. (62) into Eq. (60) we 

obtain: 
 

(63)  arctan arctan RC


 


 
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This is the result given in Eq. (30). 

 


