Kabitri Nag, Elke Lorenz, Alexander Kies, Lüder von Bremen, Detlev Heinemann

Oldenburg University

14th EMS and 10th ECAC, Prague, Czech Repulic

7 October, 2014 GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

・白い ・ コ ・ ・ ヨ ・

Outline

- Brief overview on the project
- Description of data sources & methodology
- Evaluation of regional power timeseries
- Analysis of fluctuations of intermittent renewables
- Impact of module configurations on fluctuations
- Summary & outlook

Simulation of long term solar power feed-in and solar balancing potential in European countries $\hfill \mathsf{Project}$ overview

Project RESTORE 2050

- \blacktriangleright Investigates European energy system in 2050 with $\sim 100\%$ renewables
- Analysis of fluctuations of intermittent renewables
- Estimation of storage needs¹

Here focus will be on solar energy & its fluctuations

Simulation of long term solar power feed-in and solar balancing potential in European countries Data sources and methodology

Data sources & models

- Irradiance calculated using *Heliosat*¹ method
- Meteosat 1st & 2nd generation satellites
 - regridded to $7km \times 7km$
 - temporal resolution: 1 hour
- projected country-level installed power from Energy scenario of Fraunhofer ISI
- Ambient temperature and Wind: downscaled from Merra Reanalysis
- Load: estimated from Entso-E data

Model domain: EU-28, Norway, Switzerland and Balkan countries Simulation performed for 10 years (2003-2012)

Simulation of long term solar power feed-in and solar balancing potential in European countries Comparison with upscaled from measurements

Evaluation of regional power timeseries

Timeseries of PV power feed-in in Germany are provided by the 4 transmission system operators:

- ► 50 Hertz
- amprion
- tennet
- transnet-bw

The data is upscaled from a number of measurement sites

Comparison with upscaled from measurements

Comparison with upscaled measurements, Germany, 2012 7/18

Average of normalised power P/P_{nom} , P_{nom} : installed nominal power *Estimated* = 0.1112 & *Simulated* = 0.1130

- Comparison with upscaled from measurements

Comparison of incremental timeseries

8/18

Analysis of fluctuations: cummulated frequency distribution of increment timeseries

Simulation of long term solar power feed-in and solar balancing potential in European countries Lestimation of fluctuations of intermittent renewables

Incremental timeseries of PV & offshore wind

9/18

Due to its diurnal pattern, PV shows higher fluctuations than Wind

Simulation of long term solar power feed-in and solar balancing potential in European countries Lestimation of fluctuations of intermittent renewables

Solar fluctuations on hourly scale

0.6 0.5 ^{لل}من d/d 0.2 0.1 5 10 15 20 24 Hours of 18 June, 2012

Simulation of long term solar power feed-in and solar balancing potential in European countries Lestimation of fluctuations of intermittent renewables

Incremental timeseries of PV & offshore Wind

Simulation of long term solar power feed-in and solar balancing potential in European countries Lestimation of fluctuations of intermittent renewables

Effects of regional averaging on fluctuations

Hourly timeseries remains almost unaffected to regional averaging On daily scale, PV fluctuations decrease on regional averaging

Simulation of long term solar power feed-in and solar balancing potential in European countries LEstimation of fluctuations of intermittent renewables

Analysis of fluctuations for changed module configurations¹⁸

- Reference configuration from Energy scenario, Fraunhofer ISI
- Compared with South-East & South-West oriented modules
- Steeper inclination applied to increase annual production

Simulation of long term solar power feed-in and solar balancing potential in European countries LEstimation of fluctuations of intermittent renewables

Results: fluctuations for changed PV module configuration¹⁸

Standard deviation of daily P/P_{nom} is decreased by $\sim 11\%$

Simulation of long term solar power feed-in and solar balancing potential in European countries LEstimation of fluctuations of intermittent renewables

Results: fluctuations for changed PV module configuration18

Summary

- Feed-in timeseries for fluctuating renewables produced
- ► Solar PV shows good agreement with upscaled measurements
- PV power shows higher fluctuations than wind on hourly scale and less fluctuations on the daily scale
- Module configurations adjusted to reduce fluctuations to ~ 11% with a compromise to ~ 8% decrease in power production & can be mitigated by adequate storage, proper DSM etc

Outlook

- Incorporate adequate storage for different technologies
- System behavior under extreme events
- For CSP, power import from Sahara

Thank you for your attention!!!

Questions & Comments are welcome

Many thanks to our project partmers from:

- Wuppertal Institut f
 ür Klima, Umwelt, Energie GmbH, Germany
- NEXT ENERGY, Oldenburg, Germany

Special thanks to BMBF, Förderinitiative Energiespeicher for funding the project

Contact: kabitri.nag@uni-oldenburg.de 17 / 18

Simulation of long term solar power feed-in and solar balancing potential in European countries ______Summary & outlook

18 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank You for your Attention!!!