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1 Introduction 
An experiment to determine the gravitational acceleration of the earth g is performed in a lecture hall. A 
ball is suspended in the air by a magnetic holder. After activation of the magnet, the ball drops onto a 
platform. It requires the time t for the fall through the distance s. By measuring the measurands s and t it is 
possible to determine the measurand g: 
 

(1) 2

2 sg
t

=
 

 
The apparatus is constructed in such a manner that a flash of light is emitted upon the release of the ball 
and its impact on the platform. The time t between the two light flashes is measured by the students in the 
lecture hall using a stop watch. Nobody would expect that everyone will measure the same time. The 
individual measured values will deviate from each other. This is, for one, caused by the different reaction 
times of the students, and another thing to consider is the variation in drift and calibration among the 
individual stop watches. Likewise, the measured values for the distance s will differ when measured by 
several students since the positioning and reading of the measuring rod will vary from person to person. In 
addition, the measuring rod’s calibration accuracy is limited as well. 
 
This leads to the following questions: 
 
(1) Which values of s and t should be used for the determining g by Eq. (1) ? 
(2) How can the facts that the individual measured values for s and t deviate from each other, and the 

limited accuracy of the measuring instruments be accounted for? 
(3) How good is the value of g obtained from the measured values? 
 
The answers to these questions are: 
 
To (1): A single result of the measurement must be derived from the individual measured values by fixed 

rules. The results of the measurement for s and t are inserted into Eq. (1), thus providing a result of 
the measurement for g. 

To (2): Uncertainties of the results of measurement for s and t have to be calculated according to fixed 
rules. The uncertainties provide a statistical measure for the deviations among the individual 
measured values. They (the measuring inaccuracies) are defined in a manner that an additional 
measurement of s or t will yield a result within the interval result of the measurement  ± uncertainty 
with a well-defined probability. 

                                                      
1 BIPM: Bureau International des Poids et Mesures 
2 DIN: Deutsches Institut für Normung e.V.  
3 NIST: National Institute of Standards and Technology des United States Department of Commerce - Technology Administration. 

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://physics.nist.gov/Pubs/guidelines/TN1297/tn1297s.pdf
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To (3): From the results of measurement and uncertainties for s and t an uncertainty for g must be calculated 
according to fixed rules. A further measurement of g using the same measuring procedure will then 
yield a result within the interval result of the measurement  ± uncertainty with a well-defined 
probability. Hence, both values together compose the full result of the measurement.   

The rules mentioned above are internationally valid. They are described in great detail for all conceivable 
applications in norms and manuals. (e.g. /1/ - /4/). In addition, a number of books dedicated to this subject 
are available (e.g. /5/ and /6/). It is out of scope of this script to reiterate these rules in full detail. We will 
hence restrict ourselves to present some basics and provide the tools needed in the laboratory course for 
calculating results of measurements and uncertainties.   

2 Direct and Indirect Measurement 
In the example considered above, the measurands s and t may be measured directly, that is, by using a stop 
watch and measuring rod. One speaks of a direct measurement in such a case. The value g in the example 
is measured indirectly, that is by obtaining the result of measurement for g from the results of measurement 
of s and t. In such a case one speaks of an indirect measurement. 

3 Notation 
Following /2/, in the context of the measurement of a measurand the terms result of a measurement and 
uncertainty should be used. This terminology has, however, not become commonly used as of today in 
physics laboratories. More often the term “error” is used instead of uncertainty. For this reason, it is 
common to speak of “error analysis” instead of calculation of uncertainties, or about “error bars” instead 
of bars of uncertainty. In this text we will use both terms “error” and “uncertainty” (of a measurement). 

4 Possible Kinds of Errors 
4.1 Systematic Errors 
Systematic errors may result from imperfect measuring instruments, from unavoidable influences of the 
surroundings on the measurement, or also from an unsuitable measurement method. This is illustrated by 
some examples from the lab course: 
 
(1) Imperfect measuring instruments: These are, e.g., an oscilloscope with a poorly adjusted time base 

unit, a multimeter with residual deviation, poorly adjusted electronic scales etc. The unpleasant thing 
about these faults is that one does not always notice them during the measurement. On the contrary: the 
value obtained (e.g., 27.5 µs, 147 Ω, 5.389 g) feigns an accuracy which one expects from these types 
of instrument, so there is no reason to doubt the results. 

(2)  Influence of the surroundings: An example for this is the temperature dependence of measuring 
instruments. Normally, these dependencies are known quantitatively. They can be taken from manuals 
and considered for the analysis.  

(3)  Unsuitable measurement methods: When one tries to determine the mass of a magnet using an 
electronic scale, one soon notices that the measured result is obviously absurd. The measurement 
method is unsuitable, because the magnetic field affects the mechanism of the scale; one needs to use 
another type of scale. It is considerably more difficult to judge whether the current measured in an 
electric circuit is negligibly affected by the circuit wiring and the internal resistance of the device. In 
this case it is not so obvious at first sight, whether the measured value is ”right“ or ”wrong“. Hence, 
one can, in general, not depend on simply hoping to notice when a wrong method of measurement was 
used. Rather, it is necessary to carefully consider the appropriate measurement method to be applied 
when planning the experiment. 
 

Systematic errors cannot be excluded entirely. They influence the results in a very certain way - there is a 
“system“ in the errors. This means that one cannot reduce their influence on the result even by frequently 
repeating the measurement. However, if the extent of the systematic error (e.g. residual deflection of an 
ohmmeter, the temperature course of an amplifier or the calibration error of a pressure sensor) is known, 
one can account for it in the result. 
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4.2 Random Errors 
Random errors affect the result of a measurement in an unpredictable and uncontrollable (which means a 
purely random) way. Causes of random errors, which may occur during a lab course may, for example, be 
the following: 
 
(1) The randomness of a natural process such as, e.g., radioactive decay or emission of photons from a 

light source. For example, it may result in an accidental fluctuation of the number of detected events 
during a measuring time t. 

(2) The stop watch is pressed too early or too late according to the individual reaction time. 
(3) The measuring rod or the caliper gauge from which sometimes a value too small or too large is read 

off. 
(4) The electronic noise of a measuring amplifier, which causes fluctuations in the output voltage. 
 
Random errors always lead to the fact that the measured result deviates from the “true“ value in one direc-
tion or the other (cf. Chap. 5 for the term “true“ value). If the measurement is repeated several times, the 
deviations in both directions balance each other. If this was not true, the observed errors would not be purely 
random. 
 
From the statements above the following conclusions may be drawn: if there are no experiences with a 
certain measuring method, a single measured value does not, in principle, provide any information. The 
measured value may randomly deviate more or less from the ”true“ value. Only with frequent repetition of 
the measurement or previous experience with the measuring method one can get an idea of the value about 
which the individual measured values vary and it becomes possible to evaluate the validity of such a 
measured value. In the following chapters, these relationships are described quantitatively by means of 
formulas. 

5 The Frequency Distribution of Measured Values 
Let us assume that a measurand, e.g. the time t which a body takes to get from A to B, was measured N 
times 4. Thus, N measurement values were obtained which deviate from each other governed by the laws 
of randomness. The question is: Which of these values is closest to the ”true“ value? 
 
In order to solve that question, one must examine whether certain values occur more frequently than others, 
and if so, which ones. Because one may rightly expect that the most frequent, i.e. most probable, values are 
closest to the ”true“ value. For this purpose, the N measurement values, ranging between tmin and tmax, are 
grouped in j classes with a class range ∆t. The range of measured values  
 
(2) ( )min min1t i t t t i t+ − ∆ ≤ < + ∆  
is assigned to the class i (i = 1, 2,..., j)5.. Each class i is assigned a time ti , which corresponds to the centre 
of the respective time interval. Now, for each class i,  the number of values per ∆t, n(ti)  belonging to this 
classis plotted over the corresponding time as a bar. By this method, one obtains a bar diagram from which 
may be gathered how often the measured values have occurred (Fig. 1). 
 
The envelope curve of this diagram, n(ti), is called distribution graph of measured values. According to its 
definition the area below the distribution graph always equals the total number of measured values, N. 
 
Question 1: 
- What is the (very simple!) relationship between the rates of a measured value ∆t, n(ti), and the number 

of measured values within a class, m(ti)? What is the unit of the quantity n(ti) in the chosen example? 
- What is the equation for calculating N from the distribution graph n(ti)? 
 

                                                      
4  The following considerations apply to every physical measurand. The quantity t (time) only serves as an example here.   
5  An example for this: Let the measured values range between tmin = 20.4 s and tmax = 22.3 s, the precision of the watch reading be 0.1 s. The 

measured values are hence divided into j= (22.3 - 20.4)/0.1 = 19 classes, each of which represents a time interval of ∆t = 0.1 s width 
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Fig. 1: Distribution graph of measured 
values. The width of a time interval 
(bar) is ∆t. (German “Fläche” = area). 

 Fig. 2: Distribution graph (density function) of the 
GAUSS distribution or normal distribution 
(GAUSS curve). 

 
 
Past experience has shown, and the theory established by CARL FRIEDRICH GAUß (Fig. 3) substantiates that 
for N → ∞ and ∆t → 0 (and thus ti → t) the distribution graph n(t) for values that have been obtained 
independently of each other and are affected by random errors has a quite characteristic form: The form of 
a  Gaussian bell-shaped curve or, briefly, Gaussian (Fig. 2). In those cases it is common practice to say 
that the measured values are Gaussian distributed or normally distributed. 
 

 
 

Fig. 3: CARL FRIEDRICH GAUß (1777 - 1855) 6 
 
The area under the Gaussian again equals the total number of measured values, N. In general it is normalized 
to 1. As explained below, this means that the probability of finding a value in the entire range of values 
between -∞ and +∞ equals 17.  
 
The course of the Gaussian normalized to the area 1 is given by: 
 

(3) 
( )2

221( ) e
2

t t

n t σ
σ π

−
−

=   with ( )d 1n t t
∞

−∞

=∫  

 

where t  is the mean and σ the standard deviation of the Gaussian, the square of the standard deviation, 
σ2, is called variance. At t = t  ± σ the Gaussian has its inflection point. The quantities t  and σ are of 
great practical importance: 

                                                      
6  Image source: GELLERT, W. et al. [Eds.]: „Kleine Enzyklopädie Mathematik“, VEB Bibliographisches Institut, Leipzig, 1969. 
7  In the observed example, the time t is the physical quantity, its real value range can only be within the interval 0 ≤ t ≤ ∞. Hence, it appears to 

be formally wrong or at least nonsensical to extend the range of values to - ∞. However, in practice the part of the integral of Eq. (3) is so small 
within the range - ∞ ≤ t < 0 (≈ 0) that it can be neglected. This is why the limits of the range of values are determined to be ± ∞ for reasons of 
mathematical simplification. 
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- The mean t  is the value where n(t) has a maximum. This is the most frequently occurring value in a 
series of infinitely many measurements. Thus, it represents the most probable result of the measurement. 
In other words: a series of measurements never yields a true value, but always a most probable value. 

- The standard deviation σ is a measure of the scattering of measured values around the mean t . The 
greater the scattering, the larger σ is, the larger the width of the distribution graph becomes (while the 
area remains unchanged), and the less single values differ from the other values. 

 
Question 2: 
 
- Calculate and sketch n(t) with the aid of Matlab according to Eq. (3) in the time interval 

121.5 s ≤ t ≤ 123.5 s for t  = 122.5 s as well as a) σ = 0.1 s and b) σ = 0.2 s. Show both curves in one 
diagram (Matlab -Command hold on). Eq. (3)is written in the following form in Matlab: 

 
 n = (1/(sigma*sqrt(2*pi)))*exp(- ((t – t_quer).^2)/(2*sigma^2)) 
 
Let us pretend that we have performed our experiment such that the conditions N → ∞ and ∆t → 0 are 
almost fulfilled - so that the distribution graph of our measured values is approximately given by a Gaussian 
according to Eq. (3). Then through integration of n(t) one can calculate (hence, one does not need to count!), 
how many values are found in the time interval [ , ]t tσ σ− + , i.e. within the range t σ± . 
 
We know that all N values must be in the time interval [-∞, +∞]. Due to normalization of the area under 
the Gaussian to 1 (cf. Eq. (3)) this means: 
 

(4) ∫ 𝑛𝑛(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 +∞
−∞  𝑁𝑁   100%  of all measured values. 

 

For the interval [ t  - σ, t  + σ] we obtain: 
 

(5) 
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2

t tt t
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σ
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=∫ ∫ ⋲0,683  0,683 N   68,3%  of all measured values. 

 
 Those who want to repeat that calculation should be warned: The  integral over the Gaussian according 

to Eq. (3) can only be solved numerically and not analytically! It is given in Table 2 (Chap. 11.5). 
 

 
Fig. 4: Partial areas below a Gaussian with a total area normalized to 1. Top: Partial area in the range t ± σ. 

Bottom: Partial area in the range t ± 2σ. 
 
If the distribution graph of the measured values is represented by a Gaussian (a fact from which we mostly 
start in practice), always about 68.3% of all values are found within the interval t σ± (Fig. 4). For the 
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range 2t σ± , we always obtain a percentage of about 95.5 % (cf. Fig. 4) and for the range 3t σ±  always 
a percentage of about 99.7 %. In the laboratory jargon we usually say: 68 % of all measured values are 
found within the 1σ range around the mean, 95 % in the 2σ range, and 99 % in the 3σ range around the 
mean. 
 
Of course, the conditions N → ∞ and ∆t → 0 cannot be fulfilled in practice. Thereby the interval is 
increased, in which we find, e.g., 68.3 % of all measured values. In this case, t  ± σ has to be replaced by 
t  ± pσ in which the value of the quantity p ≥ 1 depends on N and can be calculated by statistical methods 
(e.g. p = 1.32 for N = 3, p = 1.15 for N = 5, p = 1.06 for N = 10 and p → 1 for N → ∞). However, for the 
evaluation of measurements within the laboratory course we won't take this into account.  

6 Mean and Standard Deviation 
In the preceding chapter it was detailed that, respecting the assumptions one can make the following 
statement about a single measurement (one measured value) from a series of measurements: 
 

 The result of a single measurement is within the range t  ± σ with a probability of 68 %. 
 

For practical work the question arises of how to determine t  and σ. Since neither the condition N → ∞ nor 
the condition ∆t → 0 can be met in a real experiment, one needs to find out how one can calculate the best 
assessed value, briefly: calculate the optimum for t  and σ from a finite number of values (a so-called 
sample). We will dispense of the theoretical deduction for calculating the optimum values and state the 
results. 

6.1 Mean Value 
If a measurand, e.g. the time t, is measured N times, the optimum for the mean t , resulting from the case 
N → ∞, is the arithmetic average of the measured values ti: 
 

(6) 
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t t
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6.2 Standard Deviation for a Single Measurement 
The optimum for the standard deviation σ of the single measurement is: 
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This can be explained: The standard deviation for a single measurement is a measure for the deviation of 
measured values ti around the mean t . The deviation8 of a single measured value ti from t  is given by the 
difference (ti - t ) (cf. Fig. 5). If the arithmetic average of these differences was taken as a measure of 
deviation, we would obtain zero as a direct consequence of the definition of the average, because positive 
and negative differences would cancel each other out. The information about the existing deviation of 
measured values would thus get lost. In order to prevent such a loss of information, the differences are 
squared: 
 

( )2
it t−  

 
This turns all quantities into positive numbers. Then, the arithmetic average of these squares and finally the 
root of this value is calculated.  
 

                                                      
8  According to /2/ this value is called uncertainty of measurement. 
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The fact that the values are not divided by N but by N – 1 for calculating the arithmetic average can be 
justified by a detailed statistical analysis, which particularly goes into differences between random sample 
and parent population. However, we will not go into further detail here, since the deviation between 1/N 
and 1/(N-1) is infinitesimal for high N. 

 
Fig. 5: Illustration of the standard deviation: 32 measured values ti of time t are plotted over the number of 

measurement i. t is the average of ti. For i = 5 and i = 15, the deviations have been drawn exemplarily into 
the diagram between ti and t . 

 
The standard deviation σ of the single measurement is often termed error (uncertainty) of a single measure-
ment, or, in accordance with Eq. (7), root-mean-square error (rms error). 

6.3 Standard Deviation of the Mean 
In practice the standard deviation σ of the single measurement is oftentimes not the fundamental quantity. 
It is not very interesting to know with which probability a single measured value lies within the range t
± σ. Much more important is the question of how reliable and reproducible is the mean t , which was found 
with a series of measurements and which represents the result of a measurement. In other words: with which 
probability would the measured result of another measurement series, i.e., a second mean, be found in a 
given interval around the first one? In order to answer that question, a statement about the standard 
deviation of the mean tσ  is required analogous to the standard deviation of the single measurement. 
 
Assuming we repeated a series of measurements consisting of N single measured values M times, so that 
M means t i (i = 1, 2,..., M) are obtained. It can be shown that for M → ∞ the distribution graph of these 
means of the measurement series would again yield a Gaussian curve with the standard deviation tσ . 
 
In practice one does not wish to repeat the measurement series M times in order to determine the standard 
deviation of the mean, tσ . Instead, the aim is to determine the optimum for tσ  from one series of 
measurements with N measured values). That optimum results in: 
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Now the following probabilistic statement about the mean t   of the measurement series representing the 
result of the measurement can be made. 
 

 The result of measurement of another measurement series is in the range t  ± tσ  with a probability 
of about 68 %. 
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Further, it holds that: 
 

 The standard deviation of the mean tσ  is the uncertainty of the measurement as mentioned in Chap. 1, 
which, is stated together with the result of the measurement (the mean) as the full result of a 
measurement of a series of measurements for determining a measurand. It is often termed “error of the 
mean“.  

 
From Eq. (7) it can be seen that the standard deviation σ of a single measurement remains almost constant 
with an increasing number N of measured values in a measurement series, as illustrated in Fig. 5. Addition 
of further measured values to the diagram does not affect the deviation of the measured values from the 
mean.  
 

Eq. (8), however, demonstrates that the standard deviation  tσ  of the mean, i.e., the uncertainty of the 

measurement decreases with increasing N: The uncertainty decreases by 1/ N . In principle, one can 
make it arbitrarily small if only enough measurements are performed. In practice, however, one will repeat 
the measurements only until the uncertainty of the measurement meets a given precision requirements. At 
this the condition N ≥ 4 must always be met because otherwise no standard deviation (according to Eq.(7)) 
can be indicated. This follows from statistical considerations which cannot be discussed in detail here. 
 
In summary, it can be stated:  
 

 The result of a measurement series must always be given in the form t  ± tσ . 

 The uncertainty of a measurement tσ  (the error of the mean) decreases by a factor of 1/ N  for an 
increasing number of measured values N. 

 Unless stated otherwise, the result of a measurement having the form t = (100.6 ± 1.2) s is always 
interpreted as follows: Result of the measurement 100.6 s, uncertainty of the measurement (standard 
deviation of the mean) 1.2 s. 

6.4 Absolute and Relative Errors 
The quantity tσ  represents the absolute error of the measured result, the quantity /t tσ  the relative error, 
which generally is given as a relative value. During the lab course we will mainly confine ourselves to 
stating the absolute errors. 

7 Maximum Error of a Single Measurement 
It often happens, in the lab course very frequently, that the value of a measurand a is not determined by a 
series of measurements but instead only by a single measurement, as e.g. for measurements of lengths. In 
that case the result of a single measurement is stated in the laboratory course instead of the mean and the 
maximum error ∆a instead of the standard deviation of the mean. This is the biggest possible error occurring 
in the single measurement of the quantity. It has to be assessed according to reasonable projections. For 
example, when the length of a distance is measured with a ruler, then the reading precision of the ruler will 
be taken as the maximum error. E.g. using millimetre measuring tape, the value 0.5 mm is used, whereas 
for a vernier caliper a value of 0.1 mm or 0.05 mm is correct, and a value of 0.01 mm is used for a 
micrometer gauge.  

8 Accuracy 
The accuracy of a measured result for the measurand a, i.e. the number of significant digits, is limited by 
the uncertainty of the measurement, i.e. the standard deviation aσ  of the mean or the maximum error ∆a 
of a single measurement, respectively.  
 

aσ  and ∆a are to be rounded to maximally two significant digits in this laboratory course!9 

                                                      
9  This means that the uncertainty can be stated with an accuracy of approx. 1 %. A better accuracy cannot be achieved with the equipment in the 

lab! 
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The mean, or, the single measured value resp. is then to be rounded so that its last significant digit has the 
same order of magnitude as the last significant digit of aσ  or , respectively, of ∆a.  
 
Some examples: An accuracy feigned by calculations, or the number of digits of an electronic clock of the 
form: t = 90.4671 s is simply incorrect, if the maximum error of the time measurement is 1.1 s for example. 
In this case it should read (rounded): t = (90.5 ± 1.1) s. It is also incorrect to state R = (83.62 ± 2.624) Ω; it 
should read R = (83.6 ± 2.6) Ω because of the limitation to two significant digits for the uncertainty of the 
measurement. 
 
The significance of a digit is independent of its order of magnitude (position with respect to the decimal 
point). Thus, all of the following numbers contain two significant digits:  

 
18 1.8 0.18   0.018        0.0018  etc.  

 
This becomes quite obvious when, as recommended, using powers of ten, i.e., writing the above numbers 
as follows:  

 
1.8×101  1.8×100  1.8×10-1 1.8×10-2 1.8×10-3. 

 
In rounding numbers, the question arises in which direction the digit 5 should be rounded. For example, 
take the number 4.135, to be rounded to two digits after the decimal point. It would be possible to round it 
to 3.14 to 3.13. The rule to apply is to round in such a way, that the last digit of the resulting number is 
even. In the example, 4.135 would be rounded upwards to give 4.14. The number 4.125 would in contrast 
be rounded downwards to 4.12. The reasoning behind this rule is the fact, that a division by 2 results in 
both numbers (rounded and non-rounded) having the same rounded result. For the examples above, we 
have: 
 
 4.135 : 2 = 2.0675 ≈ 2.07 and likewise 4.14 : 2 = 2.07 
 
 4.125 : 2 = 2.0625 ≈ 2.06 and likewise 4.12 : 2 = 2.06 

9 Error Propagation, Combined Measurands  
It happens frequently that the measured quantity itself (direct measured result) is of no interest, but a 
quantity calculated from it (indirect measured result, cf. Chap. 2). Again, let us take as an example the 
acceleration of gravity g (Eq. (1) which depends on the measured quantities s and t:  
 

 2

2 sg
t

=  

 
Further examples are the density ρ of a physical body which is a function of the measurands mass m and 
volume V:  
 

(9) 
m
V

ρ =  

 
or the capacity C of a plate capacitor in vacuum which depends on the measurands surface A of the plates 
and the distance d between them. With the electrical field constantε0 we have:  
 

(10) 0
AC
d

ε=  

 
All these examples clearly show that the error of the quantity of interest has to be calculated from different 
measured quantities. The following chapters describe how this is done. 
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9.1 The Most Probable Error of a Combined Measured Quantity 
In case the result of a measurement for a measurand y is calculated from the results of measurement for 
several Gaussian distributed measurands, for which means and standard deviations have been gained from 
measurement series, the most probable error for y will be determined by the  Gaussian error propagation 
law, which is defined in the following. 
 
Let us assume that the quantity of interest y depends on the measurands a, b, c, etc.: 
 

(11) y a b c= f ( , , ,...)  
 
We assume that the measured values for the measurands a, b, c,... are Gaussian distributed and do not 
influence each other, i.e., they are independent from each other in a statistical sense. We further assume 
that the mean values , , , ...a b c  and the standard deviations of the means , , , ...a cbσ σ σ  are known. Then 
the optimum yB 10 for the  measurand of interest y is the value obtained by calculating y from the means 

, , , ...a b c : 
 

(12) f ( , , , ...)By a b c=  
 
This is plausible. The standard deviation 

Byσ  of yB is given by the Gaussian error propagation law (illus-
trated in Chap. 9.2) which reads: 
 

(13) 
2 2 2

2 2 2... : ...
By a c a b cb

B B B

y y y y y y
a b c

∂ ∂ ∂σ σ σ σ
∂ ∂ ∂

          
= + + + = ∆ + ∆ + ∆ +          

               
 

 
The expressions ∂y/∂a, ∂y/∂b, etc. in Eq. (13) are the ”partial derivatives“ of y with respect to the quantities 
a, b, c,... They state how y would change, if one changes only a, only b, or only c etc. keeping the other 
quantities constant. (Mathematically: One forms the derivative of y with respect to each of the quantities a, 
b, c,... and considers the other quantities to be constant). The index B in the partial derivatives states that 
the numerical values of the partial derivatives are to be calculated at the best values (means) , , , ...a b c  of 
the measurands a, b, c,…. 
 
As an example for the calculation of partial derivatives we take again Eq. (1) for the acceleration of gravity 
g, which depends on the quantities s and t. The partial derivative of g by s is: 
 

 2

2g
s t

∂
=

∂
 

 

and the partial derivative of g by t is: 
 

 
3

4g s
t t

∂
= −

∂
 

9.2 Illustration of the Error Propagation Law 
To illustrate the error propagation law we examine once more the acceleration of gravity g given by Eq.(1). 
We therefore have a function, which depends on the two variables s and t. Eq. (11) then reads with y := g, 
a := s and b := t: 
 

(14) ( ) 2
2f , sg s t
t

= =  

 

                                                      
10 The index B stands for best value. 
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In Fig. 6, g is shown as a function of s and t in a 3D-plot, in which the linear dependence of the acceleration 
of gravity g of s and the reciprocal-square dependence of t is made clear. 

 
 

Fig. 6: Illustration of the error propagation law. 
 
Looking at Fig. 6 we examine the different terms in Eq. (13) more closely, and - as an example - pick the 
second one: The quantity to be determined, y (g in this case), depends on the measurand b (t in this case) 
among others. When b changes, y will change as well. The partial derivative ∂y/∂b states how big this 
change is, i.e., how steep the slope of the function y = f(a, b, c,...) as a function of b is, if one assumes the 
remaining quantities a, c,.. to be constant. In the considered example we have: 
 

(15) 3

4:y g s
b t t

∂ ∂
= = −

∂ ∂
 

Since this slope is not equally steep everywhere (in the example it changes with t-3, see Eq.(15)), it is useful 
to calculate it at the position , , , ...a b c  (here ,s t ) which is also of relevance for calculating the best 
value yB, (here gB). Therefore the index B stands in Eq. (13): (∂y/∂b)B.  
 
Now one needs to know for the term picked out how big the change of yB is, which is caused by the error 

bσ . From basic differential calculus it is known that this change is given by the differential: 
 

(16) 3
4: here:b t t tb

B B

y g sy g
b t t

∂ ∂σ σ σ
∂ ∂

   
∆ = ∆ = = −   

   
 

 
In the same way we can determine the errors  
 

(17) 2
2: here:a a s s s

B B

y gy g
a s t

∂ ∂σ σ σ
∂ ∂

   
∆ = ∆ = =   

   
 

 

(18) : (here without importance)c c
B

yy
c

∂ σ
∂

 
∆ =  

 
 

 
etc., which all add to the total error, i.e. to the standard deviation 

Byσ of yB. Thus it is obvious that they 

have to be added in order to calculate 
Byσ . Since the single errors according to Eqs. (16) and (18) may be 

positive or negative, they may partly or entirely neutralize each other and may therefore suggest overall too 
small of an error. To avoid this it is useful to square the single errors (which makes them all positive) and 
to take the square root of the sum of squares afterwards. Due to this geometrical (quadratic) addition of 
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single errors, the total error will be smaller than the sum of the single errors. This takes into consideration 
that the single errors of the independent quantities a, b, c etc. may not be equally represented in the final 
result but may at least partly compensate one another. Hence on speaks of the most probable error. 

9.3 Maximum Error of a Combined Measured Quantity 
Let us now consider the case (as an example), that the quantities a, b, c etc. either contain no random errors 
or their errors have partially not been obtained from measurement series. The latter case occurs frequently 
in practice (even in the lab course), namely when at least some of the results of measurement for the 
measurands a, b, c etc. have been obtained from single measurements for which only the respective 
maximum errors ∆a, ∆b, ∆c are known.  
 
In such a case the maximum error ∆y is stated instead of the standard deviation according to Eq. (13) for 
the combined measurand y . It results from the most unfavourable, i.e. arithmetic (linear) addition of all 
single errors and is given by: 
 

(19) ... : ...B a b c
B B B

y y yy a b c y y y
a b c

∂ ∂ ∂
∂ ∂ ∂

∆ = ∆ + ∆ + ∆ + = ∆ + ∆ + ∆ +
 

 
where the maximum errors, or respectively, standard deviations are to be inserted for the quantities ∆a, 
∆b, ∆c,... 
 
Except for taking the absolute values of the differentials, Eq. (19) is the total differential of yB. 
 
 If not explicitly required otherwise, the maximum error is always to be stated for combined measured 

quantities in the laboratory course. 

10 A Concrete Example 
The gravitational acceleration g can be determined using a “mathematical pendulum“. The mathematical 
pendulum which can only be realized approximately in practice, consists of a point-like mass in the ideal 
case, which is suspended on a massless thread such that it can swing without externally disturbing influ-
ences (especially no friction). For displacements of the pendulum by a small angle α below about 5 ° it 
holds that sin tanα α α≈ ≈  (α in radian) and the following relationship between the period of oscillation 
T of the pendulum, the length of the thread l, and the gravitational acceleration g is in good approximation 
given by: 
 

(20) 2 lT
g

π=   and  
2

2

4 lg
T
π

=  , respectively. 

 
By measuring l and T it is thus possible to determine g. Already prior to the measurement we can state the 
possible systematic errors: 
 
- Contrary to theory the mass is not pointlike and the thread is not massless. How this affects the meas-

urement is difficult to state. One tries to approach the mathematical pendulum as far as possible by using 
a very thin thread and a mass with little spatial expansion and expects that the remaining errors will be 
so small compared to the measurement uncertainties of the measurands l and T, that they can be 
neglected. 

- The pendulum cannot be suspended so that it is completely frictionless. Hence, sufficient effort needs 
to be made towards achieving an optimal suspension so that the error caused by friction is small 
compared to the measurement uncertainties. 

 
When preparing the experiment care must be taken, so that the watch for measuring T as well as the ruler 
for measuring l are calibrated in order to exclude systematic errors caused by inadequate instruments. Addi-
tionally, the length of the thread l must be chosen such that the measurement can be carried out using 
pendulum swings below approx. 5°, since Eq. (20) is only valid in good approximation under that condition. 
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After completing these preparations, the measurement can be performed. It is known that the influence of 
random errors on the uncertainty of measurement can be minimized by repeating the measurement as often 
as possible. At the same time one recognizes that repeated measurements of the length l are of no use at all. 
If the ruler is placed and read carefully, the measured value will not change when the measurement is 
repeated several times. Nevertheless, the measured value for l is, of course, also subject to an error: On the 
one hand, the ruler only has a certain accuracy even when following calibration, on the other hand, it can 
only be placed and read with finite accuracy. The result of the measurement can then be stated as follows: 
 

(21) l L L= ± ∆  ;   e.g.  ( )2,5580 0,0020 ml = ±  
 
L being the value read and ∆L its maximum error. 
 
The oscillation period T is determined using a stop watch, the internal inaccuracy of which is assumed to 
be negligible. Starting and stopping the watch depends on the reaction time of the user and are thus subject 
to random fluctuations. Its influence on the uncertainty of the measured result can be minimized by repeated 
measurements. After a total of N measurements yielding the values Ti, the result of the time measurement 
is: 
 

(22) TT T σ= ± ;   e.g. ( )3.210 0.010 sT = ±  
 

with T  being the arithmetic mean of measured values Ti according to Eq. (6) and hence the best value for 
T, and Tσ  being the standard deviation of the mean T  according to Eq. (8). 
 
Hence, the best value gB for g is according to eq. (20): 
 

(23) 
2

2
4

B
Lg

T
π

= ;  in the example  
( )

2

2 2

4 2,5580 m m9,801
s3,210 sBg π ×

= =  

 
Because L has not been determined from a measurement series, not the standard deviation is calculated 
using Eq. (13), but the maximum error ∆gB according to Eq.(19). This results in: 
 

(24) B T
B B

g gg L
l T

∂ ∂ σ
∂ ∂

∆ = ∆ +  

 
First, the absolute values of the partial derivatives at the positions of the best values B (in this case for the 
values L and T ) are calculated: 
 

(25) 
( )

( )

2 2 2

2 2 2
, ,

2 2 2

3 3 3
, ,

4π 4 4 ...
3,210 s

8π 8π 8π 2,5580 m ...
3,210 s

L T L T

L T L T

g
l T T

g l L
T T T

∂ π π
∂

∂
∂

= = = =

×
= − = = =

 

 

Substituting L and T , equation (25) yields two numbers which are multiplied with two other numbers 
according to Eq. (24) (namely ∆L and Tσ ), and must be added to find the value of interest, ∆gB: 
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(26) 

( ) ( )

2 2

2 3

2 2

2 3 2

4 8

4 8π 2,5580 m m0,0020 m 0,010 s = 0,069
s3,210 s 3,210 s

B T
Lg L

T T
π π σ

π

∆ = ∆ +

×
= +

 

 
 
In the statement of the numerical value the rounding to two significant digits must be adhered to. 
Summarizing, the full result of the measurement reads: 
 

(27) ( ) 2
m9.801 0.069
sB Bg g g= ± ∆ = ±  

 
Since a value for g is available from the literature in this example that value must be compared with the 
result of the measurement. If the value for g in the literature is within the range gB ± ∆gB the experiment is 
completed and concluded by the statement that a “good agreement within the frame of the measuring 
accuracy“ was achieved. If the value from the literature is not within the range gB ± ∆gB however, there is 
a relatively high probability that the measurement has been falsified by a systematic error. 
 
Instead of the absolute error ∆gB of the measured result gB one can also state the relative error εg for gB: 
 

(28) B
g

B

g
g

ε ∆
=  

thus: 
 

(29) 2 T
g

L
L T

σ
ε ∆

= +  

 

From this equation is can be seen that the relative error of T , /T Tσ  is embodied doubly in the result, 

however, the relative error of L, ∆L/L, only simply. If this is to be compensated, the relative error of T  
may only be half as big as the relative error of L. This can always be achieved by a sufficient number of 
measurements of the oscillation period (cf. Eq. (8)) and should already be considered when planning the 
experiment. 

11 Appendix 
11.1 Linear Regression, Regression Lines 
11.1.1 Regression Lines of the Form y = ax + b 
In practice it happens quite often that two quantities x and y depend linearly on each other, which means 
that they are linked by the equation of a line: y = ax + b. The aim of the measurement is then to find the 
quantities a and b. Let us take as an example the time behaviour of a velocity v of a constantly accelerated 
motion: v(t) = at + v0 with a: acceleration, t: time, and v0 initial velocity. We measure v(t) (dependent 
variable) with certain default values of t (independent variable), to obtain a value for the acceleration a and 
the initial velocity v0. 
 
Plotting v(t) against t according to Fig. 7, we expect that the sketched points are on a line with a slope that 
represents the value of a and a ν-interception that gives us v0. Trying to plot this line in the diagram of 
measured values, we notice that quite a few slopes and values for v at t=0 match our measured values more 
or less. Which parameters are the right ones? This question can only be answered in the sense of a 
probability statement. We want to give the answer in the following. 
 
We return to our function y = ax + b. As frequently occurs in practice, we have N values of the quantity x, 
from which we determine N measured values for the quantity y. The errors of the specified values of x are 
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negligible; the errors of the measured values of y shall be randomly distributed. We maintain, that the 
optimums of A and B for the parameters a and b of the line equation have been found, when the sum of the 
squares of the vertical distances between the measured values and the „regression line” determined by A 
and B, are minimal: 
 

(30) ( )
2

1
 Minimum

N

i i
i

y Ax B
=

− + →  ∑  

 
Question 3: 
 
- How can this approach be justified? 

 
 

Fig. 7: Which is the best regression line through the red measured values? 
 
 
By means of differential calculus one may quite easily determine a solution for the requirements described 
in Eq. (30). It is found for A and B (summation from 1 to N each): 
 

(31) 2 2
( ) ( )( )

( ) ( )
i i i i

i i

N x y x y
A

N x x
−

=
−

∑ ∑ ∑
∑ ∑

 

 

(32) 
2

2 2
( )( ) ( )( )

( ) ( )
i i i i i

i i

y x x y x
B

N x x
−

=
−

∑ ∑ ∑ ∑
∑ ∑

 

 
Of course, these optimums are also subject to errors, which we are now looking for. The faulty quantities 
in Eqs. (31) and (32) are the yi. For the variance of the yi we obtain the optimum (cf. Eq. (7)): 
 

(33) ( )22 1
2y i iAx B y

N
σ = + −

− ∑  

 
Division by (N - 2) instead of (N - 1) is explained by the fact that the optimums A and B enter the calculation 
of the quantity 2

yσ . Applying the error propagation to Eqs. (31) and (32) and inserting Eq. (33) for σy, we 
find as optimums for the standard deviations of A and B (D is an auxiliary quantity defined in Eq. (36)): 
 

(34) NDA =σ  
 

(35) ∑= 2
iB xDσ  

 
with 
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(36) 
( )2

2 2
1

2 ( ) ( )
i i

i i

Ax B y
D

N N x x
+ −

=
− −

∑
∑ ∑

 

 
In this laboratory course, the software Origin is used for these calculations, as it can produce this data 
with a few clicks of the mouse (→ Analysis → Fit → Linear Fit). Do not calculate the parameters of 
regression lines „by hand”. That would be much too time-consuming! 

11.1.2 Regression Lines of the Gorm y = ax + b with Predefined b 
In practice measured values are also connected with each other by a linear function y = ax + b for which 
the intercept of the axis is predefined. Let us take OHM’s law U = RI as an example: if we measure the 
voltage U as a function of the current I, then the regression line through the measured values is a straight 
line through the origin (b = 0) with the slope R. The condition for calculating the optimum A of the slope a 
of the regression line in this case reads 
 

(37) [ ]
2

1
 Minimum

N

i i
i

y Ax
=

− →∑  

 
analogous to Eq. (30). We obtain for A by means of differential calculus and for σA by means of error 
propagation: 
 

(38) 
∑
∑= 2

i

ii

x
yx

A  

 

(39) 
( )

( )

2

22
i i

A
i

y Ax
N x

σ
−

=
−

∑
∑  

In order to perform the corresponding calculations with Origin, the box labeled “Fixed intercept at” 
must be checked in the window Linear Fit, and the value of b must be entered. 

11.1.3  Regression Lines of the Form y = ax + b with Predefined a 
The reverse case, in which the slope a of the regression line is predetermined and we are only looking for 
the intercept of the axis b occurs occasionally. The condition for calculating the optimum B of b again reads 
analogous to Eq. (30): 
 

(40) ( )
2

1
 Minimum

N

i i
i

y ax B
=

− + →  ∑  

 
only B being a free parameter for determining the minimum in this case. For B and σB we obtain in this 
case: 
 

(41) 
N

xay
B ii∑ ∑−

=  

 

(42) 
( ) ( )21

2B i iax B y
N N

σ = + −
− ∑

 
 
In order to perform the corresponding calculations with Origin, the field Fixed Slope in the window 
Linear Fit must be checked and the numerical value for a must be entered.  
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11.2 Linearizations 
By means of quite elemental mathematical rearrangement we may linearize non-linear relations between 
measured values in order to use linear regression for the calculation of the optimums of the desired values. 
For example, the power relationship of the form: 
 

(43) ay bx=  
 
becomes the linear relationship by a simple logarithm (line equation): 
 

(44)   log log log hence
y xb

y b a x y b ax= + = +
 

   

 
For logarithmic relationships we have to consider the following: the logarithm of a physical quantity y, 
which is given by the product of numerical value and unit, cannot be calculated directly, because the 
logarithm of a unit does not make sense. This is why we have to divide these values by their unit to make 
them dimensionless. After that we may do rewritings according to the one from Eq. (43) to Eq. (44). An 
example: The ohmic resistance R becomes r = R/Ω, the voltage U becomes u = U/V, the current I becomes 
i = I/A and so the OHM's law R = U/I becomes the modified form r = u/i, which reads log r = log u – log i 
in the logarithmic form. 
 
Plotting y against x (Eq. (44)) on a double-logarithmic scale (i.e. log y over log x), we obtain a line with the 
intercept log b and the slope a from the best fit line through the measuring points. The optimums for a and 
log b are found by means of a linear regression, to which we have to apply to Eq. (44). 
 
Using the logarithm also converts an exponential relationship of the form 
 

(45) eaxy b=  
 
into a linear relationship: 
 

(46) ln ln ln e lny b ax b ax= + = +  
 
Plotting y against x on a half-logarithmic scale, we also obtain from the best regression a line with intercept 
ln b and slope a, the optimums of which are found by applying the linear regression to Eq. (46). 
 
If logarithmic papers are used, we have to consider that this paper is always meant for the use of decimal 
logarithm (log, basis 10). However Eq. (46) deals with natural logarithm (ln, base e). Hence, when values 
are to be taken graphically from a diagram on logarithmic paper or calculated values are to be entered, they 
have to be converted appropriately. (Remember: log x = ln x/ln 10; ln x = log x/log e). 
 
The software Origin is used in the laboratory course for the calculating parameters of regression lines 
in logarithmic diagrams. In order to do this, it is necessary to check the field Apparent Fit11 in the window 
Linear Fit. 
 
Question 4: 
 

- The exponential attenuation law ( ) ( )0 expI x I xµ= −  describes the attenuation of the intensity I of a 
radiation passing through a layer of matter of thickness x. I0  is the initial intensity of the radiation at the 
location x = 0 and µ a material dependent coefficient ([µ] = 1/m). Draw I(x) in linear and semilog 
representation (abscissa x linear each). How do we obtain the attenuation coefficient µ from the semilog 
diagram ? 

 
 

                                                      
11 The fit is called apparent since the data in the Origin worksheet remain in their original, linear form. The data only appear logarithmic in 

the diagram on which the fit is based, provided the scaling of the appropriate  axes is set to  the Type “log10“, “log2“ or “ln“. 
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11.3 Correlation 
Sometimes, although rather rarely in an introductory laboratory course, it has to be examined whether a 
presumed linear connection exists between two quantities x and y, i.e., whether the two values are cor-
related. The diagram of the measured values does not always show whether the plotted values are well fit 
to a line or not. In any case the question arises of how “well“ is “well enough“, in order to maintain the 
hypothesis that x and y are correlated? The quantitative answer of this question is yielded by the calculation 
of the correlation coefficient. It is given by: 
 

(47) 
2 2

( )( )
 

( ) ( )
i i

i i

x x y y
r

x x y y

− −
=

− −

∑
∑ ∑

 

 
x  and y  being the arithmetic means of the measured values x and y. The correlation coefficient can only 
range between -1 and +1. For judgement of the question of whether two values are correlated, the magnitude 
of r is decisive. For |r| = 1 the values are correlated perfectly, for |r| = 0 they are not correlated. For all 
values between 0 and 1 probability statements can be made which additionally depend on the amount of N, 
i.e. the number of measurements. For N = 10 and |r| ≥ 0.8 e.g. the probability P that the values are not 
correlated is P = 0.5 %. Table 1 (Chap. 11.5) in the annex shows the probabilities for further combinations 
of N and |r|. 

11.4 Errors of Weighted Means 
We assume that a measurand h is measured in M measurements (No. i = 1,...,M) under varying conditions. 
The result of the single measurements yielded the results hi and the uncertainties σi. 
 
Our aim is to calculate a final result for the quantity of interest h from the M measured values hi . In the 
easiest case this would be the arithmetic mean of the hi, however, this would not consider the fact that the 
hi may exhibit quite different uncertainties σi 

 because, e.g., the optimum measurement accuracy was not 
the same in all measurement series. 
 
In such cases a weighted mean hg. is calculated instead of the arithmetic mean of the hi. If gi are the weights 
to be considered for the single values hi  when calculating hg , we obtain for summation from 1 to M: 
 

(48) i i
g

i

h g
h

g
= ∑

∑
 

 
Generally the reciprocal values of the variances are chosen as weights: 
 

(49) 2
1

i
i

g
σ

=  

 
Applying the error propagation law to Eq. (48) we obtain for the uncertainty σg of the weighted mean when 
summing up from 1 to M: 
 

(50) 

1
2 2

2
1g

g i
i i

h
h

∂
σ σ

∂ σ

−
  

= =        
∑ ∑  

 
Question 5: 
 
- How do we obtain that result? What σg is found for the special case gi = const. = 1? 
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11.5  Tables 

Table 1: 
 
Percentage probabilities that two quantities measured N times and having a correlation coefficient of 
|r| ≥ |rb| are uncorrelated (after /1/). 
 

|rb|→ 
 
   N ↓ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

3 100 94 87 81 74 67 59 51 41 29 0 
4 100 90 80 70 60 50 40 30 20 10 0 
5 100 87 75 62 50 39 28 19 10 3.7 0 
6 100 85 70 56 43 31 21 12 5.6 1.4 0 
7 100 83 67 51 37 25 15 8.0 3.1 0.6 0 
8 100 81 63 47 33 21 12 5.3 1.7 0.2 0 
9 100 80 61 43 29 17 8.8 3.6 1.0 0.1 0 
10 100 78 58 40 25 14 6.7 2.4 0.5  0 
11 100 77 56 37 22 12 5.1 1.6 0.3  0 
12 100 76 53 34 20 9.8 3.9 1.1 0.2  0 
13 100 75 51 32 18 8.2 3.0 0.8 0.1  0 
14 100 73 49 30 16 6.9 2.3 0.5 0.1  0 
15 100 72 47 28 14 5.8 1.8 0.4   0 
16 100 71 46 26 12 4.9 1.4 0.3   0 
17 100 70 44 24 11 4.1 1.1 0.2   0 
18 100 69 43 23 10 3.5 0.8 0.1   0 
19 100 68 41 21 9.0 2.9 0.7 0.1   0 
20 100 67 40 20 8.1 2.5 0.5 0.1   0 
25 100 63 34 15 4.8 1.1 0.2    0 
30 100 60 29 11 2.9 0.5 0.1    0 
35 100 57 25 8.0 1.7 0.2     0 
40 100 54 22 6.0 1.1 0.1     0 
45 100 51 19 4.5 0.6      0 
            

|rb|→ 
 
   N ↓ 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45  

50 100 73 49 30 16 8.0 3.4 1.3 0.4 0.1  
60 100 70 45 25 13 5.4 2.0 0.6 0.2   
70 100 68 41 22 9.7 3.7 1.2 0.3 0.1   
80 100 66 38 18 7.5 2.5 0.7 0.1    
90 100 64 35 16 5.9 1.7 0.4 0.1    

100 100 62 32 14 4.6 1.2 0.2     
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Table 2: 
 
Values of the integrals P(a) over the Gaussian (“error-function”) as a function of the parameter a for any 
values of the mean t  and standard deviation σ (from /1/; note factor 100 compared to Eq. (5) and following 
equations): 
 

 
( )2

22100( ) e
2

t tt a

t a

P a
σ

σ

σσ π

−+ −

−

= ∫  

 
Exemplarily marked: P(a=1.00) = 68.27, P(a = 2.00) = 95.45, P(a = 3.00) = 99.73 
 

a 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.00 0.80 1.60 2.39 3.19 3.99 4.78 5.58 6.38 7.17 
0.1 7.97 8.76 9.55 10.34 11.13 11.92 12.71 13.50 14.28 15.07 
0.2 15.85 16.63 17.41 18.19 18.97 19.74 20.51 21.28 22.05 22.82 
0.3 23.58 24.34 25.10 25.86 26.61 27.37 28.12 28.86 29.61 30.35 
0.4 31.08 31.82 32.55 33.28 34.01 34.73 35.45 36.16 36.88 37.59 
0.5 38.29 38.99 39.69 40.39 41.08 41.77 42.45 43.13 43.81 44.48 
0.6 45.15 45.81 46.47 47.13 47.78 48.43 49.07 49.71 50.35 50.98 
0.7 51.61 52.23 52.85 53.46 54.07 54.67 55.27 55.87 56.46 57.05 
0.8 57.63 58.21 58.78 39.35 59.91 60.47 61.02 61.57 62.11 62.65 
0.9 63.19 63.72 64.24 64.76 65.28 65.79 66.29 66.80 67.29 67.78 
1.0 68.27 68.75 69.23 69.70 70.17 70.63 71.09 71.54 71.99 72.43 
1.1 72.87 73.30 73.73 74.15 74.57 74.99 75.40 75.80 76.20 76.60 
1.2 76.99 77.37 77.75 78.13 78.50 78.87 79.23 79.59 79.95 80.29 
1.3 80.64 80.98 81.32 81.65 81.98 82.30 82.62 82.93 83.24 83.55 
1.4 83.85 84.15 84.44 84.73 85.01 85.29 85.57 85.84 86.11 86.38 
1.5 86.64 86.90 87.15 87.40 87.64 87.89 88.12 88.36 88.59 88.82 
1.6 89.04 89.26 89.48 89.69 89.90 90.11 90.31 90.51 90.70 90.90 
1.7 91.09 91.27 91.46 91.64 91.81 91.99 92.16 92.33 92.49 92.65 
1.8 92.81 91.97 93.12 93.28 93.42 93.57 93.71 93.85 93.99 94.12 
1.9 94.26 94.39 94.51 94.64 94.76 94.88 95.00 95.12 95.23 95.34 
2.0 95.45 95.56 95.66 95.76 95.86 95.96 96.06 96.15 96.25 96.34 
2.1 96.43 96.51 96.60 96.68 96.76 96.84 96.92 97.00 97.07 97.15 
2.2 97.22 97.29 97.36 97.43 97.49 97.56 97.62 97.68 97.74 97.80 
2.3 97.86 97.91 97.97 98.02 98.07 98.12 98.17 98.22 98.27 98.32 
2.4 98.36 98.40 98.45 98.49 98.53 98.57 98.61 98.65 98.69 98.72 
2.5 98.76 98.79 98.83 98.86 98.89 98.92 98.95 98.98 99.01 99.04 
2.6 99.07 99.09 99.12 99.15 99.17 99.20 99.22 99.24 99.26 99.29 
2.7 99.31 99.33 99.35 99.37 99.39 99.40 99.42 99.44 99.46 99.47 
2.8 99.49 99.50 99.52 99.53 99.55 99.56 99.58 99.59 99.60 99.61 
2.9 99.63 99.64 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72 
3.0 99.73          
3.5 99.95          
4.0 99.994          
4.5 99.9993          
5.0 99.99994          
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