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1 Introduction 

Two experiments are described in the following which will contribute to the understanding of the con-

servation of momentum and of energy. In particular, it will appear that momentum conservation (vector 

having magnitude proportional to velocity) and the conservation of kinetic energy (scalar, proportional to 

the velocity squared) are two quite different things. 

2 Experiment I: Measurement of Velocities on the Basis of Momentum  

    Conservation 

Quite a few (and correspondingly expensive) instruments are required to measure high velocities of small 

masses directly in the laboratory. Simple light barriers e.g., as used in the laboratory course, react too 

slowly to be applied for such measurements. Instead, photo detectors would be required with fast 

response times, i.e. providing impulses with very steep edges which would have to be processed by 

appropriately „fast” electronic counters or storage oscilloscopes. Since such instruments are not available 

in the laboratory course, we have to employ a trick: The rapid movement of a small mass is converted 

into the slow movement of a large mass. In the following experiment this technique is applied to deter-

mine the muzzle velocity of air gun bullets. 
1
 

2.1 Theory 

A bullet of mass m hits a mass M (Fig. 1), on a resting block, at velocity v. The bullet follows a line con-

necting the centres of gravity of the bullet and of the block; both hit each other centrally. Following the 

impact, block and bullet will continue to move at the common velocity u. Therefore we are dealing with a 

total inelastic collision here. 
 

Question 1: 

- What are the properties of an elastic, of an inelastic, and a total inelastic collision? 
 

The momentum conservation law may be written in scalar form in this case of a central collision: 
 

(1) ( )mv M m u   
 

Considering the energy D which is transformed into deformation and heat during the inelastic collision, 

the energy conservation law reads: 
 

(2) 
2 21 1

( )
2 2

mv M m u D    

 

Question 2: 

- How would the momentum and energy conservation laws read in the case of an elastic collision? 

                                                      
1
 Since we do not consider the air gun to be a weapon but rather a fun fair article, we think its use in the laboratory course is justifiable, 

particularly since it is the cheapest device which produces sufficiently high and adequately reproducible velocities. 
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From Eq. (1) we can determine the velocity v if M, m and u are known. M and m may be determined by 

simple weighing. In order to determine u, the least possible friction is required, which is achieved, for 

example, by the use of an air cushion table. We will, however, try a less complicated method: we suspend 

the block by means of a long thread of length l such that it performs a pendulum motion following the 

collision (Fig. 1). Neglecting friction effects, the maximum kinetic energy of the block is equal to its 

maximum potential energy, i.e.: 

 
Fig. 1: Central collision between a ball (red) of mass m having the velocity v and a pendulum body (beige) of 

mass M departing from its initial position after the collision with the velocity u. For the remaining labels, 

refer to the text. 

 

(3) 
21

( ) ( )
2

M m u M m gh    

 

In this case u is the velocity at which the block leaves its resting position, h is the maximum vertical 

deflection of the block from the zero position, and g is the gravitational acceleration. 
 

For small pendulum deflections at angle , the approximation tan   can be used and from Fig. 1 fol-

lows: 
 

(4) tan
2 2

h

s

 
    

 

s being the maximum horizontal deflection of the body from the zero position. For l >> s, we can 

approximate: 
 

(5) 
s

l
   

 

Inserting Eqs. (4) and (5) into Eq. (3), we obtain: 
 

(6) 
2 2g

u s
l

  

 

For the period of oscillation we use the relationship valid for small deflection angles : 
 

(7) 2
l

T
g

  

Solving Eq. (7) for g/l and inserting the result into Eq. (6), we obtain: 
 

(8) 
2

u s
T


  

M

u
m

v

s

l

h




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Finally we insert Eq. (8) into Eq. (1) and obtain the required relationship for determining the velocity v 

from the measured values of m, M, s and T: 
 

(9) 
2M m

v s
m T


   

2.2 Experimental Procedure 

Equipment: 
Air gun in adjustable holder, protecting device, calibration bar, bullets, bifilarly suspended pendulum bob, U-track with scale and 

displaceable bar for measuring the horizontal pendulum deflection, stand, stopwatch, laboratory balance, foil, adhesive tape, double-sided 
tape. 

 

 The utmost caution is advised for this experiment. Always make sure that nobody comes into the line 

of fire! Do not touch the trigger while the gun is open! Prior to first firing inform the assistant! 
 

First the average bullet mass m of ten bullets and the mass M of the pendulum bob are determined. 
 

Afterwards the gun is adjusted by means of inserting the calibration bar into the barrel such that the bul-

lets hit the pendulum bob centrally. Only then a central collision is ensured. Otherwise, the pendulum bob 

would perform additional rotational and tilting motions and Eq. (9) would no longer be valid. The muzzle 

should have a distance of about 15 cm from the resting pendulum. On the opposite side a U-track is 

mounted centrally with adjustable bars to measure the maximum deflection s. The track is mounted such 

that deflections of up to 10 cm can be measured. Now we fire 15 times and measure the maximum 

deflection s incl. maximum error s, as well as the period of oscillation, T. T is determined with a stop-

watch as mean of ten periods each, the maximum error T is assessed from the precision of the time 

measurement (pressing the stopwatch). 

 

In the described procedure the mass M of the pendulum would increase with every shot, so we would 

have different experimental conditions for every shot. We shall avoid this by adding the bullets which 

have not yet been fired to the pendulum (fixed with double-sided adhesive tape symmetrically around the 

centre axis) thus keeping the mass M constant. Eq. (9) then becomes 
 

(10) 
15 2M m

v s
m T


 

 
 

According to Eq. (7), it would be sufficient to measure T once because l does not change from shot to 

shot. However, in order to avoid errors, e.g. by wrong counting of the oscillation periods, T shall be 

determined for each shot. 
 

For each shot (No. i), the velocity vi incl. maximum error vi is calculated. vi is plotted over i with error 

bars. The mean v  and its standard deviation are calculated and included in the diagram in the form of 

horizontal lines. 
 

Finally, the values of the kinetic energy as well as of the momentum before and after the collision are 

calculated (Eq. (2), (16)-(18), (25). For v the mean v  is used. u is calculated with Eq. (8) using the means 

of the single values si and Ti for s and T. 
 

Question 3: 

- How can the result be interpreted by applying Eq. (2)? Which kind of collision is it? 

3 Experiment II: Oblique Elastic Collisions on an Air Cushion Table 

In the first experiment we dealt with central collisions, which mean that the colliding masses come into 

direct mechanical contact. Now we will observe oblique elastic collisions under the influence of magnetic 

interaction forces, which means that the masses do not contact each other. Non-contacting collisions 

between particles under the influence of interaction forces play a major part in atomic, nuclear and par-

ticle physics. We will simulate them on an air cushion table. 
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3.1 Theory 

In accordance with Fig. 2 we observe two masses m1 and m2 from the centre of a resting coordinate system 

XY which move towards each other at velocities v1 and v2 at an arbitrary angle (oblique collision, 

characterized by the fact that the centres of gravity of the two masses do not move along a common line). 
 

The momentum and energy conservation law is easy to describe in the coordinate system XY. When 

additional statements about scattering angles (see below) are to be made, however, the calculation 

becomes significantly easier with a coordinate system XsYs, the origin of which lies in the common centre 

of gravity S of both masses. Such a coordinate system is called centre-of-gravity system (or centre-of-

mass system). The index “s“ is used for all quantities in the centre-of-gravity system in the following. 
 

Looked at from the coordinate system XY, the centre of gravity S, and thus the coordinate system XsYs, 

moves at the velocity: 
 

(11) 
1 1 2 2

1 2

m m

m m






v v
u  

 

If a mass in the centre-of-gravity system XsYs  has the velocity vs, its velocity v can be calculated in the 

coordinate system XY by means of simple vector addition: 
 

(12) s v v u  
 

and hence: 
 

(13) s  v v u  
 

Looked at from XsYs, m1 and m2 have the following velocities prior to the collision: 
 

(14)   2
1 1 1 2

1 2

s

m

m m
   


v v u v v  

 

(15)   1
2 2 1 2

1 2

s

m

m m
    


v v u v v

 
 

The velocities thus always point in opposite directions in the centre-of-gravity system. 
 

By multiplying the velocities with the masses we obtain for the momenta prior to the collision in the cen-

tre-of-gravity system (Eqs. (14) and (15)): 
 

(16)  1 1 2s  p v v  

 

(17)  2 1 2s   p v v  

 

To simplify matters we have introduced the reduced mass µ: 
 

(18) 
1 2

1 2

m m

m m
 


 

 

Thus, the momenta in the centre-of-gravity system always point in opposite directions as well, and are 

furthermore equal in magnitude (Fig. 3). We obtain: 
 

(19) 1 2s sp p  or in another notation 1 2s sp p  
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Fig. 2: Oblique collision of the masses m1 and m2 in the coordinate system XY. For all other labels refer to the 

text. 

 

From Eqs. (16), (17) and (19) follows: 
 

(20) 1 2 0s s p p . 

 

For reasons of momentum conservation Eq. (20) must hold after the collision as well (in the following the 

upper index ”'” is used for all quantities after the collision). Hence it follows: 
 

(21) 1 2 0s s
  p p  

 

and 
 

(22) 
1 2s s
 p p  or in another notation 1 2s sp p   

 
Fig. 3: Course of the momentum during the elastic collision of two masses in the centre-of-gravity system XsYs. 

The pairs of momenta before (green) and after (red) the collision each point in opposite directions and are 

equal in magnitude. 
 

 

Let us now look at the elastic collision. It is characterized by the conservation of kinetic energy: 
 

(23) 
2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
s s s sm v m v m v m v     

 

Using the magnitudes of the momenta, Eq. (23) can also be written in the form: 
 

(24) 

2 2 2 2

1 2 1 2

1 2 1 2

s s s sp p p p

m m m m

 
    

 

Inserting Eqs. (19) and (22) into Eq. (24), we learn that in this case, the magnitudes of the momenta prior 

to and after collision also need to be equal in the centre-of-gravity system: 
 

(25) 1 2 1 2s s s sp p p p     
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For the magnitudes of the velocities this in turn means: 
 

(26)  1 1 2 2s s s sv v v v    

 

The scattering angle   is per definition the angle between the momentum vector (or velocity vector) of a 

mass before and after the collision. In our case, we obtain in the centre-of-gravity system s according to 

Fig. 4: 
 

(27) 

' '

1 1 2 2

' '

1 2

sin
2 2 2

s s s ss

s s

  
 

v v v v

v v
 

 

This equation must not be misinterpreted as a tool for „calculating“ the scattering angle s a priori. This 

would imply the knowledge of the direction of momenta and velocities, respectively, following collision. 

This direction, however, is dependent, e.g., on the exact form of the masses and their positions upon col-

lision and is thus not exactly predictable in general. (For a number of idealized special cases, however, a 

calculation is feasible.) 

           
Fig. 4: Definition of the scattering angle s 

between the velocity vectors before 

(green) and after (red) the collision 

in the centre-of-gravity system. 

 Fig. 5: Definition of the scattering angles  and  

between the momentum vectors before 

(green) and after (red) the collision in the 

XY coordinate system (special case p2 = 0). 
 

 

The scattering angle  in the coordinate system XY is considerably more difficult to calculate. Let us con-

fine ourselves to the simple special case of an oblique elastic collision, in which one of the masses is at 

rest prior to the collision (v2 = 0; cf. Fig. 5). The momentum conservation law then yields: 
 

(28) 1 1 2
  p p p   and 2 1 1

  p p p  

 

Squaring the right-hand term in Eq. (28) we obtain 
 

(29)  
22 2 2

2 1 1 1 1 1 12 cosp p p p p        p p  

 

and thus 
 

(30) 

2 2 2

1 1 2

1 1

arccos
2

p p p

p p


  



 

 

Finally, we consider the angle  between the velocity or momentum vectors of both masses after the colli-

sion in the coordinate system XY for the case v2 = 0 and, in addition, m1 = m2. For momentum conserva-

tion we again obtain Eq. (28): 
 

(31) 1 1 2
  p p p  
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and hence 
 

(32)  
22 2 2

1 1 2 1 2 1 22p p p         p p p p  

 

From the energy conservation law it follows in this case for the elastic collision: 
 

(33) 
2 2 2

1 1 2p p p    

 

Eqs. (32) and (33) together yield the condition 
 

(34) 1 2 1 22 2 cos 0p p     p p  

 

This equation is fulfilled for  = 90°. The velocity and momentum vectors for both masses after the colli-

sion are perpendicular in this case (m1 = m2, v2 = 0). 

3.2 Experimental Procedure 

Equipment: 
Air cushion table including accessory parts (fan, pucks), webcam Logitech C930, PC with image processing software Viana.NET, water 

balance, laboratory balance, glass cup, metal measuring tape. 

 

Attention: 

The pucks may only be moved on the table with the air supply switched on! Prior to the experiment 

the air cushion table is adjusted by the technical assistant such that the pucks are not accelerated 

within the measurement range. 
 

Using an air cushion table on which special pucks can move nearly frictionless we will investigate the 

oblique elastic collision of two repulsive magnetic pucks, namely 
 

a) for the case m1  m2, v2  0  and 

b) for the case m1  m2, v1  0, v2  0 
 

In order to pursue and quantitatively evaluate the path of the pucks, movement is filmed with a webcam 

which is mounted on the ceiling above the air cushion table. The webcam was previously aligned by the 

technical assistants and must not be changed in its orientation.  

 

Both the recording and the evaluation of the videos can be performed with the program Viana.NET. The 

program is already installed on the laptop and is also freely accessible for private use
2
. 

 

As the overhead light causes disturbing reflections on the table, an indirect light source is used to obtain 

the necessary brightness in the room. In the video, the table should appear illuminated as evenly as 

possible. If necessary, the orientation of the indirect light source must be adjusted. 
 

The masses of the pucks are weighed on the laboratory balance (put a large glass below them, otherwise 

the magnetic fields of the pucks influence the balance!). 
 

The pucks are started manually; in case a) the second puck has to be kept in its position until the first 

puck starts, if necessary. The recording is started in the Viana.NET program ( Start: "Record Video", 

see Fig. 6).
3
 After the measurement, it is recommended to stop the recording until the next measurement 

is performed in order to reduce the amount of recorded data and to avoid confusion. 

The storage directory of the videos is set in the menu “Record Video” (Fig. 7). The videos must be stored 

on a mobile data carrier or personal cloud for further evaluation. Cloud storage is available through 

Stud.IP for every student of the University of Oldenburg.
4
 

 

                                                      
2 Available under: http://viananet.de/downloads (Version 5.5); the language can be switched to English under the Options menu. 
3 If the autofocus of the webcam is active, it can be switched off via the tab „Video  Video Device“. 
4 In Stud.IP under the tab Webmail  Cloud-Storage 

http://viananet.de/downloads


 

 

79 

 

 
 

Fig. 6: Start menu of the program Viana.NET. 

 

 
 

Fig. 7: Selection of the storage directory for the video. 
 

3.3 Analysis 

The following analysis can be done from home or from one of the PCs of basic laboratory. 

For the cases a) and b) one suitable video can be quantitatively analysed. For this, the previously recorded  

video can be edited directly in Viana.NET. With the option "Load Video" one of the recorded videos can  

be loaded in the program. Then, the video must be calibrated (Home:"Calibrate Video") and the  

coordinate system must be added ( Home: "Coordinate system").  

To convert distances from pixel to meter, a known distance must be available as a reference distance, 

which can be seen in the video. This reference distance is used to convert a distance in pixels to a  

distamce in mm. 
 

For this, the origin of the coordinate system is placed in the lower left corner of the wire (i.e. at the  

bottom of the video frame, see Fig.8). The reference distance goes from the origin to the other end of the 

 wire on the right side and has a length of 1085 mm  This length also corresponds to the X-axis of our  

reference coordinate system. 
 

 
 

Fig. 8: Example for the distance conversion from pixel to meter. The red line represents the length of the reference 

           distance (1085 mm). 

 

The Y-axis of the coordinate system should also be chosen appropriately to be able to perform a 

meaningful analysis, and the number of tracked objects must be set to 2 (-> Start: "Track 2 objects"). 

The trajectories of the pucks are extracted with “Manual analysis”. The center of each puck must be 

selected with the mouse alternately. If both centers of the pucks have been selected in a certain frame 

image, the program automatically jumps to the next frame. This procedure should be repeated until 

enough points are found for visualizing the movements of the pucks before and after the impact and to 

define the vectors of velocity (at least 5 points per vector). The extracted data are then displayed in two x-

y diagrams, in which the trajectory for each object (a superposition of both objects in a common diagram 

is not possible) is displayed. Based on this diagram, a suitable choice of the coordinates for determining 

the respective momentum vectors of the pucks can be made. The diagram can be saved via the "Charts" 

tab and should be added to the report. 
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For the evaluation of the experiments, the momentum vectors of the pucks shall be given as column vec-

tors before and after the collision, i.e. in the form: 
 

 
x

y

p

p

 
  
 

p  

 

In addition, a vector diagram is to be created, in which the momenta before and after the collision are 

drawn, as well as their sums. 

In order not to make the evaluation time-consuming, error theory is dispensable in this case. A plausible 

estimation of the maximum error for the different impulse components is sufficient. 
 

The determined coordinates are stored under the tab "Data grid" after marking the trajectories of the 

pucks. They can be saved as a txt or Excel file. For the data export, it is sufficient to save the picture 

number, time and X & Y position. Based on this data, the momentum vectors of the respective pucks can 

be constructed both before and after the impact. The data table should also be listed in the appendix of 

your report.  

Please carry out the evaluation of your results “manually” and document the details of your calculations 

in your report comprehensibly.  In addition a MATLAB script “law_of_collision” is provided, which you 

can use to check your results and display the corresponding vector diagrams. The script is explained in 

the following to make it logically comprehensible.  

 Let us assume that the centre of puck 1 (mass m1 = 0.2 kg) before the collision at time t has the screen 

coordinates x11 = 210 px, y11 = 320 px (cf. Fig. 9). n frame images later at the time t + n/f (f: Frame rate in 

frames per second (fps), in our case f = 15 Hz und n = 1), the coordinates of the center of puck 1 is at 

x12 = 345 px and y12 = 275 px. The coordinates mentioned here are still given in pixels (px). After 

calibration of the video, the corresponding information is also available in meters. 

 
Fig. 9: Definition of values describing the position of puck 1 at time t (Pos. 1) and at time t + n/f (Pos. 2). r11 and 

r12 are the position vectors describing the puck’s positions. 

 

The m-file “law of collision” is opened in MATLAB. First, the parameters of the experiment (in SI-units) 

are entered into this file (reminder: the semicolon at the end of the line suppresses the output in the 

command window of MATLAB): 
 

f = 15; 

n = 1; 

m1 = 0.2; 

x11 = 210; 

y11 = 320; 

x12 = 345; 

y12 = 275; 
 

Now, we calculate the position vectors at the two positions of puck 1 prior to the collision. r11 is the posi-

tion vector at time t, r12 is the position vector at time t + n/f. The position vectors are given as column 

vectors (MATLAB notation [x component; y component]) and let them appear on the screen (therefore no 

semicolon at the end of the row): 
 

r11 = [x11;y11] 

r12 = [x12;y12] 

y

xx12

y
12

x11

y
11

Pos. 2

Pos. 1

r12

r11
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From this we get the momentum vector p1 for puck 1 before the collision as column vector: 
 

p1 = m1*(r12 - r11)/(n/f) 
 

For the mentioned example we get in numbers: 
 

 
-1

1

0.0771
kg m s

-0.0257

 
 
 

p  

 

In an analogous way we can calculate the momentum of puck 2 before the collision (p2) and the momenta 

of the two pucks after the collision (p1’ und p2’) (in Matlab we use e.g. p1s for p1’, “s” denoting 

“dash”. From that we get the total momenta before and after the collision (p und p’): 
 

 p = p1 + p2 

 ps = p1s + p2s 
 

and we can check whether the momentum difference p is zero: 
 

 delta_p = p - ps 
 

In order to check whether the momenta p1’ and p2’ are orthogonal to each other in experiment a), we 

calculate their dot product (here named sk) with the MATLAB command dot: 
 

 sk = dot(p1s,p2s) 
 

For an angle of  = 90° between the two vectors it follows that sk = 0. If the value of the dot product 

differs from zero, we can calculate  from the value for sk by using the well-known relationship for the 

dot product: 
 

(35) ' ' ' '
1 2 1 2 cosp p p psk=

 
 

and thus, 
 

(36) 
' '
1 2

arccos
 
 
 
 

p p

sk
 

 

The magnitude of a vector is calculated in MATLAB using the norm function. Hence, Eq. (37) is 

expressed in MATLAB syntax as: 
 

(37) phi = acos(sk/(norm(p1s)*norm(p2s))) 

 

Question 4: 

- Is the momentum conservation law fulfilled in both cases? Is the kinetic energy conserved in both 

cases? How can possible deviations be explained? 

- The scattering angle  is only calculated for case a). What is its value? Does the result correspond with 

the theoretical expectations according to Eq. (34)? If it does not - what could be the reasons why? 

3.4 Vector diagrams 

2D vector diagrams of the momentum p can easily be drawn with MATLAB using the quiver command. 

The command has the format quiver(a,b,u,v,s). Here a and b are the coordinates of the starting 

point of the vector, u and v are its x- and y-components and s is a scaling factor. For more details have a 

look into the MATLAB script provided for the experiment. 

 

Please add the vector diagrams to your experimental protocol. 


