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1 Introduction 

FOURIER analysis (after JEAN BAPTISTE JOSEPH DE FOURIER, Fig. 1) is an important tool in the area of 

signal analysis and processing. With its help, it can be determined which harmonic signals
1
 – with differ-

ent amplitudes, frequencies, and phases – a periodic signal consists of. In the following, we will limit 

ourselves to the analysis of time signals. These are signals, for example, like a voltage U(t) or a current 

I(t) which change in time t. Formally, physical values that change with location can be considered too, 

like the intensity I(x) of light along the spatial coordinate x. 
 

 
 

Fig. 1: Jean Baptiste Joseph de Fourier (1768-1830)
2
. 

 

We want to cite as an example of the application of FOURIER analysis its importance in system theory for 

the description of the behaviour of linear systems. The theory of linear systems has a great practical 

importance in physics. With it, the behaviour of many physical systems can be described without having 

to know how these systems are internally constructed in detail. We treat these systems as „black boxes” 

with unknown contents, from which we know that a certain input signal e(t) will result in a certain output 

signal E(t): 

  Input      Output   
 

  e(t)   linear system    E(t) 
   

Linear systems fulfil the condition of linearity (hence the name): A sum of input signals lead to a cor-

responding sum of output signals: 

 

Input     Output 
 

(1) ( ) ( )j

j

f t e t  linear system   ( ) ( )j

j

F t E t  

 

 

                                                      
1 Harmonic signals means sinusoidal signals in this text. 

2 Source: GELLERT, W. et al. [Eds.]: „Kleine Enzyklopädie Mathematik“, VEB Bibliographisches Institut, Leipzig, 1969 
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Examples of such linear systems are: 
 

- in acoustics:   the system microphone  amplifier  loud speaker 

- in optics:   the system objective  image detector, 

- in electrical engineering: the system sender  transmission line  receiver 
 

From the FOURIER theorem, which we will be detailed in Chap. 2, a periodic signal, including a periodic 

input signal f(t) of a linear system, can be represented by an infinite sum of harmonic signals hn(t), 

 \ 0nN ), with differing angular frequencies n, whose amplitudes cn and phases n may also differ 

(but not necessarily): 
 

(2) 0 0

1 1

( ) ( ) sin( )n n n n

n n

f t c h t c c t 
 

 

        (c0: constant
3
) 

 

Harmonic signals are transmitted undistorted from linear systems, i.e. the transmission definitely changes 

the amplitude and phase of the signal, but not the form. We are now making the assumption that we know 

how a system reacts to harmonic input signals with different frequencies, i.e. that for every harmonic 

input signal hn(t) we know the amplitude and phase of the corresponding harmonic output signal Hn(t). 
 

If the system changes the amplitude of all harmonic input signals in the same manner independently of 

their frequency (e.g. amplification by a factor of 2), and if all harmonic signals undergo a phase shift of 

m ( mN ) we are dealing with an ideal system. From the linearity of the system (Eq. (1)) it follows 

immediately that a periodic input signal f(t), which can be displayed as an infinite sum using the FOURIER 

theorem
4
, will be transmitted undistorted through the system. The output signal F(t) is only amplified by a 

constant factor (e.g. 2) compared to the input signal f(t), however, it maintains its form. 
 

As a rule, real systems behave differently. With these systems, depending on the angular frequency n of 

the harmonic input signal, different amplifications V(n) and different phase shifts (n) occur, leading 

to a distortion in the output signal F(t) compared to the input signal f(t). 
 

V(n) is called the amplitude transfer function, or amplitude spectrum  and (n) the phase transfer 

function, or phase spectrum of the system. Together both functions describe the frequency behaviour of a 

real system. 
 

According to our assumption above, the frequency behaviour is known for the investigated system. In 

practice this is often the case, e.g. because the manufacturer of the system supplied the corresponding 

data. Fig. 2 shows an example of an amplitude transfer function of PC sound card. From this we can 

gather that the card only has good transmission properties in the frequency regime between  = 200 Hz 

and  = 10 kHz because harmonic signals are amplified independent of the frequency by a constant factor 

here (V() = const.). In comparison, outside this frequency regime the input and output signals undergo a 

frequency-dependent damping which inevitably leads to a signal distortion in case the input signal f(t) 

comprises harmonic components with corresponding frequencies. 

If we know the frequency behaviour of a linear system, we can calculate how the output signal F(t) will 

look for aperiodic input signal f(t). We only have to know, according to the FOURIER theorem, which 

harmonic signals hn(t) the signal f(t) consists of. Then, knowing V(n) and (n), we can state the corre-

sponding output signals Hn(t) for each of these signals hn(t) and then add the Hn(t) to the output signal 

F(t). 

The necessary calculation of the parameters (amplitude, phase, frequency) of the harmonic signals which 

a periodic signal consists of is called FOURIER analysis or harmonic analysis or harmonic expansion and 

is the subject of this experiment. 

                                                      
3 c0 represents the time-independent DC component of f(t), which does not contribute to information content of the signal. 
4 For formulations of this kind in this text, the DC component of the signal (c0 in Eq. (2)) is always included.  
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Fig. 2: Amplitude transfer functions of a PC sound card (YAKUMO sound card 16 MCD). 

Blue curve: playback, red curve: recording.
5
 

2 Theory 

In the following section, we are going to omit mathematical proofs which can be looked up in the given 

literature, and concentrate on the interpretation of the relationships necessary for the experiment. 

2.1 Fourier Series and Fourier Coefficients 

As already mentioned in the introduction, following the FOURIER theorem, a periodic signal f(t) with 

period T can be represented by a DC component and an infinite sum of harmonic signals whose angular 

frequencies are integral multiples of o = 2/T. Harmonic signals with angular frequencies  
 

(3)  0 : ; \ 0nn n  N  

 

are called harmonics of the fundamental with the fundamental angular frequency o, and the sum is 

denoted as a trigonometric series or a FOURIER series. It is given by:
  

(4)    0 0 0

1

( ) cos sinn n

n

f t c a n t b n t 




      

The values co, an = a(no) and bn = b(no) are called FOURIER constants or FOURIER coefficients. Deter-

mining these values is the subject of the FOURIER analysis. After a short calculation, it is found (cf. e.g. 

/1/) that they can be obtained from the signal f(t) as follows: 

(5)  
2

0

2

1

T

T

c f t dt
T



   
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T
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T




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The constant c0 is the average (DC component) of the signal f(t). If, e.g., f(t) is a temporally oscillating 

voltage U(t), c0 corresponds to the DC voltage of the signal. 

The representation of the FOURIER series in Eq. (4) can be simplified if the following relationship is used: 
 

(8)    0 0 0cos sin sin( )n n n na n t b n t c n t       

 

with 

                                                      
5
 The gain of an amplifier is often specified using the logarithmic decibel (dB) scale. This is detailed further in the experiment “Operational 

amplifier“ in the SuSe. An amplification by x dB corresponds to a linear amplification by the factor 10x/20.  
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(9) 2 2

n n nc a b   

 

and 

(10) arctan n
n

n

a

b


 
  

 
 

With this, Eq. (4) becomes the spectral form of the FOURIER series: 
 

(11) 0 0

1

( ) sin( )n n

n

f t c c n t 




    

 

A periodic signal f(t) can be described after FOURIER analysis with the following values
6
 

 

(12) c0  : DC component (average of the signal f(t), cf. Eq. (5)) 

 cn = cn(n0) : amplitude spectrum 

 n = n(n0) : phase spectrum 
 

 
Fig. 3: Top (red): Anharmonic but periodic signal f(t) with period T = 1 (in arbitrary units) with its harmonic 

components h1(t) (middle, blue) und h2(t) (bottom, blue). 

 

Two examples will make the relations clear. 

The first example shows a quite simple case. In Fig. 3 an anharmonic, but periodic, signal 

f(t) = h1(t) + h2(t) with period T = 1 (in arbitrary units) is shown at the bottom. It is composed of the two 

harmonic signals shown beneath it in the figure: the fundamental h1(t) with the amplitude c1 = 0.5 (in 

arbitrary units), the angular frequency 1 = 10 = 2/T, and the phase 1 =  and the first harmonic h2(t) 

with the same amplitude c2 = 0.5, the angular frequency 2 = 20, and the phase 2 = /2. A FOURIER 

analysis of the signal f(t) would then produce: 
 

 DC component:  c0  = 0 

 amplitude spectrum: c1 = c1(0) = 0.5 

    c2 = c2(20) = 0.5 

    cm = cm(m0) = 0  m  3 

 phase spectrum: 1 = 1(0) =  

    2 = 2(20) = /2 

    m = m(m0) = 0  m  3 
 

The amplitude and phase spectra, that is cn(n) and n(n), are represented in Fig. 4. 

                                                      
6 The graphic representation of cn over n is called amplitude spectrum. The graphic representation of an over n is called cosine spectrum; the 

representation of bn over n is called sine spectrum. 
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Fig. 4: Amplitude spectrum (left) and phase spectrum (right) of the signal shown at the top in Fig. 3. Generally, 

vertical spectral lines from the abscissa to the respective ordinate value are drawn instead of data points 

in such diagrams. 

 
Fig. 5: Anharmonic, periodic signal f(t) (upper left, red) with its five harmonic components (upper right as well 

as middle and below, blue). Abscissa: t, ordinate: f(t) or hn(t), respectively, period T = 1 (t and f(t) in 

arbitrary units). 

 

Clearly the situation shown in Fig. 5 is more complex: in the upper left diagram an anharmonic, but peri-

odic, signal f(t) with period T = 1 (in arbitrary units) is shown. To its right the fundamental is shown with 

angular frequency 1 = 10 = 2/T and underneath four harmonics with the angular frequencies 

n = no, n = 2, 3, 4, 5 which all have different amplitudes and phases. A FOURIER analysis would lead to 

the DC component of c0 = 0 as well as five values of cn for the amplitude spectrum and five values of n 

for the phase spectrum. 
 

Question 1: 

- Try graphically to get the data necessary from Fig. 5 to sketch the amplitude and phase spectra analo-

gously to Fig. 4.  

2.2 Sampling and Sampling Theorem 

We now know how the FOURIER coefficients a0 , an and bn can be calculated, and from there, the values 

c0, cn and n, i.e., the amplitude and phase spectra of periodic signals f(t). In practise, a problem appears 

here: The signals under investigation are, in general, not analytically known signals , but rather measured 

signals having a complicated temporal course that were recorded by, e.g. a data acquisition board con-

nected to a computer. Such recording systems yield discrete function values yi = f(ti)
7
 at equidistant time 

points ti (separation of t). It is also said that the signal f(t) is sampled at the points ti with sampling 

angular frequency a = 2/t. The FOURIER analysis of a sampled signal is of course only an approxi-

mation – since the signal itself is only known approximately (i.e. only at the points ti). How a FOURIER 

analysis is carried out in such a case is shown in the following. 
 

Let us assume that from the signal f(t) we have 2m measured points (sampling points)  yi= (i = 1,…,2m-1) 

at equidistant time points ti. For the FOURIER coefficients we then get: 

                                                      
7 Compare experiment “Data Acquisition with the PC ...“. 


0 2 n3 4
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(15) 
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

 
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From 2m independent function values we get m coefficients an, (m - 1) coefficients bn, and a constant c0. 

Together that is m + (m - 1) + 1 = 2m independent FOURIER coefficients. This is understandable from the 

point of view of the information content: the information content cannot be lost or increased through sim-

ple calculation. 
 

The sampling theorem (SHANNON theorem
8
), with the help of Eqs. (13) – (15), answers the question of 

the least number of function values that are needed to reliably determine the angular frequency s of a 

harmonic oscillation present in a signal f(t). It says that an angular frequency s can be reliably detected if 

the following holds for the sampling angular frequency a: 

 

(16) 2a s    sampling theorem 
 

In other words: The angular frequency s of a harmonic signal can only be reliably determined, if more 

than two sampling values per period are available for the signal. If the condition given by the inequality 

(16) is violated, the signal with angular frequency s is „under sampled” which leads to false results 

(aliasing effects). In this case, the FOURIER analysis produces the wrong angular frequency f. 

 

(17) f a s     

 

The signal with the angular frequency s hence shows up in the amplitude spectrum under the ”wrong 

name” f, and therefore the term „alias”. For s ≤ a ≤ 2s, it appears in the spectrum reflected at the axis 

 = a/2. 

If the sampling angular frequency a is given, a harmonic signal can, according to Eq. (16), only be sam-

pled correctly, if  
 

(18) 
2

a
s


   

is true for its angular frequency s. The angular frequency a/2 is also called NYQUIST frequency
9
. 

 

If the sampling theorem is met, the length 2 m t of the time interval over which the measured signal was 

sampled determines the frequency resolution f, i.e. the accuracy with which signal frequencies can be 

measured: 

(19) 
1

~
2

f
m t




 
 

This aspect of the FOURIER analysis, however, cannot be discussed further in the introductory laboratory 

course. 

2.3 Practical Hints 

The calculations of the FOURIER coefficients, rather of the amplitude and phase spectra, are quite exten-

sive. Today, however, they can be done very quickly with a personal computer, and in the case of large 

data sets the use of special processors can accelerate the calculations.  

                                                      
8 CLAUDE ELWOOD SHANNON (1916 - 2001). 
9 HARRY NYQUIST (1889 - 1976). 
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It was not so long ago that the intensive work had to be done by hand. In a mathematic handbook from 

the year 1969 the following tip is given (GELLERT, W. et al. [Eds.]: „Kleine Enzyklopädie Mathematik”, 

VEB Bibliographisches Institut, Leipzig, 1969): 
 

„A person practised in calculating, who is using an electronic calculation machine and applying a special 

method of calculation for harmonic analysis, needs about ½ an hour for 12 points, about 2 hours for 24 points, 

about 6 hours for 36 points, and about 16 hours for 72 points … A medium speed electronic calculation machine 

manages the calculation of 36 points in about 2 minutes. The time needed to print the results is usually longer 

than the calculation time.” 
 

In the following investigation the FOURIER analysis will be performed with a few hundred to a few thou-

sand points. Either don’t make any plans for your semester break – or use the PC at your disposal and you 

will be finished without problems in one afternoon! 

In practise, one is only interested in finding out which amplitude the harmonic signals have that are con-

tained in a periodic measured signal. The phase of the single components is often unimportant. In other 

words: the amplitude spectrum is, in most cases, of considerably more practical importance than the phase 

spectrum. With the present investigation we will thus limit ourselves to the interpretation of the amplitude 

spectra. 

For a non–periodic signal f(t) defined in a time-interval of length  (e.g. an output pulse from a foto-

diode), the signal can be thought of as continuing periodically to the right and to the left of the given 

interval (with the „period” ), and it can likewise be represented by a FOURIER series. It is the case that 

such a FOURIER series produces function values according to Eq. (4) which are situated outside of the 

definition interval , however, these values may simply be ignored for further considerations. 

3 Experimental Procedure 

Equipment: 
Digital oscilloscope TEKTRONIX TDS 1012 / 1012B / 2012C / TBS 1102B - EDU, PC with DAQ device (NATIONAL INSTRUMENTS myDAQ) 

and accompanying BNC adapter, 2 function generators (TOELLNER 7401 and AGILENT 33120A / 33220A), addition amplifier, photo diode 

with integrated amplifier and pinhole diaphragm (diameter 1mm), AC filter for photo diode, incandescent lamp and fluorescent lamp in light-
proof box, microphone with preamplifier, tuning fork, power supply (PHYWE (0 - 15 / 0 - 30) V). 

3.1 General Hints 

3.1.1 Operating the Data Acquisition Board 

The switch of the BNC socket AGND, which is connected to the NI myDAQ device should also switched 

off here. The signal sources (function generator, microphone amplifier etc.) are connected via one of the 

BNC input channels AI 0 or AI 1; the switch above the BNC socket of ACH 0 or AI 0 has to be set to 

BNC. The corresponding input must then be selected in the software. 

3.1.2 Input Voltage Range of the Data Acquisition Board 

The maximum input voltage range that the data acquisition board can withstand is  10 V; this should not 

be exceeded. As a control, all of the input signals of the DAQ device are therefore simultaneously 

displayed on the oscilloscope. 

3.1.3 Software 

The following experiments are performed using the MATLAB-Scripts 

Dateneingabe_FourierAnalyse.m and Dateneingabe_Rekonstruktion.m respectively. 

The scripts announce themselves by self–explanatory screen messages. Text messages of the scripts such 

as tables with amplitudes and frequencies of FOURIER components appear in the Command Window. 

There, they can be marked and transferred to other applications by „Copy and Paste” (e.g. 

Word,Notepad-Editor among others). 

3.1.4 Printing and Saving the Graphics 

The graphics (MATLAB figures) can be sent to the printer in the lab using the key combination 

 File  Print. Via  File  Save as they can be stored in various well known graphics formats.  
 

Details of graphics can be magnified by using the Zoom function in the Figure window. 
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3.2 Sampling Theorem 

With the help of the AGILENT-function generator a sinusoidal time signal U(t) without a DC component  

and with a frequency of 140 Hz and an amplitude of 4 V is generated (control of settings on the oscillo-

scope) and fed into one of the AI 0 or AI 1 inputs of the DAQ device. With the program 

Dateneingabe_FourierAnalyse 1,000 sampling values for each sampling frequency of (1000, 

500, 300, 200, 150, 120) Hz should be read and FOURIER analysed. The results (time signals and 

amplitude spectra) are printed or stored, respectively. 
 

Question 2: 

- How can the results be interpreted when Eq. (16) to Eq. (18) are taken into consideration? 
 

3.3 Spectra of the Signal of a Photo Detector 

During the investigation of the oscilloscope we saw that the temporal course of the light intensity of a 

light bulb connected to the 230 V power supply system looked clearly different than the temporal course 

of the light intensity of a fluorescent lamp. We now want to quantitatively investigate this qualitative 

finding. To do this, a photo diode is illuminated by an incandescent lamp connected to the power supply 

system and then by a fluorescent lamp also connected to the 230 V power supply system.  A suitable 

pinhole in front of the photo diode prevents saturation of the output signal of the photo diode amplifier 

(time signal U(t)). With the help of the AC filter the DC component of the measured signal is filtered out 

(control on the oscilloscope), and then the signal is fed into the AI 0 or AI 1 input channel of the DAQ 

device. With the help of the program Dateneingabe_FourierAnalyse, 5,000 sampling values 

should be read for both signals at a sampling frequency of 5 kHz and FOURIER analysed. The results (time 

signals and amplitude spectra) are printed and stored, respectively. 
 

Question 3: 

- What is the difference between the time signals and the difference between their amplitude spectra? 

(Statements about the absolute amplitudes of the spectral components are not of importance.) 
 

3.4 Spectra of Sound Waves Recorded with a Microphone 

Next the fundamental frequency of a tuning fork will be determined. For this, the tuning fork is struck and 

the sound waves produced are recorded with the help of a microphone by placing the foot end of the tun-

ing fork on top of the microphone. The output from the microphone is amplified with the accompanying 

amplifier and its output signal U(t)) is fed into one of the AI 0 or AI 1 inputs of the DAQ device. With the 

program Dateneingabe_FourierAnalyse 10,000 sampling values are read at a sampling 

frequency of 5 kHz and FOURIER analysed. The result (time signal and amplitude spectrum) is printed or 

stored, respectively. 
 

Question 4: 

- Does the amplitude spectrum correspond with musical expectations? 
 

In the second step, the note from the tuning fork (the a’) should be sung and then hummed. For both cases 

the acoustic signals should be recorded using the microphone and an analysis like that for the tuning fork 

should follow. 
 

Question 5: 

- What does the result look like in comparison to the analysis of the tuning fork oscillation? 
  

3.5 Spectrum of a Beat Signal 

With the help of an addition amplifier the sinusoidal signals from two function generators (AGILENT and 

TOELLNER) are added. One generator is operated at 104 Hz, amplitude 1 V, no DC component, the other 

at 108 Hz, amplitude 0.75 V, no DC component (verify the settings with the digital oscilloscope). The 

output signal of the addition amplifier (time signal U(t)) is fed into the AI 0 or AI 1 input channel of the 

DAQ device and observed simultaneously with the oscilloscope. With the program 

Dateneingabe_FourierAnalyse 10,000 sampling values are read at a sampling frequency of 

2 kHz and FOURIER analysed. The result (time signal and amplitude spectrum) is printed or stored, 

respectively, and the course of the amplitude spectrum is interpreted. 
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3.6 Spectrum of an Amplitude-Modulated Signal 

Let us examine a harmonic voltage signal U(t) of the form 
 

(20)    sinT TU t U t  

 

with the amplitude UT and the angular frequency ωT. If a time-dependent signal UM(t) is added to the con-

stant amplitude UT, then an amplitude-modulated signal is obtained
10

: 
 

(21)      sinT M TU t U U t t      

 

The signal from Eq. (20) is called carrier signal and ωT is called carrier angular frequency. In the 

simplest case, UM(t) is a harmonic signal with the angular frequency ωM and the amplitude UM0. Hence, it 

follows: 
 

(22)      0 sin sinT M M TU t U U t t       

 

This equation can be converted to: 
 

(23)          0sin cos cos
2

M
T T T M T M

U
U t U t t t            

 

Question 6: 

- Draw the amplitude spectrum of the signal U(t) according to Eq. (23) for the cases UT = 2UM0 = 1 V, 

ωT/2π = 750 kHz and ωM/2π = 15 kHz. 
 

With the AGILENT function generator an amplitude-modulated signal according to Eq. (22) with the 

following parameters is generated: UT = 2 V, ωT/2π = 1 kHz, UM0 = 1 V, ωM/2π = 200 Hz (see foot-

note
11

!). The signal (time signal U(t)) is fed into one of the input channels AI 0 or AI 1 of the DAQ device 

and simultaneously observed with the oscilloscope. Using the program 

Dateneingabe_FourierAnalyse 10,000 sampling values are read at a sampling frequency of 

10 kHz and FOURIER analysed. The result (time signal and amplitude spectrum) is printed or stored. The 

course of the amplitude spectrum is compared to the expectations according to Eq. (23). 

3.7 Spectrum of a Square Signal, Gibbs Phenomenon 

The square signal of a function generator (time signal U(t); amplitude 4 V, frequency 50 Hz, no DC com-

ponent) is fed into the AI 0 or AI 1 input channel of the DAQ device. Using the program 

Dateneingabe_Rekonstruktion 10,000 sampling values are read at a sampling frequency of 

10 kHz and FOURIER analysed. The result (time signal and amplitude spectrum) is printed or stored and 

the course of the amplitude spectrum is compared to the theoretical expectations. For this comparison, the 

expected and measured amplitudes for the ten spectral components with the largest amplitudes are also 

plotted in tabular form.  
 

Hint: 
Descriptions of the FOURIER analysis for a square signal are found in almost every physics text book or, for 

example, in the “Taschenbuch der Mathematik”or in the online reference material from WOLFRAM RESEARCH
12

 

The appendix contains the corresponding formulas for calculating the theoretically expected voltage amplitudes 

for the individual signals The measured data required for the comparison are given in the Matlab command 

window and can be copied into a personal file from there. 
 

Subsequently, the time signal is reconstructed by stepwise addition of its FOURIER components (FOURIER 

synthesis). Thus, it is clearly shown how the original square signal can be reconstructed piece by piece 

                                                      
10 The principle of amplitude modulation (AM) is used, e.g., for signal transmission in long-, medium- and short-wave broadcast. The current 

standard in the ultrashort-wave range is the frequency modulation (FM). 
11 These parameters were stored in the internal storage “1“ in the function generator. They can be retrieved by clicking the but ton RECALL; 

first, there appears RECALL 0 with a blinking 0 in the display. By clicking the button ^ the 0 is raised to 1, then click on ENTER. Now, the 

function generator produces the required signal at the OUTPUT socket. 
12  cf. http://www.uni-oldenburg.de/en/physics/teaching/laboratory-courses/literature/ . 

http://www.uni-oldenburg.de/en/physics/teaching/laboratory-courses/literature/
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from its FOURIER components, if more and more harmonics are added to the fundamental during recon-

struction. The result of the reconstruction is printed or stored, respectively. 

Looking at the reconstructed square signal it becomes clear that over- and undershooting occur. This 

effect is called GIBBS phenomenon
13

. It occurs whenever the signal shows a discontinuity like the square 

signal at the transition point from the lower to the upper or from the upper to the lower signal level (cf. 

Fig. 6). The overshoots themselves are called GIBBS humps. The larger the number N of harmonics, which 

are used for the synthesis of the square signal, the closer the extrema of the under- and overshoots move 

together – their amplitudes, however, staying the same for large N. An exact but extensive calculation 

yields that the largest overshoot has a height of about 9% of the amplitude of the square signal, while the 

height of the largest undershoot amounts to about 4.8% of the amplitude. 

 
Fig. 6: GIBBS phenomenon for the FOURIER synthesis of a square signal with an amplitude of 1 V and a 

period of 2 s. Left N = 50, right N = 100. 

3.8 Spectra of a Saw Tooth Signal and a Triangle Signal 

The investigation described in Chap. 3.7 is repeated for a saw tooth signal and then for a triangle signal 

(amplitude of the signals always 4 V, frequency 50 Hz, no DC component; sampling frequency 10 kHz, 

10,000 sampling values). The time signal and the amplitude spectra are printed or stored and the courses 

of the amplitude spectra are compared to the theoretical predictions. Presentations of the Fourier analysis 

of both signals can also be found in the following appendix. 

Finally, both signals are reconstructed from their spectra. The results of the reconstruction are printed or 

stored, respectively. 
 

Question7: 

-  For which signal is the GIBBS phenomenon noticeable, and how come? 
 

4 Appendix 

Fourier analysis of the signal of a square wave voltage: 
 

(24) 𝑓(𝑡) =
4𝑈𝑅

𝜋
∑

1

2𝑛−1

∞
𝑛=1 sin((2𝑛 − 1)𝜔𝑡) 

 

mit der Spannungsamplitude UR. 
 

(25) 𝑈𝑛 =
4 𝑈𝑅

(2𝑛−1)𝜋
 

 

Fourier analysis of the signal of a saw tooth voltage: 
 

(26) 𝑓(𝑡) =  
2𝑈𝑅

𝜋
∑

(−1)𝑛

𝑛
sin (𝑛𝜔𝑡)∞

𝑛=1  
 

(27) 𝑈𝑛 =
2𝑈𝑅

𝑛𝜋
 

 

Fourier analysis of the signal of a triangular voltage: 

 

(28) 𝑓(𝑡) =
8𝑈𝑅

𝜋2
∑

(−1)𝑛

(2𝑛−1)2 sin ((2𝑛 − 1)𝜔𝑡)∞
𝑛=1  

 

(29) 𝑈𝑛 =
8𝑈𝑅

(2𝑛−1)2𝜋2  

                                                      
13 JOSIAH WILLARD GIBBS (1839 - 1903) 


