

UNIT 2: Solar Geometry

- Solar constant
- Extraterrestrial radiation
- Sun-earth astronomy
- Examples

Solar Constant

Conservation of energy requires that the total energy flux coming out of the sun must also pass through a sphere at 1 AU.

The energy flux density at 1 AU is

$$\frac{L}{4\pi r^2} = 1367 \text{ Wm}^{-2}.$$

This is the **Solar Constant**.

Area of a sphere = $4\pi r^2$

Extraterrestrial Radiation

Extraterrestrial Solar Spectrum

Source: C. Wehrli, 1985

Ecliptic

Ecliptic

The ecliptic is the region of sky (region of the <u>celestial sphere</u>) through which the Sun appears to move over the course of a year. This apparent motion is caused by the Earth's orbit around the Sun, so the ecliptic corresponds to the projection of the Earth's orbital plane on the <u>celestial sphere</u>. For this reason, the Earth's orbital plane is sometimes called the plane of the ecliptic.

Due to the tilt of the Earth's rotation <u>axis</u> with respect to its orbital plane, there is an angle of 23.5° between the ecliptic and the celestial equator.

Solar Declination _

Declination angle $\delta = 23.45^{\circ}$

Variation of the declination angle:

 $\delta~\cong$ 23.45 * sin [360 / 365 * (284 + n)]

with n = day of the year

Equation of Time

Time Zones

Solar Geometry: Angle of incidence θ

