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1 Introduction
The present era of high technology, with its enormous production capacities and ever-
increasing rate of invention, has generated a great need for tools to make new solutions
reliable and safe. It is indispensable to test prototypes experimentally to find design
flaws, improve concepts and increase outputs. In serial production of delicate and expen-
sive items, it is desirable to distinguish faulty pieces quickly from good ones without
subjecting them to excessive stress and possibly destroying them; consequently, these
methods are referred to as non-destructive.

While non-destructive testing (NDT) supports industrial development, it is also suitable
to deal with some consequences of industrialisation, which has given rise to environ-
mental pollution, changing into destruction in the past few decades. Due to air pollution,
the decay of historical buildings and monuments has accelerated in a disquieting way
since about the middle of the 20th century. In exact opposite to serial production, the role
of NDT in this context is to assist in valuation of measures to preserve unique works of
art. The Applied Optics workgroup at the Carl von Ossietzky University of Oldenburg
has been working in this field for more than two decades.

Interferometry is an elegant way to accomplish these contradictory tasks, with the addi-
tional benefit of being non-contacting, in contrast to, e.g., strain gauges. The sensitivity
of interferometric methods depends largely on the wavelength of the used radiation; for

the optical wavelength range, the sub-µm scale is therefore easily accessible, and with

some care, even the nm scale can be reached. Since the invention of strong sources of
coherent light [Mai60], interferometric methods can be conveniently utilised for a mul-
titude of measuring problems.

However, with the advent of masers and lasers, the so-called speckle effect, known since
the 19th century, became very important. As opposed to classical interferometry with
polished parts like lenses and mirrors, optically smooth surfaces are generally rare; they
seldom occur in industrial processes, and almost never in studies of historical objects.
The wavefront coming back from a scattering object has a random intensity and phase
structure, the speckle pattern; therefore, a general approach to interferometry requires
comparing such a wavefront with itself.

This was initially done by holographic interferometry, where a hologram of the object
provides the reference. By viewing the object through the hologram, a real-time interfer-
ence of the reference and the slightly different momentary wavefront is observed.
Depending on whether the wavefronts are locally in phase or out of phase, the object
appears covered by a pattern of bright and dark fringes that can easily be interpreted as
iso-lines of equal object deformation. Thanks to the high spatial resolution of hologra-
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phic silver halide emulsions, these fringes are very clear for the most part and very small
speckles are allowable.

A significant disadvantage of holographic interferometry is the necessity of relatively
long exposure times, typically about a second; therefore great stability, most probably in
a laboratory, is required, or pulse lasers must be used. Also, the wet processing of the
holographic plate takes some time. Therefore, it is difficult to carry out in-situ measure-
ments, or quick serial testing, with holographic interferometry.

Moreover, it has been realised quite early [But71, Enn97] that holographic resolution is
superfluous in many applications and that useful displacement information can also be
obtained from a much coarser speckle pattern. This enables the use of two-dimensional
solid-state light detector arrays with a relatively poor resolution, but high sensitivity and
short exposure times in the ms range, and electronic image processing. This was the
invention of TV holography or electronic speckle pattern interferometry (ESPI) that has
evolved into a very powerful diagnostic method in the 1970s. The disadvantage of high
speckle noise in the fringe patterns is more than outweighed by the mobility and real-
time capability. Moreover, ESPI is more environmentally friendly since no chemical
waste is produced.

When computer technology gathered speed in the 1980s, ESPI was soon extended by
digital image processing methods and called digital speckle pattern interferometry
(DSPI) but today the term ESPI includes both analogue and digital methods, enabling
e.g. analysis of microstructure changes and static as well as periodical or transient
dynamic displacements.

Since the brightness of the (two-beam) interference has a cosinusoidal profile, it does not
reveal information about the sign of the displacement gradient, e.g., an elevation on the
object gives the same fringe pattern as a depression of the same magnitude. To get rid of
this ambiguity, a technique called synchronous detection was adopted from communica-
tion theory, initially for interferometry of smooth surfaces. It relies on retrieving several
samples of the interference intensity while the optical phase difference between object
and reference wavefront is being varied stepwise or linearly. With the intensity being
proportional to the cosine of the phase difference, one can establish an equation system
into which the actual intensity readings are inserted to solve for the phase difference
unambiguously. This approach is today known as temporal phase shifting (TPS). It
enhances accuracy and opens up a way to largely automatic data evaluation. In practice
however, the shifts of the reference phase never coincide perfectly with theory, since
time- and space-dependent disturbances, as vibrations of the interferometer, fluctuations
of the medium's optical properties, or even occasional rapid movement of the object
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itself, are hard to suppress. Hence, measurement errors are introduced or the data are
even useless.

The time-dependent part of the disturbances can be efficiently minimised when the
phase-shifted data are recorded simultaneously. There are several ways to do so; all of
them can be summarised under the term spatial phase shifting (SPS). For this approach,
the necessary phase-shifted images are generated statically on several image sensors, or
on separate or interlocked parts of one sensor; hence the phase shifts are constant in
time. Provided the exposure time is sufficiently short, it thus becomes possible to
"freeze" all motion and obtain clear phase maps even under adverse conditions. Space-
dependent errors, as generated by, say, inhomogeneities of the medium, cannot be sup-
pressed by SPS either.

As no dynamic phase shifting is involved, SPS systems do not require moving parts and
controlling subsystems, which is advantageous in mobile use. Moreover, the built-in
capability of real-time phase retrieval can help to increase the temporal resolution of
measurements. The implementation of SPS is by far easiest with the so-called "spatial-
carrier" approach; in a different terminology, this method would be called off-axis
image-plane (TV) holography (cf. [Lei62]). By suitable adjustment of the reference
wavefront, the speckle interferogram acquires a "carrier" fringe pattern, so that the phase
difference between object and reference wave varies linearly in one spatial direction.
The phase signal is encoded in slight variations of this carrier fringe pattern and the
phase-shifted data are available from a one-dimensional spatial sequence of sensor
pixels.

With this simple method however, there are some disadvantages to SPS in speckle inter-
ferometry. The abovementioned equation system for phase reconstruction contains three
unknowns: the background intensity, the interferometric modulation depth, and the
phase difference between the interfering wavefronts. These quantities are assumed con-
stant in solving for the phase difference, but the phase-shifted intensity data come from
– at least three – adjacent sensor elements, this is, different portions of the object's
speckle field. Therefore the random spatial variations of intensity and phase that are
characteristic of (and ultimately make up) a speckle pattern will impair the phase
calculation because the constancy assumptions are always more or less violated. Hence,
the speckle size must be large enough to obtain the phase-shifted data (statistically) from
an area with sufficient spatial coherence, i.e. with tolerable fluctuations of the
interferometric parameters. This entails a loss in spatial resolution of the measurement,
as well as a less economic utilisation of the object light, because the imaging aperture
must be stopped down to obtain larger speckles.
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Due to these "built-in" drawbacks, deformation measurements with SPS can be expected
to yield a somewhat inferior fringe quality than those with TPS, as long as the latter can
operate in a sufficiently stable environment. Indeed, SPS appears to be considered as an
alternative in speckle interferometry only under very unstable conditions, and much
effort has been spent on using TPS even in such applications. Consequently, TPS has
been investigated much more thoroughly than SPS.

Spatial-carrier SPS set-ups are so easy to construct and use that one can expect them to
be rather useful in practice. However there seemed to be a need for a deeper under-
standing of why, how, and how well spatial phase sampling works in speckle
interferometry.

The first aim of the present study is to provide a theoretical background for what one is
doing when extracting phases from a speckle field. While it has been observed before
that phase measurements are easily made with the SPS technique, the speckle aspect of
the measurement has received only marginal attention; in fact, little material is hitherto
available that goes beyond the basic observations already stated above.

A second main objective is to settle the question whether the common preference of TPS
is justified, and to see in what situations one could possibly do without TPS and still
obtain "good" measurements with SPS. In this context, it is also worthwhile to utilise the
theoretical insights for improving the phase reconstruction by SPS, and also to explore
the versatility of SPS in practical tasks.

Chapter 2 starts with a detailed survey of first- and second-order speckle statistics; but
besides compiling and grouping today's knowledge of this field, we will keep an eye on
the intended application to SPS, where the phase shift takes place in one spatial direc-
tion, and put some emphasis on the one-dimensional intensity and phase gradients. To
illustrate the theoretical findings, experimental results from a large-speckle interferome-
ter are provided.

In Chapter 3, we will review and discuss the groundwork for ESPI and phase shifting,
spending some theoretical and experimental effort on finding the best way to calculate
speckle phase differences. Then, since SPS must rely on simple phase-sampling formu-
lae with 3 or 4 samples, we examine the spectral characteristics of such formulae by
Fourier analysis and become acquainted with a useful generalisation of their spectral
behaviour. In the subsection on TPS, an easy way to determine small speckle sizes is
presented. The remainder of the chapter is concerned with a thorough investigation of
the peculiarities of SPS in ESPI.

Since it is our aim to quantify measurement accuracies, we need to obtain reference data
with which we can compare the experimental results. Chapter 4 is dedicated to this sub-
ject and starts with an overview of methods that can be used to approximate ideal data,
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pointing out their strengths and weaknesses. This discussion leads to the proposal of a
new method which can generate noise-free images from a certain class of fringe patterns
with almost arbitrary amounts of noise, so that a standardised error quantification is at
our disposal.

In Chapter 5, the performance of SPS and TPS is experimentally compared to settle the
question how close the accuracy delivered by SPS measurements can get to that of the
widespread and well-established TPS method. Various experimental parameters are
explored, such as object/reference intensity ratio, phase shift, speckle size/shape and
fringe density. The most common interferometer geometries are implemented for both
TPS and SPS to get a "three-dimensional" view of the measurement errors. The last sub-
section is dedicated to the issue of light efficiency that is among the most critical ones in
practice.

Having learnt about the performance of SPS when implemented in a "standard" manner,
we explore various ways in Chapter 6 to improve the phase determination by means of
SPS. Some computational methods to diminish the influence of speckle intensity and/or
phase fluctuations are discussed; but also a change in the direction of the phase shift is
shown to be helpful. With the assistance of these improvements, we make the speckles
as small as possible without sacrificing accuracy. Leaving the terrain of phase sampling,
we also consider the Fourier transform method as a candidate for a posteriori data proc-
essing.

The last possibility of error reduction that we study is the merging of informations from
orthogonally polarised speckle fields produced by a de-polarising object, which reduces
the influence of noisy pixels.

Finally, the single-frame measurement capability of SPS is combined with the temporal
phase unwrapping method to solve two practical tasks in ESPI: automatic control of data
storage in long-term observations and displacement measurement of discontinuous
objects.
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2 Statistical Properties of Speckle Patterns
When a rough object is illuminated coherently, e.g. by a laser, the light field scattered
back from it acquires a random, grainy structure. The object can be considered "rough"
as soon as the surface height variations are on the scale of the light's wavelength. The
irregular light field extends into space, and at each spatial point we find a coherent
superposition of many scattered elementary waves that all have random intensities and
phases. This produces a speckle pattern whose spatial intensity and phase structure is
random as well. Speckle noise is what makes holographic interferometry and ESPI
measurements inherently more noisy than those of classical interferometry. But the
speckle effect is not restricted to electromagnetic radiation; it has also received some
attention in ultrasound research [Bur78, Wag83, Hon97].

To get an idea of the phenomenon, we will consider the properties of speckle patterns in
this chapter. These are of course treated with the tools of statistics, and a wealth of
knowledge has been collected since the first pioneering studies [All63, Gol65, Low70,
McKe74]. We begin with the first-order statistics of intensity and phase and their gradi-
ents, putting some emphasis on the 1-D gradients that play an important role for SPS.
The gradient statistics provide useful facts for changes of the speckle field over distances
well below the coherence length, or speckle size; to get a description of the field for two
points that are arbitrarily far apart, we need the explicit second-order statistics. These are
particularly important for SPS.

The discussion is restricted to the so-called fully developed speckle patterns, since these
are generated by the great majority of objects that are not optically smooth; in fact, the
scatterers to produce partially developed speckle patterns have to be specially prepared
[Tak75, Cha79, Kad85, Mol90a]; a good general survey on this topic is [Tak86].
Moreover, we assume the light to be perfectly monochromatic and polarised. The treat-
ment will be valid for free-space propagation (objective speckles) as well as image fields
(subjective speckles), provided the object's microstructure is not resolved (see 2.2.1).

2.1 Experimental set-up

Where appropriate, we illustrate the findings by experimental results from a large-
objective-speckle interferometer with spatial phase measurement that was built as shown
in Fig. 2.1 [Kun97]. Large subjective speckles would be rather dark due to the small
aperture needed; and also, since most apertures are polygons, one would obtain
anisotropic speckles. Of course, it is possible to design subjective-speckle interferome-
ters, and experimental findings for image-plane speckles produced by weak scatterers
have been reported in [Kad85].
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The basic set-up is of Mach-Zehnder type. In contrast to [Kol99], our geometry should
compensate for the spherical part of the scattered field, so that we measure its speckled
part only. This is indispensable if we are to find out something about phase gradients.
The adjustment of the interferometer therefore requires special care, since the curvatures
of the wavefronts should match exactly when they are brought back together. Another
interesting possibility of measuring speckle phases is the Fizeau configuration reported
in [Mol90a,b].

HeNe laser  

BS L2

M2/SP
MO2

MO1

L1

CCDM1

NDF

P1 BSC

P2

Fig. 2.1: Optical set-up for generation of large speckles and phase measurement by SPS.
Abbreviations: BS(C), beam splitter (cube), NDF, neutral density filter, MO, microscope
objectives, L, lenses, M, mirrors, SP, scattering plate.

The laser beam is divided, expanded by microscope objectives of the same type and
made convergent again by lenses of the same type ( f =120 mm); we call the path with
component index 1 the reference path. To adjust the speckle size, the scattering plate
(matt white painted metal) is fit and L2 is slid back or forth to produce the proper spot
diameter (in our case, � 3.1 mm). The neutral density filter is chosen so as to maximise
the modulation of the speckle interferogram. Here, we set R/�I�� 7:6. Then SP is
replaced by M2 and L1 is moved so that P1 and P2 acquire the same distance from the
CCD chip; thus the curvatures of the two spherical waves are matched. By rotating M1,
the spatial phase shift can be adjusted with no de-focusing: P1 is merely shifted side-
ways as M1 is rotated. The lateral offset between P1 and P2 determines the fringe den-
sity on the CCD, i.e., the spatial phase shift. An explanation of the underlying geometry
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can be found in Chapter 3.4.1. Uniting the two fields involves sending at least one of
them through glass, which introduces spherical aberrations. Here, we subject both waves
to almost the same alteration by using a beam splitter cube with high-planarity surfaces.
The attainable flatness of the measured wavefront depends on the quality of the optical

components; a residual error of about λ/4 was found, which is tolerable for our range of

speckle sizes. Also, any misalignment of the spatial phase shift will generate an addi-
tional phase ramp; but since it is linear, we can easily detect and remove it by the fitting
procedure described in Chapter 4.2.

Once this calibration is done, M2 must be replaced by SP again, and their surfaces
should be in exactly the same position. For this purpose, we used an auxiliary adjust-
ment frame that was removed afterwards. The scattered light is weakly de-polarised
(�1:10); but as we will see, very little impact on the statistics is found (for a detailed
survey on partially polarised speckle fields, see [Bar85]). The laser beam has a Gaussian
intensity profile; after expanding, only its innermost part is being transmitted by the
lenses, so that we can approximate the illuminated scattering spot by a circle of uniform
brightness.

Moving the CCD camera away from BSC offers the additional possibility to scan the
speckle field in the direction of propagation, which we label z. It is then not necessary to
re-align the spatial phase shift: the ratio of fringe density to speckle size, being the rela-
tive resolution of the speckle phase maps, will remain constant. For a series of images
with varying fringe density, the phase maps can most conveniently be obtained by the
Fourier transform method (see Chapter 6.5). A non-integer number of carrier fringes will
leave a residual global phase ramp after the FT evaluation. This bogus wavefront tilt
must be removed if we are to measure speckle phases only; and again, the "fringe" fit-
ting algorithm of Chapter 4.2 is capable of finding the global ramp that we have to
subtract.

The CCD camera used for this experiment was a SONY XC-75 with interline transfer

sensor (dust cover removed) and a resolution of 736�576 pixels of � (8.5 µm)2 each; we

call dp = 8.5 µm the pixel size. The video signal was digitised to 8 bits (256 grey levels)

by a Data Translation DT3852B-2 frame grabber, driven by the camera's pixel clock.

The example image that we will use to check our theoretical results has an average
speckle size of ds � 26 dp and a mean brightness of �I �� 56.2 grey levels. It is displayed
in Fig. 2.2 together with its interferogram.
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Fig. 2.2: Left: sample speckle image; right: corresponding interferogram with spatial phase shift.

The interferogram has a carrier fringe spacing of � 7 dp ; on closer scrutiny, one finds
many forks, both upward and downward, in the fringe pattern. These indicate the so-
called phase singularities that we will discuss in detail in 2.2.5. The phase map (Fig.
2.17) was calculated by the Fourier method, which is why we consider 5122 pixels here.

2.2 First-order speckle statistics

To simplify and generalise the treatment of first-order speckle properties, we will first
derive a joint probability density function containing all the quantities of interest and
then eliminate whatever we want by integrating it.

2.2.1 Basic probability-density function

A light-scattering rough object can be regarded as an array of individual, mutually
uncorrelated microscopic scatterers, each of which sends an elementary wave into space.
The coherent superposition of all these contributions at a certain spatial point determines
the speckle intensity and phase at that point. The treatment is also valid for imaging
geometries, provided that several point images of scatterers overlap at each point of the
image plane. This condition is also referred to as unresolved microstructure.

The elementary waves are most conveniently regarded as vectors A in the complex
plane, with the squared modulus |A|2 corresponding to their intensity I and the argument

giving the phase ϕ. This representation is well known and very useful; the complex

vectors A are usually named phasors, or complex amplitudes. Assumed that

(i)  the waves' amplitudes |A| are independent of their phases,

(ii) the phases are uniformly distributed over [–π,π), and

(iii) the number N of scatterers is large enough (which holds from N � 50 on),
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the summation of the contributions may be visualised as a random walk in the complex
plane, putting N phasors together in the manner of vector addition. Then we may use the
central limit theorem [Pap65, p. 266] to treat the speckle pattern formation as an
asymptotically Gaussian process. If we denote the real and imaginary parts of the
phasors by Ar and Ai , the two are called jointly Gaussian variables [Goo75]. This
assumption has been experimentally confirmed in [Mol90b]. As derived in [Pap65,

pp. 253 and 475], also the spatial derivatives Ar,x , Ai,x , Ar,y and Ai,y ,where Ar,x � ∂Ar/∂x

etc., are jointly Gaussian with Ar and Ai . Assumed the standard deviation of Ar and Ai is

σ, we can establish

( )p A A A A A A

A A

C

A A A A

C

r i r x i x r y i y

r i r x i x r y i y
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−
+









 ⋅ −

+ + +
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(2.1)

as detailed in [Och83, Fre95c, Leh98], with ��� denoting the ensemble average; 2σ 2 is

indeed the average speckle intensity �I�, as will be derived in (2.7). C0 depends on the
shape and size of the scattering spot or aperture. It is essentially the curvature of the

spatial amplitude autocorrelation function at its peak, ∂2(RAA*(∆x,∆y)|∆x=0, ∆y=0)/∂(∆x)2
 =

∂2(RAA*(∆x,∆y)|∆x=0, ∆y=0)/∂(∆y)2, provided the source is symmetrical. For circular

scattering spots, we get [Fre95c, Leh98]

C
I D
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2 2

8
=









π
λ , (2.2)

with D being the diameter of the spot, λ the wavelength and z the distance between

scattering plane and point of observation. C0 is inversely proportional to the square of
the speckle size and scales the gradients Ar,x etc. For our example image, we find
C0 � 0.152 grey levels/dp

2.

In order to come from the amplitude description to intensities and phases, we convert the
variables to polar co-ordinates:

A I A I
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with the Jacobian �J�=1/8; the procedure is described in more detail in [Och83]. We
arrive at
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with 0� I < 	, –π�ϕ < π, –	�(Ix ,ϕx , Iy ,ϕy)�	. Any desired marginal or joint

probability density function of the involved quantities can be found from this expression.
More general cases are of course the two-dimensional gradients; the corresponding

functions of 
∇I
 and/or 
∇ϕ
 are easily found from (2.4), and we will also consider

them below.

2.2.2 Intensity and phase

Now in a first step, we integrate over all gradients to find p(I,ϕ), and obtain

( )p I
I

I

I
, expϕ

π
= −









1

2  ; (2.5)

we note that ϕ does not turn up in this equation, which means that I and ϕ  are statisti-

cally independent of each other. Therefore, one can also write p(I,ϕ) = p(I)�p(ϕ), which

functions are
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(2.6)

So the speckle intensity exhibits a negative exponential distribution and the speckle
phases are uniformly distributed. Furthermore we can state mean values and standard

deviations for I (using (2.1) and �I 
n�/�I�n

 =n! [Goo75]) and ϕ :

I I I II= = − =

= =

2

0
3

2 2 2σ σ

ϕ σ π
ϕ .

(2.7)

An intensity distribution like the one predicted here would be very inconvenient for
interferometry, since the most frequent speckle intensity is zero, whence no signal can
be obtained. On the other hand, this fraction is still very small in relation to the rest of
the intensity scale. Moreover, any physically existing detector has a finite area, which
shifts the maximum of the intensity distribution function the farther away from zero the
more "speckle areas" fit into a pixel area [Goo75, p. 54]. The resulting function favours
speckle interferometry; but in any case, a fraction of dark pixels remains that deliver
only a weak interference signal upon superposition with a reference wave. In many ESPI
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measurements, these low-response pixels are the main origin of the so-called "salt-and-
pepper" noise in sawtooth images.

As for the phases, it can be easily understood from the random-walk model that there is
no preferred phase value in the speckle pattern; therefore the phases are uniformly
distributed over their range. It has been demonstrated that the measured speckle phase
distribution can be helpful in calibration of phase-sampling procedures; details on this
will follow in Chapter 3.4.6.

The statement that the phase is a "free" quantity in our pdf's is of course valid for (2.4)

as well; therefore we can integrate ϕ out, rewrite (2.4) as
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and proceed to the gradients.

2.2.3 Gradients in one dimension

In TPS, each pixel area integrates over some portion of the speckle pattern; if there are
intensity and/or phase deviations in it, the "pixel interferometer" will still function
correctly, although with decreased interferometric contrast. In SPS however, the fluc-
tuations of intensity and phase play a significant role for the measurement, since in this
case we will encounter different mean intensities, modulation contrasts, and phase off-
sets for adjacent pixels. As the spatial phase shift takes place in one spatial direction, we

start by investigating the gradients Ix and ϕx . Nonzero values of these quantities will

result in linear deviations of bias intensity and speckle phase; the latter is equivalent to a
linear phase-shift miscalibration. The 1-D treatment accounts for all directions of phase
shift, as we are free to choose the co-ordinates in the most convenient way.

2.2.3.1 Intensity gradients

From (2.8) we get [Ebe79b; Gra94, formula 3.325]

p I
C I

I

C I
Ix

x
x( ) exp ,= −











 − ∞ < < ∞1

2 2 20 0
, (2.9)

which function is called Laplacian density. It is a negative exponential function for
either sign of Ix with a mean value and standard deviation of

I C Ix I x
= =0 2 0, σ , (2.10)

and has been experimentally verified in [Ebe79a]. The similarity between the distribu-
tions of the intensity and its gradient has a simple and astonishing reason that has been
found in [Fre96b]: speckles tend to be "congruent", i.e. to have very similar intensity
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profiles, irrespective of their brightness. Hence, bright spots are associated with large
intensity gradients, while smaller gradients belong to dim speckles. The speckles'
congruence propagates the negative exponential distribution from the intensity to its
gradients.

This observation implies that we find an interaction of the speckle intensity and its
derivative in the corresponding pdf. Indeed, the intensity and its gradient are not statisti-
cally independent since their joint density

( )p I I
I

I

I I C

I

ICx
x, exp exp= −









 ⋅ −
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0π  , (2.11)

found from (2.8) by integration, is not separable. This joint density function is plotted in
Fig. 2.3.
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Fig. 2.3: Pseudo-3D plot of p(I, Ix).

This graph shows that for small I, Ix also tends to be small; indeed it approaches 0 as
I0: loci of zero intensity must at the same time be minima with vanishing intensity
gradient (see also Fig. 2.15). A proof of this property has been given in [Kow83]. Hence,
the correlation of I and Ix is nearly perfect in regions of low intensity. To learn how the
gradients are distributed on the rest of the intensity scale, we consider the correlation of I
and 
Ix
. To obtain p(
Ix
) and p(I, 
Ix
), we multiply the right-hand sides of (2.9) and
(2.11) with 2 and set 0 < 
Ix
 < 	. Calculating the average of 
Ix
, we now obtain a non-
zero value:

I C Ix Ix
= =2 0 σ . (2.12)
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Assuming a uniformly bright circular illumination of the scattering spot,
�
Ix
��1.92�I�/ds . This demonstrates that it is almost certain to find substantial inten-
sity variations on neighbour pixels, except when the intensity itself is very low. To
formulate this quantitatively, we calculate the correlation coefficient of I and 
Ix


[Pap65, p. 210] to be

r
I I I I

C I
I C I

I C I
I I

x x

I I
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x

,
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3 2

0

0

 , (2.13)

where �I
Ix
�� 0
∞
∫∫ I
Ix
p(I,
Ix
)dI dIx . This result is disadvantageous for spatial phase

shifting: it indicates a significant tendency of large intensity gradients, and hence phase
errors, in those portions of the speckle pattern that deliver the best interferometric signal
due to their brightness, although, as pointed out in [Ebe80], integration over the pixel
area increases the probability of finding small gradients.

Having derived p(I, Ix), we can obtain another useful quantity: given a threshold bright-
ness level It , the above-level dwell distance d+(It) of speckle intensity reveals the spatial
extent of structures that are brighter than It . To clarify the meaning of d+(It) and to get an
impression of the intensity fluctuations, we consider the intensity profile at row 256, i.e.
at the vertical centre, of our sample speckle pattern. This gives the intensity curve
I(x, 256) plotted in Fig. 2.4, where x is the column number.
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I /�I �

d  + d  + d  +

Fig. 2.4: Intensity profile of row 256 of speckle image (Fig. 2.2, left side), normalised by �I�.

We see that d+(It) is the distance over which I remains above the threshold It , which is
set to 1.5�I� in this example. We find three above-threshold events and hence obtain
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three different measurements of d+(1.5�I�). But instead of collecting events, it makes of
course more sense to aim analytically for an average of the above-level distance,
�d+�(It), and fortunately its theoretical derivation is available.

The number of events per length unit that the signal crosses It , the so-called level-
crossing density, can be calculated by means of a long-known formula by Rice, as
detailed in [Ebe79b, Bar80]:

( )ρ
π

π
( ) , exp
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expI I p I I dI
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I d
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I
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−∞

∞

∫
8 1220

(2.14)

(see also Appendix A), where we have used (2.2) and (2.43) to relate the expression to
the speckle size ds produced by a circular scattering spot; an example for a square spot is
given in [Bah80]. The average number of level crossings per speckle size ds is depicted
in Fig. 2.5, and reveals that �I�/2 is being crossed almost once per speckle size (for
pixel-integrated speckle it should, and does, contract about �I� [Bar88]).
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(I
t)
�
/ d

s

Fig. 2.5: Expected number �N(It)� per speckle size ds of crossings of intensity level It as a function
of normalised threshold intensity It /�I�. This curve follows simply from setting ds =1 in
(2.14).

Being aware, however, that (2.14) accounts for both positive and negative crossings, we
conclude that I(x) goes beyond or below �I�/2 every other speckle size. Now we can
answer the question over what distance I remains above/below a certain It , by evaluating
the expressions for the average above- and below-level dwell distances [Bar80*],

                                           
* With a misprint in Eq. (16), where �σ  and µ must be swapped.
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which are the total fractions of distance that the intensity spends beyond/below It ,
divided by the mean density of upward/downward level crossings. Of these latter, each

contributes of course one half to the total �ρI (I)�. Fig. 2.6 shows the two functions in

units of ds .
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0 1 2 3 4 5I t /�I�

�d+�(It)/ ds

�d–�(It)/ ds

Fig. 2.6: Average above-level distance �d+� (solid line) and below-level distance �d–� (dashed
line) in units of ds as a function of normalised threshold intensity It /�I�.

The graph for �d+�(It) affirms the visual impression of a speckle pattern: moderately
bright spots (It ��I�) have indeed a width of about the typical speckle size. This
coincides nicely with the experimental findings in [Mar91]. The very bright parts of the
peaks are of course narrower. For It = 0, we have �d+�(0)	: the intensity in the
speckle pattern is almost always greater than, and certainly never crosses, zero. On the
other hand, �d–�(It) shows that very dark structures are really narrow; but the typical
extent of structures where the intensity remains below �I� is �1.6 ds . For large It , we
have to go very far along x to encounter a brighter speckle (consider, e.g., the length of
the below-threshold events for It =1.5�I� in Fig. 2.4).

The balanced point at which �d+�(It)=�d–�(It) occurs at It /�I�=ln 2, and the average
extension of the bright and dark structures is then �1.11 ds . On binarising the sample
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speckle image at the appropriate intensity level and evaluating the length distributions of
black and white line segments, I obtained �d+�(It) �1.14 ds and �d+�(It) �1.18 ds , which
is in reasonable agreement with the theoretical value.

The way from the mere average descriptions to the pdf's of level-crossing intervals is
long, but has been shown in [You96]; interestingly, it turns out that for scattering spots
with step-function edges, the pdf's oscillate, but for Gaussian scattering spots the oscil-
lation is damped out. In short, if I has crossed It and fails to do so again after one speckle
size, it must "wait" until the next speckle appears on the way along x; in between, the
transition is indeed somewhat less probable. Several double and triple peaks and valleys
can be found in Fig. 2.2 to make this plausible.

Very recently, older work about the zero crossing rate of Ix [Oht82] has been verified and
extended [Kes98]. An account of this thorough study about level-crossing densities of Ar ,

Ai , I and ϕ, and all their first and second derivatives, is definitely beyond the scope of

this chapter; but it will be valuable for a still deeper understanding of what changes in the
field quantities one probably finds on a straight line through the speckle pattern.

We conclude this subsection with another interesting and comparatively easy interpreta-
tion of speckle intensity maps, namely as smooth 2-D surfaces or landscapes. Hence,
considerations about the laws of "twinkling" of a sunlit sea surface [Lon60] are indeed
applicable to the spatial intensity structure of a speckle pattern. This allows one to
establish for the relative numbers of speckle (zero and non-zero) intensity minima, Nmin ,
maxima, Nmax , and saddle points, Nsad , respectively [Lon60]:

N N Nsadmin max+ = . (2.16)

More recently, this has been re-derived with the concept of singularities of the normal-

ised vector field ∇I/
∇I
, in which minima, maxima and saddle points appear as topo-

logical singularities [Fre95b], and the evolution rule for speckle fields has been formu-
lated that a new extremum must always appear, or vanish, together with a saddle point. It
has further been found that Nmin :Nmax = 3:2, this is, we encounter more minima than
maxima in a speckle pattern [Wei82a,b]; the typical spatial arrangement is that of chains
of alternating minima and saddles in the dark valleys between the bright spots (cf. Fig.
2.2). For a circular aperture, the statistical densities of the intensity features have been
determined by computer simulation as [Fre95b]
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As being the speckle area defined in (2.36), and ρ(Ιzero) denoting the density of zero-

intensity minima, to be further investigated in 2.2.5. Thus, the rule (2.16) is confirmed,
and in total we have almost two of these "critical points" of intensity per speckle area.
The density of parameters necessary to describe all the features in (2.17) is almost 6
times the sampling density required to properly resolve the speckle field; this means that
the features cannot really be statistically independent and hence must be more or less
correlated [Fre95b, Fre98a].

It is now interesting to learn at what intensity levels these features occur most
frequently; in this respect the values

I I

I I

I I

max

min

sad

≅

≅

≅

2 5

0 07

0 5

.

.

.

(2.18)

are given in [Fre96b]; the separate class of zero-intensity minima is here excluded from
�Imin�. The most frequent peak-intensity level (at the centres of the bright speckles) is
�1.8�I�, which supports (2.13): most of the bright spots stand out strongly and are
necessarily associated with large intensity slopes. This can also be seen in Fig. 2.4.

There are other structural correlations, non-obvious orders and quasi-lattices [Fre95b,
Fre95c, Fre97b, Fre98a] in speckle patterns, again too numerous to describe here; but
there should now be no doubt that a significant influence of the varying speckle intensi-
ties can be expected when phase calculations are carried out with neighbouring pixels as
input data.

2.2.3.2 Phase gradients

The probability density function of the phase gradient in x-direction is [Och83]

( )
p

C I

C I
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x

( )
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ϕ

=
+

0

0
2 3 2

2
 , (2.19)

a bell-shaped function that approaches zero distinctly more slowly than a Gaussian
function of similar peak width; this result has been verified experimentally with the help

of a Shack-Hartmann sensor in [Voe91]. Evidently, it has �ϕx� = 0; unfortunately, σϕx

cannot be determined from (2.19) because a divergent integral appears in the calculation

of �ϕx
2�. This is physically correct, since the phase gradient indeed diverges at the phase

singularities; nonetheless, we will need a way to circumvent this problem, which is
shown below.
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The joint density function of the phase gradient and the intensity is given by
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and displayed graphically in Fig. 2.7.
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Fig. 2.7: Pseudo-3D plot of p(I,ϕx).

Although p(I,ϕx) shows some coincidence of small I with small ϕx , we also find a sig-

nificant contribution from large I with small ϕx , and vice versa. Note that there is again a

special behaviour for I0: the distribution of ϕx flattens out, which means that very high

phase gradients can and do occur near zero-intensity minima. At I = 0 however,

p(I,ϕx)|I=0 ≡ 0: where the wavefield vanishes, there is no phase either. On switching from

ϕx to 
ϕx
, we get

ϕx
C

I
= 2 0

 , (2.21)
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which amounts to �110°/ds for a uniformly bright, circular scattering spot. But as in the
case of intensity gradients, it seems worthwhile to investigate the interrelation of I and

ϕx . However, as stated above, rI,ϕx cannot be calculated. Therefore, in analogy with

[Fre95a,c], we will make use of a variable transformation and calculate rI,φx , where φx is

given by

φ
ϕ
ϕ

φ π
x

x

x
x=









 ≤ ≤arctan , 0

2
 . (2.22)

This confines the integration and allows the calculation of whatever statistical moment is

desired. The results will reproduce the behaviour of p(I,ϕx) quite well, since the mapping

is quasi-linear in the region of low phase gradients, and substantial compression takes
place only for that (small) fraction of the speckle field where the phase gradient is very

high. Converting p(ϕx) to p(φx) [Pap65, p. 126], one gets

( )p x xφ φ= cos  . (2.23)

The statistical quantities required for rI,φx are
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for the corresponding quantities of I, we can of course refer to (2.7). With

�J�=�
ϕx
�/cos 2φx , it follows from (2.20) that
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from which we get �I�ϕx�= (3π–7)�I�/6, and finally,
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This significant anticorrelation between I and φx indeed indicates that high intensities

tend to go with low phase gradients ϕx , and vice versa, as also depicted in Fig. 2.8.
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Fig. 2.8: Pseudo-3D plot of p(I, φx).

The peak shows that the coincidence of low intensity and high phase gradient ϕx (where

φx � π/2) is nearly perfect. On the other hand, we also find a significant probability of

φx = 0 for low intensities. This however need not hold for ∇ϕ, and a good deal of the

contribution at φx = 0 comes from the selection of the x component of ∇ϕ.

Applied to interferometry, this result alleviates the disadvantage that the high value of

�
ϕx
� seems to imply. The highest phase gradients tend to occur in regions of the

speckle pattern that are rather dark and noise-burdened anyway, whilst in brighter
regions it is fortunately more likely to encounter moderate phase slopes.

To finish, let us check our results experimentally. From (2.12), we have �
Ix
�� 4.1 grey

levels/pixel, and from (2.21), �
ϕx
�� 4.2°/pixel. Approximating 
Ix
 by the absolute

intensity differences and 
ϕx
 by the absolute phase differences from pixel to pixel, our

test image yields �
Ix
�� 3.9 grey levels/pixel and �
ϕx
�� 4.2°/pixel. The spatial distri-

bution of the gradients, appropriately converted to grey-scale images, can be seen in Fig.

2.9; the 
Ix
 map has been brightened up for display, and the largest 
ϕx
 detectable and

shown is 180°/pixel.

The black spots in the brightest regions of 
Ix
 are due to camera saturation by very
bright speckles. This partly explains why the experimental �
Ix
� is somewhat too low:
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Ix
 is greatly underestimated where the detected speckle intensity is clipped. Moreover,
a minor impact of the non-perfect polarisation cannot be excluded.

 
Fig. 2.9: Maps of 
Ix
 (left) and 
ϕx
 (right). White boxes allow comparison of details.

The scale chosen for 
ϕx
 does not at all account for the divergence near the singulari-

ties; but due to the very small area fraction of these critical regions, the measured �
ϕx
�

remains correct. From the positive correlation of I and Ix and the anticorrelation of I and

ϕx , an anticorrelation of Ix and ϕx results that is impressively illustrated by the figure: the

worm-like structures of high 
ϕx
 circumscribe the bright speckles (being regions of high


Ix
) almost exactly. The white boxes assist in finding examples. The pinched maxima of


ϕx
 indicate phase singularities (see Fig. 2.17).

2.2.4 Gradients in two dimensions

The previous treatment, although particularly relevant for our subject of spatial phase
measurement, does not provide a complete insight into the structure of speckle intensity
and phase. Therefore we consider also the two-dimensional gradients,
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The pdf's in terms of 
∇I
, 
∇ϕ
 are easily obtained from functions involving Ix , Iy ,ϕx , ϕy

by integrating over θI and/or θϕ  on the circles given by I Ix y
2 2+  and/or ϕ ϕx y

2 2+ ,

which gives factors of 2π
∇I
 and/or 2π
∇ϕ
, respectively. This changes (2.8) to
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from which we can derive
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plotted in Fig. 2.10.
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Fig. 2.10: Pseudo-3D plot of p(I, 
∇I
).

On comparison with Fig. 2.3, a qualitative difference between p(I, Ix) and p(I, 
∇I
) is

evident. While in both functions no intensity gradients at all occur for zero intensity,
there is a significant probability of Ix = 0 for I > 0; this is because (2.11) selects the x

component only. In contrast, the probability for 
∇I
= 0 vanishes for the whole intensity

scale: p(I, 
∇I
)|
∇I
=0 ≡ 0. This reflects the fact that the – certainly existent – intensity

extrema and saddle points constitute a set of measure zero, as explained in [Kin77,

p. 88]. The same observation holds when we switch from p(
Ix
) to p(
∇I
); by integra-

tion of (2.29), we then get [Gra94, formula 3.471.12]
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which has been derived in [Kow83] and [Fre95c] before. K0 here denotes the modified
Bessel function of second kind and zero order. In contrast to (2.9), and by the above
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argument, the probability for vanishing intensity gradient is zero: p(
∇I
)|
∇I
=0 ≡ 0. For a

uniformly bright, circular scattering spot, we get �
∇I
�� 3.01�I�/ds . It is the relatively

sharp outlines of the bright speckles that give rise to so large a gradient; in addition, it
changes its sign at least once over the distance of a speckle spot. Therefore it is very dif-
ficult to put a simple assumption about the course of the intensity into a phase calcula-
tion formula. However, it has been shown that the integration over the pixels' finite
apertures can alleviate the problem somewhat [Bar91].

Considering the two-dimensional phase gradients, we derive from (2.28)
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which is plotted in Fig. 2.11.
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Fig. 2.11: Pseudo-3D plot of p(I, 
∇ϕ
).

In this figure, the stationary points of the phase (extrema and saddle points, for which


∇ϕ
= 0) lie on the I axis and the zero-intensity minima on the 
∇ϕ
 axis. They are both

existent but of measure zero, again in qualitative difference to the one-dimensional case.

The phase gradient alone obeys
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which results in �
∇ϕ
� �172°/ds . But like Fig. 2.8, Fig. 2.11 clearly reveals anticorre-

lation between intensity and phase gradient, so that we can expect 
∇ϕ
 to fall below

�
∇ϕ
� in the brighter regions of the field. This is demonstrated in [Shva95]: bright

speckles tend to lie close to, but not exactly over, the stationary points of phase; the
phase is found to vary by typically 45-90° over the half width of a speckle, with

�
∇ϕ
�Imax � 49°/ds at the intensity maxima. Most of the stationary points of phase are

saddles; phase extrema contribute only �1/15. This distinct qualitative difference
between phase and intensity field will be briefly interpreted in 2.2.5.

Moreover, the study [Shva95] shows that the major part of the anticorrelation is due to
higher intensities and lower phase gradients. This is mainly due to the relative areas:
while intensity minima coincide almost perfectly with very high phase gradients, they
contribute only a very small area fraction to the speckle field.

As above, we conclude the considerations by confronting them with the experimental
findings. The spatial distribution of the 2-D gradients, converted in the same way as
above for Fig. 2.9, is shown in Fig. 2.12; this may be compared with the results of a
computer simulation presented in [Fre96b].

 
Fig. 2.12: Maps of 
∇I
 (left) and 
∇ϕ
 (right). White boxes enclose same portions as in Fig. 2.9.

Inserting our C0 and �I� into (2.30) and (2.32), we now find �
∇I
� � 6.5 grey

levels/pixel and �
∇ϕ
�� 6.6°/pixel. From the sample image we get measurements of

�
∇I
�� 6.1 grey levels/pixel and �
∇ϕ
�� 6.3°/pixel, where the gradients are approxi-

mated by the square root of horizontal plus vertical squared pixel-to-pixel-
differences.This time, the slight systematic underestimations mentioned above affect
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both results, since they are increased by the inclusion of two dimensions; but still the
agreement is good.

Not surprisingly, these maps round off the findings above and show that within the
bright speckles, the phase field is co-operative for SPS thanks to moderate gradients. On
crossing the dark speckle "boundaries" however, the phase may leap considerably, and
mostly does; according to [Fre98b], the phase difference from one intensity maximum to

the next assumes values from �π/2 to �3π/2 with almost constant probability, and is

almost never zero.

Eventually it may be worth noting that

I

I

x x

∇
=

∇
= = − < ≤

ϕ
ϕ π

θ π θ π2
cos ,  , (2.33)

which is exactly what should result from a projection.

Apart from statistical considerations, a very simple explanation of the phenomenon is
the phasor interpretation suggested in [Bur98, Leh98] and shown in Fig. 2.13.

ϕ1(x1,y1)

ϕ2(x2,y2)

A2(x2,y2)

Ap(∆x, ∆y)

ArAr

AiAi

A2(x2,y2)

Ap(∆x, ∆y)

A1(x1,y1)

ϕ2(x2,y2)

ϕ1(x1,y1)

A1(x1,y1)

Fig. 2.13: Variation of a speckle phasor A1 due to a perturbation Ap for different amplitudes

A1(x1, y1)
. ϕ1(x1, y1) and Ap(∆x,∆y) are the same in both cases.

If a phasor A1(x1, y1) undergoes a change Ap(∆x,∆y) while we move from (x1, y1) to

(x2, y2) in the speckle field, then the phase change will greatly depend on the length of

A1(x1, y1). In the sketch to the left, the phase ϕ changes considerably on the way from

(x1, y1) to (x2, y2), since 
A1(x1, y1)
 is relatively small. The drawing to the right demon-
strates the higher stability of brighter regions against changes: when 
A1(x2, y2)
 is large,

the same Ap(∆x,∆y) leads to a distinctly smaller phase change. This is valid for all argu-

ments of Ap except �ϕ1 . Unfortunately, this model is not suitable to understand the

correlation of intensity and intensity gradients. To conclude with, Fig. 2.14 gives an
impression of the relation between intensities and phases in the sample speckle field.
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Fig. 2.14: Intensity (black/white) and phase (coloured isolines with 45° spacing) of a speckle field.

It can clearly be seen that the phase changes relatively slowly in the brighter regions,
while in the dark valleys the isophase lines tend to get very dense. Many phase saddles
are discernible by their X-shaped isophase lines, and some few closed phase contours
indicate the presence of phase extrema. Moreover, the 1-D phase gradient mostly
changes little as we cross bright speckles, which we will use for developing suitable
phase calculation methods in Chapter 3.2.2.4. The most problematic features are the
junctions of the isophase lines that are associated with rapid changes in the direction of
the 2-D phase gradient. These points, forming a network connected by isophase lines,
are the so-called phase singularities to which we will dedicate the following subsection.

2.2.5 Zero-intensity minima

In the darkest regions of a speckle pattern, we find a class of very interesting features:
the zero-intensity minima, also known as phase singularities, discontinuities, screw dis-
locations, or vortices. They have first received attention as peculiarities in sound fields
[Nye74, Ber78], and later as obstacles for phase conjugation of speckle fields [Bar81,
Bar83, Fri98]; another example are the phase singularities that have been found in the
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phase distribution of the global tides [Nye88]. Indeed, singularities occur in almost any
complex-structured two- or three-dimensional wave field. The field amplitude is exactly
zero at these particular points, or lines in space, and the consequences for the phase are
remarkable. Indeed, all of the terms given above refer to a property of the phase: it be-
comes undefined where there is no amplitude, and on crossing the minimum, the phase

jumps by π (as also known from simpler interference experiments). This can be under-

stood with the help of Fig. 2.15 that gives an overview of the wavefield's quantities.

Ar(x,y) = 0

Singularity

Ai(x,y) = 0

Ai(x,y) Ar(x,y)

xy

 

 x

 y

y

x

I(x,y)

Fig. 2.15: Left: pseudo-3D plot of Ar(x, y) and Ai(x, y) in the immediate vicinity of a phase singular-
ity. For visual clarity of the intersection, each tangential plane is plotted half as mesh grid
and half as solid grey area. Right: corresponding intensity (top), and phase, coded as grey
values (bottom).

The drawings are generally applicable to first-order singularities (see below), since
Ar(x, y) and Ai(x, y) are smooth functions and can always be approximated by tangential
planes in a small region (dx, dy) of the wave field.

As we can see from (2.1), Ar(x, y) and Ai(x, y) are statistically independent; hence they
will independently fluctuate with a mean value of zero in the speckle field. The zero
crossings of either function form closed contours in the (x, y)-plane; and frequently these
lines intersect. In Fig. 2.15, they do so at a right angle, which is a special case. On mov-
ing along the Ar(x, y) = 0 line in positive y-direction, the phase of the wavefield remains
constant until Ai(x, y) vanishes at the singularity and then flips sign, which results in a

phase jump of π. The new phase value also remains constant as we move away from the

minimum. Since Ar(x, y) and Ai(x, y) can be approximated by planes, the intensity has a
quadratic minimum. It has been shown in [Fre96b] that these "intensity wells" are very
narrow: their typical diameter is only 1/7 that of the speckles. The model singularity
shown here is, by definition, positive and of order +1: during a counterclockwise loop

around it, the phase changes by +1�2π. This non-vanishing rotation of the phase has led

to the term "vortices". If the zero points of Ar(x, y) and Ai(x, y) are saddle points or
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extrema, a dislocation of order N, i.e. with a phase progression of N�2π per revolution,

can occur [Fre99a,b]; but these are very unstable [Fre00] and of no practical importance
in speckle patterns.

Phase dislocations of order �1 are topological features in the speckle field [Nye74]; they
always appear and vanish in pairs of opposite sign [Fre93]. In analogy to the intensity

map, one can also define a normalised vector field ∇ϕ /
∇ϕ
 to find phase dislocations

as well as phase minima, maxima and saddle points, which appear as "phase topological
singularities" in the vector field [Fre95d]. This leads to the rule that a new pair of phase
dislocations must simultaneously create two new phase saddles. Therefore, phase
saddles are at least as dense in speckle phase maps as phase singularities, leaving little
space for phase extrema.

The correspondence of phase dislocations and vanishing field amplitude is indicated in
Fig. 2.16. Since the speckle field is not completely polarised, the measured dislocations
do not always coincide with points of zero speckle intensity; but they certainly appear at
the zeros of interferometric modulation, as the interferometric phase measurement
extracts that state of polarisation from the speckle image which is co-polarised with the
reference wave. For this reason, Fig. 2.16 uses the map of modulation rather than the
speckle intensities as the underlying field. As to be seen by comparison with Fig. 2.2, it
resembles the total speckle intensity closely but not exactly. The signs of the dislocations
are not indicated here; see Fig. 2.17 for this purpose.

Fig. 2.16: Distribution of phase dislocations (white dots) vs. interferometric modulation of Fig. 2.2,
right side.



                                                       2.2 First-order speckle statistics                                                   31

Moreover, Fig. 2.14 demonstrates that most of the isophase lines are open contours that
connect the singularities; but phase extrema are of course found in closed isophase lines
only. This is in qualitative difference to intensity fields, where all iso-intensity lines are
closed contours and extrema are very frequent. To compare with (2.17), we list the
statistical densities of critical points of the phase that have been found by computer
simulation in [Fre98a]:

ρ ϕ
ρ ϕ
ρ ϕ
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(2.34)

from which we see that the phase field shows less structure, or spatial variation, than the
intensity field. The feature density is about half that of the intensity map; but still the
required parameter density is some three times greater than the density of the required
sampling points, which indicates that there are significant correlations also between the
critical points of the phase. However there is no physical reason why phase minima
should be more likely than maxima; with a larger ensemble, their densities should be
equal [Fre98a].

The case depicted in Fig. 2.15, i.e. right-angle intersections of the zero-crossing lines of
Ar(x, y) and Ai(x, y), corresponds to the special case of a so-called isotropic phase dislo-
cation. This means that the isophase lines radiate outward from such features with
constant angular density, so that, on a circular path around the dislocation, the phase
slope is constant. For this case, an interesting analogy arises: the phase field generated
by a distribution of isotropic singularities is similar to an electric field generated by a set
of point charges, and completely free of extrema, i.e. closed field lines. This is, however,
not the generic case: the zero-crossing lines of Ar(x, y) and Ai(x, y) frequently intersect at
angles different from 90°, which concentrates isophase lines within the acute angles that
they enclose, and thins them out in the obtuse angles; see [Fre93, Fre94a, Fre97a] and
Fig. 2.17. In the limit, when the zero lines of Ar(x, y) and Ai(x, y) coincide (this is, the
"screw" dislocation becomes an "edge" dislocation, see below), we have constant phase

of the wave field on either side, and a phase jump of π on crossing them. To give an

impression of how the structure of Ar(x, y) and Ai(x, y) generates phase singularities, Fig.
2.17 presents the phases of our sample field together with the zero lines of its real and
imaginary parts (that, of course, depend on the momentary interferometric phase; but it
is easy to see that the lines' intersection points will remain unaffected by whatever phase
shift).
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Fig. 2.17: Left: phase distribution of sample speckle field; [–π,π) represented as grey shades from

black to white. Right: zero crossings of Ar(x, y), black lines, and of Ai(x, y), white lines.
Black dots: positive, white dots: negative singularities.

The figure shows that the zero-crossings of Ar(x, y) and Ai(x, y) intersect at all angles
between 0 and 90° [Fre94a], and also explains easily why dislocations always appear
and vanish pairwise: it is impossible for the closed zero contours of Ar(x, y) and Ai(x, y)
to generate only one new intersection. This is also the reason why they alternate in sign
– also called topological charge – on paths along any zero-crossing contour [Shva94,
Fre94b, Fre95d]. When the zero-crossings of Ar(x, y) and Ai(x, y) touch, they do so tan-
gentially and generate a zero-amplitude line, or "edge" dislocation [Nye74, Bas95], of
infinitesimal length in the x-y plane, that instantly splits up into the two "screw" disloca-
tions as the zero crossings of Ar(x, y) and Ai(x, y) intersect, i.e. as we shift our x-y-plane
in z direction and the wavefield evolves in space. The trajectories of the singularities can
be thought of as dark lines that pierce the x-y-plane and are orientated mostly in z direc-
tion [Ber78]. Their shape in space has been referred to as "snake-like" [Bar83]; the proc-
ess of pair creation or annihilation therefore corresponds to turning points of these tra-
jectories where the z component of their direction vector changes sign.

The abovementioned z-direction scan of the speckle field gives us the opportunity to
track the loci of the dislocations slice by slice to see whether a pair of dislocations that
has appeared together will also vanish together, and how one should imagine the zero-
intensity trajectories in space. Fig. 2.18 presents the zero-intensity lines in the very cen-
tre of the sample phase field; the colouring helps to distinguish them. If they end, it
means that they have moved out of the sample volume or that their tracking is
discontinued for clarity of the representation.
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Fig. 2.18: Shape of some selected zero-intensity trajectories in a sample volume of (2 mm)2�100

cm; left: projection on the y-z plane; right: projection on the x-z plane. Positional data
from 26 x-y slices with increasing spacing: 2 cm at the bottom, 6 cm at the top, and
spline interpolated in between.

We will consider the meaning of these plots first by following the largest of the yellow
structures: at z = 73 cm, a pair of dislocations is created. Initially, they quickly move
away from each other until (z > 80 cm) they approach again; finally they react and vanish
at z = 94 cm. This is an example of a process in which the same dislocations appear and
disappear together. All such events found are coloured yellow; and as to be seen, they
are rather rare. The general case is the one we find when following the dark green line: it
turns over at z =116 cm, which means that the dislocation tracked thus far reacts with
another one, from the pair that appeared at z =106 cm. This in turn means that the latter
pair does not vanish together: its remaining dislocation propagates without further inter-
action until z =160 cm. Hence, every time a zero carrier bends back and forth again, a
new pair of dislocations appears, and the short-lived dislocation of that pair changes its
partner on vanishing. Extreme examples of this are the orange and the red lines, with a
total of 5 pair reactions each. Of course, all the zero trajectories could be envisaged as
separate sequences of lines, with alternately positive and negative z-components in their
direction vectors, that are connected at their turning points with respect to z; but their
spatial structure is pointed out more clearly when we treat them as entities.
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The trajectories without turning points correspond to singularities that persist at least
throughout the sample volume, i.e. 1 m of depth. Since the speckle length ls according to
(2.45) is �19 cm for z = 60 cm and �135 cm for z =160 cm, this poverty of events does
not contradict the assertion that the zero lines' "longitudinal size of non-uniformity" is of
the order of the speckle length [Bar83]. It is possible that some of the non-interacting
lines belong together and react at lower or higher z (especially the lines in magenta and
green are very close at z =160 cm); but this cannot be safely concluded from the
available data.

The white line in the figure shows that the direction vectors of the zero trajectories can
sometimes have a very small z-component, which means that its associated dislocations
will move very fast in the x-y plane as we change z. This raises the question whether an
unambiguous assignment of zero-intensity lines to certain phase dislocations as in Fig.
2.18 is possible at all; but since the zero contours of Ar(x, y) and Ai(x, y) (cf. Fig. 2.17)
evolve continuously with z, there is enough information about the singularities to always
know which is which. It can, however, not be excluded that some minor zero-intensity
loops between the recorded slices have gone unrecognised: the detection of new pairs of
dislocations depends on the (3-D) resolution of the measurement.

Concerning the interaction and coupling of dislocation pairs, there are cases of disloca-
tions appearing and vanishing together (the closed yellow loops within the measurement
volume), but generally, the zero-intensity trajectories will turn over more than twice; and
this results in swinging of relatively short-lived dislocations from and to different reac-
tion partners. No statement can be made about the open zero-intensity lines: some might
be large closed loops, some might extend to infinity.

From the statistics derived so far, also the average dislocation density �ρdisl� in the

speckle field may be found [Ber78, Bar81]: setting Ar =Ai = 0 in (2.1), one can come to
an expression that counts the dislocations per area. We remark here that the derivation is
based on the same formalism as that of (2.14); the details are given in Appendix A. For a
circular scatterer, we get [Bar83, Fre93, Fre94a]
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�ρdisl� is again the quantity that we have encountered as ρ (Izero) in (2.17), and as ρ (ϕdisl)

in (2.34), and in perfect agreement with the experimental values quoted there. In [Fre93]
the ad hoc argument is given that a speckle field contains equal amounts of bright and
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dark "grains" and that, therefore, �ρdisl� should equal 1/(2As) independent of the scat-

terer's shape. The slight deviations in (2.35), and also for other scatterer shapes, are
attributed to a somewhat inappropriate definition of the speckle area; this leads to the

suggestion of referring the speckle area to �ρdisl� as an unambiguous quantity.

The constancy of �ρdisl� also delivers an argument to support the abovementioned

assumption about the "longitudinal size of non-uniformity" of the zero-intensity trajecto-

ries. The speckle area depends on z2, as does their length. Since �ρdisl� is constant, the

number of dislocations per unit area should fall with a 1/z2 dependence; but this is also
the speckle "frequency" in z direction. Hence, one can think of each bright speckle as
being accompanied by a zero line that "ends" (i.e. turns over) when the speckle "ends".

The z-direction scan of the expanding wavefield enables us to verify (2.35) by deter-
mining the number of dislocations, Ndisl , in every recorded slice of 5122 pixels: with

ρdisl
s

disl

sensor

N≅ ≅0 46.

A A
 , (2.37)

we can use (2.36) to establish
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the speckle sizes thus obtained are plotted vs. z in Fig. 2.19.
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Fig. 2.19: Number of dislocations in sample area and corresponding speckle sizes for
60 cm � z � 160 cm.

The expected dependence is confirmed by the measurement; not surprisingly, the deter-
mination of ds from Ndisl gets more and more precise as the latter rises. For this to func-
tion, the speckle field must of course be well resolved by the camera. The fitted straight
line almost passes through the origin even though no data are available for z < 60 cm.
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When comparing the ds thus obtained with those from an evaluation of the speckle fields'
autocorrelations, the values coincide within �5%. Since the number of speckles on the
sensor is relatively small, the autocorrelation method is applied to a small ensemble,
which does not match the spirit of the approach and explains the deviations. Apparently,
the method of determining the speckle size from the dislocation density works quite well
when the speckles are large. Other experimental results, confirming the linear depend-

ence of ρdisl and D, are given in [Bar83].

2.3 Second-order speckle statistics

In SPS, and in TPS with unresolved speckles, it occurs that the distances over which the
spatial structure of the speckle field changes are not much larger – or even very much
smaller – than the pixel size. Then one needs to know the spatial relation of speckle
intensity and phase between two points P1 = (x1, y1) and P2 = (x2, y2) in the speckle field,

p(I1, I2, ϕ1, ϕ2), or simplifications thereof. We will proceed from the most general con-

cept, the spatial autocorrelation of intensity and phase, to the somewhat more compli-
cated topic of the relation between intensity and phase.

2.3.1 Intensity autocorrelation

Probably the most popular and indeed very useful second-order quantity is the concept
of the mean speckle size in terms of intensity. We start with the autocorrelation of the
complex amplitude,

R x y x y x y x y
AA

A A* ( , , , ) ( , ) ( , )*
1 1 2 2 1 1 2 2=  , (2.39)

which is also referred to as mutual intensity of the speckle field [Goo75, p. 36]. For our
purposes, it may suffice to remember that this function is essentially the Fourier trans-
form of the intensity distribution within the scattering spot or the aperture shape,
depending on whether objective or subjective speckles are concerned. For the latter case
however, the treatment is correct only if the imaging aperture contains a large number of
speckles. Then the aperture may be thought of as another rough surface, whose shape
plays the same role for the formation of subjective speckles as does the scattering spot in
the case of objective speckles.

The mutual intensity is usually normalised to yield the complex coherence factor
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which is unity for x1 = x2 and y1 = y2 and decays as the points move away from each
other; when it becomes zero, the points are said to be one spatial correlation length or
speckle size apart.
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It can be shown [Goo75, pp. 36-38] that the intensity autocorrelation RI (x1, y1, x2, y2) is
given by

( )R x y I x yI A( , ) ,∆ ∆ ∆ ∆= +





2 2
1 µ (2.41)

with ∆x = x2 – x1 and ∆y = y2 – y1 . That is, the shape of the µA curve determines that of a

typical speckle area, or correlation cell, in the speckle field. If the scatterer or aperture is
a uniformly bright circle, we get
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J1 denoting the first-kind Bessel function of first order. This can very easily be general-
ised to the elliptical apertures that are also used in the experimental work. For circular

apertures, µA is the well-known Airy function, which demonstrates that the speckle

shape is closely related to the aperture's point spread function. It assumes its first zero at

∆ ∆x y
z

D
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2 2 122+ ≅ .
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�  , (2.43)

which gives the mean speckle size. The shape of RI (∆x,∆y) is given in Fig. 2.20.
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Fig. 2.20: Speckle intensity autocorrelation function for a circular scattering spot with uniform
brightness.

If we write the intensity correlation as RI (x1, y1, x2, y2) =�I(x1, y1) I(x2, y2)�, we can use the

independence of P1 and P2 at µA = 0 to decompose it into �I(x1, y1)��I(x2, y2)�=�I�2,

while for µA =1 we have P1 =P2 and obtain �I(x1,y1) I(x1, y1)�=�I 
2�= 2�I�2. The "bias

correlation" reflects the fact that the intensity is never negative, in contrast to the phase
and its autocorrelation.

This definition is merely statistical and does not imply anything about the true distribu-
tion of shapes and sizes of bright or dark regions. However, it has recently been found
that the well-known and proven notion of "speckle size" is correct also with respect to
the individual size of the bright spots [Fre96b]. Even the intensity profiles of individual
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speckles have been found to follow the course of RI (∆x,∆y) quite well [Fre96b, Fre98a],

which means that there is only a very small region of quasi-constant intensity within a
bright speckle; the greater the peak intensity, the greater will be the intensity gradient
within the speckle area.

The derivation of (2.41) is based on a two-dimensional treatment of the Kirchhoff-
Fresnel diffraction integral. It is possible to extend the calculation to find the three-
dimensional autocorrelation [Leu90]. The general result is rather difficult an expression;
however considering the z direction only, one finds for a circular aperture [Leh98]
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where sinc(x) = sin(πx)/(πx). The first zero of this expression, indicating the length of a

correlation cell, is at
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see also [Li 92, Yos93]. The quadratic relationship of ls and z generates more and more
elongated speckles – the aspect ratio is proportional to z – that are "cigars" only near the
scatterer or aperture, and "worms" in most practical cases (cf. [Wei77]): for z/D =1.5,
ls /ds is already �10.

2.3.2 Phase autocorrelation

It is clear that the phase structure of speckle patterns affects speckle interferometry as
significantly as does the intensity structure. Again, especially for SPS it is useful to find
out how the phase of a speckle pattern will fluctuate statistically, and over what dis-

tances we may expect to find some phase correlation. Unfortunately, ϕ is accessible

modulo 2π only, which is difficult to treat mathematically: if we map the phases onto

[– π,π), two points with ϕ1(x1, y1) = – π +ε and ϕ2(x2, y2) = π –ε  would yield ∆ϕ = ϕ2 – ϕ1 =

2π – 2ε, while the actual difference is only 2ε.

Consequently, there are two ways to deal with ϕ. The first one regards ϕ as a continuous

function without – π�π jumps, which can lead to problems with path-dependence in

complicated phase distributions with dislocations, such as speckle phase fields. The

other confines ϕ to [– π,π), which makes it a unique but discontinuous (wrapped)

function.

For continuous phases, the phase autocorrelation function has been calculated long ago
[Mid60] as that of a band-limited random signal, an example of which is speckle noise
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(as for the band limitation, see 3.3.1). If the primary phase interval is set to [– π,π), the

function reads
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with µA , the complex degree of coherence, to be calculated from the scatterer's charac-

teristics; the subscript c stands for "continuous". A primary phase interval of [0, 2π)

would correspond to a "bias phase" of π and merely add a constant of π2 to the function.

For discontinuous phases, the decrease in correlation has particular properties because of

the – π�π transitions of the phase taken as real 2π jumps; this function has been estab-

lished only recently [Fre96a] and reads
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where the subscript d denotes the discontinuous interpretation. Both of the functions are

evaluated for n =1 to 100, with µA according to (2.42), and shown in Fig. 2.21. The scal-

ing of the ordinate reflects the fact that the phase variance in the speckle pattern is zero

for |µA| =1, and π2/3 for |µA| = 0, which corresponds to a uniform distribution.
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Fig. 2.21: Speckle phase autocorrelation function for a circular scattering spot with uniform bright-
ness; solid line: Rϕ,c ; broken line: Rϕ,d .

Since Rϕ depends on µA , as does RI , its correlation length is exactly the same as for the

intensity. The qualitative difference of the functions is due to the permissible ranges of

phase differences between neighbouring points, which are (– π,π) for Rϕ,c , and (– 2π,2π)

for Rϕ,d . Hence, Rϕ,d decays very quickly initially and even changes to anticorrelation
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after its first zero, which corresponds to an average phase change greater than �π; for

more details, see [Fre96a].

To clarify the interpretation of ϕ, we consider Fig. 2.22, giving an example of the two

methods applied to the familiar sample phase distribution, displayed in the middle of the
top row. Of particular interest in this context are the so-called "branch cuts" [Fri92], the

transitions from black to white where ϕ crosses π. These jumps are related to the dis-

continuous interpretation of ϕ ; it is hard to imagine a continuous representation. The

outer images display the local phase correlation for ∆x =10 pixels; to the left, continuous

phases are assumed, and to the right, the discontinuity of ϕ shows up distinctly wherever

the direction vector of a branch cut has a non-zero y-component. In all correlation maps,
white corresponds to complete correlation (no phase difference between (x1, y) and

(x2, y)), medium grey to zero correlation (phase difference of �π), and black to complete

anticorrelation (phase difference of ��2π). Remembering that the field's phase jumps

by π while we are crossing points or lines where it vanishes, the identification of zero

correlation with a phase offset of π seems quite reasonable.

    

    
Fig. 2.22: Interpretations of phase fields leading to different phase correlations. Centre, speckle

phase distribution; black circles: sample dislocation. Left, Rϕ,c ; black circles, example of
decorrelation "spot"; right, Rϕ,d . Global phase shift of π between top and bottom row; see
text.
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It can be seen that Rϕ,c does not produce anticorrelations; as explained above, this is

because phase differences greater/smaller than �π do not occur in this interpretation. In

the map of Rϕ,d , we do find phase jumps of �2π near the branch cuts of the speckle

phase, giving rise to phase anticorrelation. However, the branch cuts are no physical
reality, since they can be moved around in the image by adding global phase shifts, as
demonstrated in the bottom row. The phase distribution shown in the centre is exactly

the same as in the top row, only a global phase shift of π has been added (or subtracted)

modulo 2π, as can be seen by the circulation of the branch cut in the black circle(s). The

remaining correlation is unaltered when we assume continuous speckle phases – the
images in the left column look exactly the same –, whereas the results from the discon-
tinuous interpretation are rather different from each other.

Clearly, it is impossible for the phase decorrelation to depend on the global phase offset,
which makes evident that the discontinuous interpretation is not suitable for our purpose.
Moreover, when phase measurement errors in displacement images are evaluated, we

will assume that they are in the range (– π,π) (see Chapter 4.2). The decorrelation "spot"

enclosed by the black circles in the left column of Fig. 2.22 is an example of how phase
singularities contribute some amount of complete phase decorrelation (cf. Fig. 2.15)

even for small ∆x and when branch cuts are ignored.

2.3.3 Second-order probability densities

As above, it proves easier to start with the amplitudes. The joint probability density of
the complex amplitudes A1 =A1r+iA1i and A2 =A2r+iA2i at the points P1 and P2 is given by
[Goo75, p. 42]
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the derivation relies on A1r , A1i , A2r , A2i being all jointly Gaussian variables, and σ is the

same quantity as in (2.1). Using (2.3) again, the conversion to I and ϕ yields [Goo75,

Vry86, Leh98]
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with �J�=1/4 and µA �
µA
exp(iψ). The phase factor ψ of the complex degree of coher-

ence is deterministic and related to the phase distribution of the illumination and the
scatterer's macroscopic geometry and symmetry; in general, it represents the non-speck-
led part of the wavefront. As we are considering a system that is symmetrical about the
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optical axis, we can set ψ = 0; to preserve generality however, we will continue including

ψ, as it might play a role in other geometries. When 
µA
 vanishes, (2.49) can be decom-

posed into p(I1, ϕ1)�p(I2, ϕ2), reflecting the statistical independence of the functions. As

above, we will now derive some joint probability densities from this general expression.

Since the derivation of the presented expressions relies on jointly Gaussian variables, the
extension to higher orders is in principle straightforward; the third-order pdf

p(I1, I2, I3, ϕ1, ϕ2, ϕ3) has been calculated in [Rao91], also by starting with the complex

amplitudes.

2.3.3.1 Intensity statistics

In a first step, we will put the phases aside by eliminating ϕ1 and ϕ2 and obtain [Goo75]
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where I0 – not to be confused with our intensities – is the modified Bessel function of
first kind and zero order. The course of (2.50) is not too complicated, as Fig. 2.23 illus-
trates for I1 fixed to some arbitrary value. This plot already provides a complete inter-
pretation of (2.50), as it is symmetrical in I1 and I2 .
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Fig. 2.23: Pseudo-3D plot of p(I1, I2).

The limiting case of 
µΑ
=1 is not displayed because it corresponds to (x1, y1) = (x2, y2)

and yields p(I1, I2)|
µΑ
=1 = p(I1)�δ(I2, I1). For the other extreme, p(I1, I2)|
µΑ
=0 = p(I1)p(I2),
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with each of them as in (2.6). Hence, the distribution of I2 is initially free and assumes

the well-known exponential form; as 
µA
 increases, it is gradually being forced to centre

on I1 .

To find out the influence of a fixed I1 , we write down the pdf of I2 conditioned on I1 ,
which is

( ) ( )
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As to be seen, the coupling between I2 and I1 depends on 
µΑ
 and I1 . To understand the

role of I1 , we visualise three cases with 
µΑ
= 0.1, 0.6, and 0.95, respectively.
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Fig. 2.24: Pseudo-3D plots of p(I2|I1) for �I�=1 and 
µΑ
= 0.1 (left), 0.6 (centre), and 0.95 (right).

While it is not surprising that I2 almost remains a negative exponential when 
µΑ
 is

small, we find an interesting behaviour for intermediate values of 
µΑ
. When I1 is small,

the distribution of I2 is only slightly altered, which means that the dark portions of the
speckle field are narrow structures: their influence does not reach very far. Then, at large
I1 , the maximal probability of I2 reluctantly moves away from zero, but remains quite
low. This means that bright spots do cause their surroundings to get brighter, but that the
latter will nonetheless be considerably darker than the bright spots themselves, in
agreement with the positive correlation of the intensity and its gradient that we found in

2.2.3.1. The last example with 
µΑ
= 0.95 supports this further: while p(I2|I1) has its

maximum almost at I1 when I1 is low, this maximum is shifted towards lower values for
high I1 ; for instance, at I1 = 3, the most probable value of I2 is � 2.7. This imbalance of
properties of "dark" and "bright" structures is the reason why we can instantly tell a
speckle image from its inverted counterpart.

It is clear that I1 also exerts a certain influence on mean value and standard deviations of
I2 as compared to the "free" values given in (2.7). Also these calculations have been
carried out [Don79], and we get
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where we have written down the variance for convenience of notation. It is easy to see

that we obtain the "free" values again for 
µΑ
= 0. With growing 
µΑ
, the coupling of

�I2� to I1 gets stronger and reaches unity when (x1, y1) and (x2, y2) coincide. For the vari-

ance, we find the strongest influence of I1 at 
µΑ
� 0.71; of course the variance eventu-

ally drops to zero when 
µΑ
=1. The functions are shown in Fig. 2.25.
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Fig. 2.25: Pseudo-3D plots of �I2�|I1 (left) and σI2|I1 (right), normalised by �I�.

For �I2�|I1, the above interpretation of (2.52) suffices to understand the graph: the closer

(x2, y2) is to (x1, y1) (i.e. the larger 
µA
), the more are the intensities likely to be equal.

When looking at σI2|I1 however, we see that the standard deviation gets larger than the

free value σI2|I1
µΑ
=0 =�I� when I1 is large and 
µA
 takes on intermediate values. This

again shows the tendency for rapid intensity fluctuations especially in the brighter
regions of the speckle pattern. As shown in [Bar87], this remains valid for aperture-
integrated speckle patterns as well.

2.3.3.2 Phase statistics

To obtain p(ϕ1,ϕ2), we have to integrate (2.49) over I1 and I2 , which is rather compli-

cated, but has fortunately been taken care of before [Mid60, Goo75]; the result is
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where β = |µΑ| cos (ϕ1 – ϕ2 +ψ) and we deal with ψ as above. To look at the quantity of

interest, namely the phase at (x2, y2) in relation to that at (x1, y1), we can content our-

selves with fixing ϕ1 to some arbitrary value and varying ϕ2 from – π to π. For conven-

ience, we introduce the relative phase variable ��ϕ1 – ϕ2 +ψ and consider p(�), which

yields one plot for all ϕ1 . Repeating the procedure with swapped angles ϕ1 and ϕ2 would

teach us nothing new, as β is symmetrical in ϕ1 and ϕ2 . The resulting probability distri-

bution of � vs. 
µΑ
 is shown in Fig. 2.26.
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Fig. 2.26: Pseudo-3D plot of p(�) for 0�
µΑ
<1.

For high values of 
µΑ
, ϕ1 and ϕ2 are indeed close together; as above, the case 
µΑ
=1

corresponds to a δ function because of ϕ2|
µΑ
=1 ≡ ϕ1 , and is not plotted. As we recede

from (x1, y1), 
µΑ
 decreases and the likely phase differences spread out, until we have a

uniform distribution at 
µΑ
= 0. This constant value at 
µΑ
= 0 has mistakenly been

given as 1/(2π) [Mid60, Goo75]; but as we have fixed ϕ1 to some value, we see only one

of the two angular variables sweep its range in Fig. 2.26. Therefore the value producing

the correct normalisation is 1/(4π2), which results immediately from (2.53) when β = 0.

The conditional pdf for the phases is simply
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this is the function that we find in [Mid60, Goo75] and that looks qualitatively like in

Fig. 2.26. When β < 0, the whole function is just shifted by π along the axis of ϕ2

because of – cos(ϕ) = cos(ϕ � π).
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For mean value and variance of ϕ2 conditioned on ϕ1 , we have [Don79]

ϕ ϕ ϕ β
ϕ π β

2 1 1

1

0

0

| = >
= + <

( )

σ ϕ π π µ µ
µ

π µ

ϕ2
2

1

2
2

2

2
1

2
0 84

3

1

2

3
1

| arcsin arcsin

;
.

= − + −

≅ −

=

∞

∑A A
A

n

n

A

n
(2.55)

the last line gives a useful approximation [Leh98]. The mean values instantly get plausi-

ble by the symmetry in Fig. 2.26; we avoid 
µΑ
= 0, because then the statement of a

mean value will be meaningless. The derivation of σ 
2
ϕ2|ϕ1 is given in [Don79]; we omit

the details here and just retain that the phase offset, ϕ1 , plays no role at all. Therefore we

make use of � again and plot σ
�
 in Fig. 2.27.
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Fig. 2.27: Plot of σ
�

 vs. 
µΑ
.

For 
µΑ
= 0, we obtain the "free" standard deviation of π/�3, corresponding to a uni-

form distribution of ϕ2 ; for 
µΑ
=1, the infinite sum in (2.55) is π2/6 [Bro87], and there-

fore the standard deviation becomes zero as expected. It is remarkable how quickly ϕ2

shakes off the influence of ϕ1 : for 
µΑ
= 0.8, we have already σϕ2
|ϕ1 � π/(2�3). This is

the reason why phase-measurement errors due to speckle decorrelation, i.e. the decrease

of 
µΑ
 due to lateral displacement or tilt of the object, increase rapidly initially [Hun95,

Leh97b], while the fringes vanish only gradually as 
µΑ
 0. Many examples for this

quasi-asymptotic course can be found in Chapter 5.
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Although 
µΑ
 refers to one and the same stationary speckle field in our treatment thus

far, (2.55) turns out to be a very universal description of phase errors due to fading

speckle correlation [Cre85a, Vry86, Own91a, Hun95, Leh97b]; in fact, once 
µΑ
 can be

derived from the interferometer geometry, (2.55) applies likewise to image-plane decor-
relation (lateral object displacement) and aperture-plane decorrelation (object tilt);
moreover, it is almost independent of the ratio of speckle size to pixel size. Hence, Fig.
2.27 gives the expected standard deviation of the error in many ESPI phase measure-

ments, where ϕ1(x, y) is the initial and ϕ2(x, y) the final speckle phase distribution.

2.3.3.3 Interaction of intensities and phases

As already pointed out in [Don79], (2.49) is not separable into a product of marginal
pdf's, which means that all of the involved quantities are mutually dependent. Hence we
have dropped some information by eliminating intensities or phases from (2.49). Also, in
2.2 we have found that high speckle intensities are associated with low phase gradients,
and vice versa. Therefore, we will now consider the interaction of intensities and phases
more generally. This has been done in [Don79] as well; I list the results for completeness

here and also give a simple qualitative interpretation for ��π that I think has not been

mentioned before.

Since we are again interested in phase differences between two points instead of absolute
phases, our relative phase variable � will be useful again. Then, we can investigate two

general cases: (i) what influence do I1 and � have on I2 , and (ii) what does � do when we

constrain I1 and I2 ? The pdf of I2 conditioned on the other quantities is [Don79]
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where we have abbreviated
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In contrast to the calculations in [Don79], we use 
µΑ
 everywhere; since � appears as

an argument of a cosine only, we can constrain 0���π and still explore

–1�
µΑ
cos��1; thus, we need not deal with the ambiguity of µA�cos� as was done in

[Don79]. Unfortunately, it is still confusing to go through the many possible ways of
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plotting (2.56) with various fixed and running variables, so that we will resort to simpler
functions. Indeed, it turns out that the statistical quantities

( )( )
( ) ( )

I I
I

D

I
I

D D

A

I A

2 1
2 2

1
2 2 2 2

2
1 3 2

2
1 6 1 2 8

2

| , ( )

| , ( ) ( )

ϑ µ δ δ

σ ϑ µ δ δ δ δ

= − − +

= − − − − +
(2.58)

will provide sufficient insight. There are still three parameters to vary, namely |µA|, �,

and I1 ; unlike [Don79], we do not use the composite parameter I1�cos2
�/�I�, but only

I1 , which will allow us a direct interpretation, and to see the effect of � more clearly. We

normalise �I� to unity and investigate I1 ∈{0.3, 1, 3}; the corresponding plots are shown

in Fig. 2.28. The limit |µA| =1 is difficult to treat, but of course it implies I2 ≡ I1 ,

σI2|I1,� ≡ 0 and � ≡ 0. Therefore the maximum value of |µA| in the plots is 0.995. These

graphs show all combinations of |µA| and �, although some are almost impossible in the

underlying pdf (2.56).
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Fig. 2.28: Pseudo-3D plots of �I2�|I1,� (upper row) and σI2|I1,� (lower row) for I1 = 0.3�I� (left),
I1 =�I� (centre), I1 = 3.0�I� (right).

All the functions show a pronounced dependence on � that gets stronger as I1 increases;

the curves for � = 0 correspond approximately to those in Fig. 2.25, while for � � π/2,
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both �I2�|I1,� and σI2|I1,� approach zero monotonously as we increase |µA|. It is easy to

see that the monotonous decrease sets in at � = �π/2, where δ = 0 and

( )I I I II A2 1 1
2

2
1| , | ,ϑ σ ϑ µ= = −  ; (2.59)

hence, for a phase difference of � π/2 between (x1, y1) and (x2, y2), I2 is not only likely to

be smaller than I1 , but will probably even be smaller than �I�. This agrees with what we
have found before: given a large phase difference between two points, we are the more
certain to find a very low intensity at one of them the closer they are together. In par-

ticular, for � � π and |µA|�1, we are near a phase singularity, which interpretation is also

helpful in understanding the asymmetry in the corresponding plots in [Don79]. Then of
course a high value of I1 is very rare, but not completely impossible.

The second case we will consider is [Don79]
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as already shown in (2.53) and (2.54), one could eliminate ϕ1 simply by multiplying

p(ϕ2
I1, I2, ϕ1) with 2π, yielding p(�
I1, I2). Like in 2.3.3.2, the symmetry in � gives

immediately
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Therefore the variance again depends on |µA| only, and we get [Don79]
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where In(�) are the modified Bessel functions of first kind and nth order. It is now
instructive to compare this function with (2.55) for various speckle intensities. Since the
intensities appear together in z, we can set �I�=I1 =1 and vary only I2 ; Fig. 2.29 covers

the range of 0.1 < I I1 2 < 10. As before, we plot the standard deviation rather than the

variance.
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Fig. 2.29: Pseudo-3D plot of σ
�
|I1,I2 for a large range of speckle intensity ratios I2/I1 .

For large values of I1I2 , σ�
|I1, I2 decreases rapidly as soon as |µA| > 0, which means that

in the very bright speckles, the phase indeed shows good constancy. At I1I2 =�I�, the
standard deviation is still everywhere below the "free" (i.e. unconditioned) value of Fig.

2.27. As I1I2 decreases, σ
�
|I1, I2 grows and eventually exceeds σ

�
 everywhere. Hence,

most of the unconditioned standard deviation is due to those � 63% (1–1/e) of the
speckle field that are darker than �I�.

As above, the application of (2.62) to interferometry with partially decorrelated speckle
fields is possible [Leh97b], which immediately shows that phase measurements from
bright speckles are more reliable than from darker regions of the field. Because of the
low speckle intensity, the interferometric signal will be weak and susceptible to elec-
tronic noise, to which also a "decorrelation" parameter can be assigned [Hun97]. The
remaining interference amplitude will be further diminished by integration of the rapid
spatial phase fluctuations over the pixel area. Finally, the averaged phases will also
strongly fluctuate from pixel to pixel, which makes the phase measurement by SPS more
difficult. The best way to evade such problems would really be to retrieve all phase
measurements from bright speckles; one step in that direction will be shown in Chapter
6.6.
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3 Electronic or Digital Speckle Pattern Interferometry
The speckled wave scattered off an object bears a random intensity and phase structure
that, in itself, will not reveal information about the object's macroscopic shape or defor-
mation. By superposition with a reference wave, it becomes phase sensitive and the
intensity modulation of each speckle is deterministic. It obeys the relationship

I x y O x y R x y O x y R x y x y x yO R( , ) ( , ) ( , ) ( , ) ( , ) cos( ( , ) ( , ))= + + −2 ϕ ϕ  , (3.1)

where I denotes the interferogram intensity, O that of the object wave and R that of the

reference wave, and ϕO and ϕR the respective phases; x and y are the co-ordinates of the

image plane. While both O and ϕO fluctuate strongly with x and y, the spatial variations

of R and ϕR are generally negligible. For the sake of readability, we will henceforth omit

the spatial dependence of all variables. If two speckle interferograms are recorded, we
have

I O R O R

I O R O R

i i i i i O i R i

f f f f f O f R f

= + + −

= + + −

2

2

cos( )

cos( )

, ,

, ,

ϕ ϕ

ϕ ϕ
 
,

(3.2)

with subscript i for the initial and f for the final object state. On assuming that the inten-
sities do not change during the experiment – which is easy to assure for R but requires
the absence of speckle decorrelation for O –, we can reasonably rewrite this as

I O R OR

I O R OR

i O

f O

= + +

= + + +

2

2

cos( )

cos( )

ϕ

ϕ ϕ∆
 
,

(3.3)

where we have set ϕR,i = 0 without loss of generality, and omitted the "initial" subscript

for the speckle phase. The deterministic phase change ∆ϕ is caused by object displace-

ments, but includes possible global fluctuations of ϕR, f as well. From (3.3), the differ-

ence to classical interferometry is clear: for a diffusely reflecting object, no reference
surface is available; instead we need to compare it with itself. This can be done either by
holography [Har94], where we have true interference of two object wavefronts, or by
acquisition and subtraction of digitised interferogram intensity data [Løk87, Dov00].
The latter is commonly called digital or electronic speckle pattern interferometry (DSPI
or ESPI), and the digital difference images are sometimes referred to as secondary inter-
ferograms, which is to distinguish them from direct, or primary, interferometric images.

Compared to holographic interferometry, the resolution of the pixel array-based digital
method is poor, but with appropriate magnification of the object surface, still sufficient for
many purposes. Among the advantages of an electronic system are versatility and very
quick carrying out of experiments. Fig. 3.1 sketches the basic parts of an ESPI set-up.
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Fig. 3.1: Standard ESPI set-up.

The object is illuminated by a coherent wavefront, typically an expanded laser beam; its
surface is imaged with an objective onto an electronic image converter (CCD or, more
recently, also CMOS chip) where a subjective speckle pattern is observed. The reference
wave is re-combined with the scattered object light by a beam splitter; it should be
focused in the aperture plane so that its radius of curvature matches that of the object
wave, the origin of which may be thought to lie in the centre of the aperture. Otherwise
concentric interference fringes will be generated that decrease the contrast of the inter-
ference signal. The interferograms are digitised, most conveniently, but not necessarily,
with one-byte resolution, and stored in the memory of the connected computer for what-
ever image processing is desired.

The aperture size is usually chosen to match the speckle size to the camera's pixel
dimensions [Joh89], based on the ad hoc consideration that this ensures best spatial
resolution and best fringe visibility. It has been shown however that resolving the
speckles is not strictly necessary [Wyk87, Yos95, Maa97] and that even a speckle size of
1/8 pixel is sufficient to obtain a usable signal, which greatly improves light efficiency
[Leh98]. On the other hand, adjusting too large a speckle size results in reduced spatial
resolution, faster speckle decorrelation, and waste of light efficiency because of the
small aperture.

By appropriate choice of illumination direction(s) and wavefront form(s), the assembly
can be made sensitive for displacements normal or parallel to the object's surface, or
mixtures thereof. The former is called out-of-plane set-up, the latter is referred to as in-
plane geometry. Examples and sketches of the different types can be found in Chapter 5.
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The applicability of ESPI is mainly limited by speckle decorrelation, caused by large
object displacements or changes in the object's microstructure, which can lead to severe
signal degradation. The sensitivity of the ESPI system to these effects depends on, e.g.,
the speckle size and the dimensions of the image field. Also, for the secondary
displacement fringes to be well resolved, their width should exceed some 4 speckle
sizes. This value was given in [Tan68] for holography; in ESPI however, the detector's
pixel size plays a role as well.

3.1 Subtraction-mode ESPI

On subtraction of the interferograms obtained from the initial and final object state, we
have
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OR

f i O O
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− = + −

= − +
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(3.4)

with the second sine term representing the signal fringe profile and the first sine term the
multiplicative speckle noise on it. Thus, one obtains a – secondary – fringe profile from
the subtraction of two – primary – speckle interferograms. To give these fringes the
familiar appearance of interferometric fringes on, e.g., a monitor, the negative values in
the difference image have to be converted into positive ones. In DSPI, it is easy and
customary to use the modulus of the difference,
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averaging over ϕO gives a mean fringe intensity of
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(3.6)

in the so-called correlation fringes (note that the fringe envelope is not cosinusoidal and
only serves to visualise the object changes). If an initial speckle interferogram is stored
and the difference between it and the current one is viewed, one gets darkness where the
optical phase is the same in both the images (i.e. the optical path has changed by an inte-
ger multiple of the wavelength) and brightness where the difference is maximum (i.e. the
path has changed by an odd multiple of half the wavelength). Thus the digital secondary
interferograms are formed.
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Another way to generate the output is to square the fringe signal, in which case the
fringe profile is given by

( )I I ORf i O− = +











2 2 216
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(3.7)

and, after averaging over all ϕO ,
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This method yields a cosine profile and should be more suitable to generate correlation
fringe images as an input for phase-shifting methods; but in the face of the drawbacks of
the correlation fringe method discussed below, the performance gain will be negligible.

The dark regions of the images are noise-free, while the quality of the bright fringes is
degraded by speckle noise: the visibility of the primary interferometric intensity modu-
lation depends on the individual speckle brightness and hence fluctuates from point to

point. Moreover, there are points where, due to unfavourable ϕO , the subsequent phase

change does not effect a brightness change:

cos( ) cos( )ϕ ϕ ϕ ϕ ϕ
O O O= + ⇔ = −∆

∆
2

 , (3.9)

which just means that ϕO and ϕO +∆ϕ are symmetrical about a – primary, cf. (3.3) –

intensity extremum; and there are many more points coming close to this condition.
While (3.9) is true for every interferometric measurement, it is – besides the fluctuations

of O(x, y) – the randomness of the ϕO that prevents a spatially uniform detection of ∆ϕ. It

is worth noting that in the averages over ϕO in (3.6) and (3.8), this loss of signal leads to

the factors 2/π and ½, respectively.

If, however, another pair of interferograms were available with phase offsets of, say, π/2

each, we would have
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and could average the two secondary interferograms to obtain brighter correlation fringes:
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The improvement of using (3.11) over (3.5) is demonstrated in Fig. 3.2, where on the
left-hand side an image according to (3.5) is shown, and on the right, a superposition
according to (3.11); the increase in brightness should be �2 and is in fact 1.38. In simple
words, the disadvantageous points of one image are filled up by well-modulated data

from its �π/2-complement. But of course, controlled phase shifts are not automatically

available in an ESPI system.

  
Fig. 3.2: Left: ESPI correlation fringes from subtraction of two primary speckle interferograms;

right: average of two correlation fringe images with phase offsets of π/2 in the underly-
ing primary interferograms Ii , Iiπ/2 and If , Ifπ/2 (see text).

Although the optimisation of speckle size and fringe contrast has been the subject of
numerous studies [Tan68, Sle79, Wyk87], the overly – in the sense of (3.9) – speckled
appearance of the correlation fringes still limits the accuracy of ESPI measurements to

about 1/10 fringe. Moreover, the fringe profile is an even function of ∆ϕ, which makes it

impossible to determine the sign of the measured displacement gradient. To get rid of
this ambiguity, a-priori information has to be used: either a pre-set bias fringe pattern
with known phase gradient reveals the relative fringe orders when it changes, or the load
is applied in such a way that only one direction of deformation gradient is possible
[Wya82, Mat88].

A far more elegant method to retrieve quantitative displacement data is to convert the
cosine into a tangent by means of several phase samples and then to extract the phase

modulo 2π by a four-quadrant arctangent. This approach has become very popular under

the name of phase sampling – although it relies on intensity sampling –, or phase
shifting. It eliminates completely the difficulties described by (3.9), which is an impor-
tant reason for its superior performance.
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3.2 Phase-shifting ESPI

The technique of phase sampling or quasi-heterodyning has long been known in infor-
mation theory and has first been used in classical interferometry to enhance accuracy
[Car66, Bru74, Wya75]. After the application of phase shifting to holographic interfer-
ometry [Har82, Cha85], it was the merit of [Nak85, Cre85b, Ste85, Rob86] to have
realised that also a digital speckle interferogram is an array of independent "micro-inter-
ferometers" that work like classical ones – although some of them suffer from too faint
an object wave.

Hence, the phase information of a speckled wave front, although random per se, never-
theless responds deterministically to phase changes due to displacement or deformation
of the test object, and digital subtraction of two speckle phase fields yields a difference
phase field. The use of phase shifting has greatly extended the possibilities of ESPI and
enhanced the attainable accuracy of phase measurements by a factor of about 10.
Whereas quantitative evaluation of correlation fringes requires sophisticated automation
algorithms (see Chapter 4.1) or laborious interactive procedures, the phase shifting
method automatically yields complete phase maps, so that today the correlation fringe
methods have mostly been superseded by phase-shifting ESPI.

To introduce temporal phase sampling, or stepping, we establish the expression

I x y t I x y M x y x y t x y tn n b I O n n n( , , ) ( , ) ( , ) ( ( , , ) ( , , ))= + ⋅ +cos ϕ α (3.12)

with

n : number of phase sample

In : measured intensity in the nth frame

Ib : bias intensity; corresponds to O+R

MI : intensity modulation; corresponds to 2��OR

ϕO : speckle phase

αn : additional (known) shift of ϕR ; generally, αn = n�α and n ∈{0,.., N–1}.

For now, we restrict ourselves to static phase shifts, since a distinction between temporal
and spatial phase ramping must be made that will be described in 3.3 and 3.4.4, respec-

tively. Also, ϕR has been set to zero as above. All quantities depend on x and y due to the

underlying speckle field. The phase shift αn(x, y, tn) may be, but in practice seldom is,

spatially uniform; various numbers N of phase samples can be used. Assuming O(x, y)
and R(x, y) to remain temporally quasi-stable, we still have to account for possible tem-

poral fluctuations of ϕO and ϕR . For convenience we put them all into ϕO .

The set of equations given by (3.12) can easily be linearised; the principle is outlined in

Appendix C. It contains three unknowns, namely Ib , MI , and ϕO , and hence we need at
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least three linearly independent measurements of the In (N�3), with pairwise different

αn , to solve unambiguously for ϕO . This can be done by generating an expression that

gives tan(ϕO) = sin(ϕO)/cos(ϕO); i.e. one needs a numerator proportional to the sine and a

denominator proportional to the cosine of ϕO . To achieve this, the In are put together as

ϕ πO
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which is valid for any phase-sampling scheme. In all of such formulae, the coefficients
in numerator and denominator add up to zero, which cancels the contribution from Ib .

The simplest expression to evaluate the recorded data relies on equally spaced αn that are

uniformly distributed in the interval [0,2π); it is well known since decades [Bru74] and

has recently been referred to as DFT (digital Fourier transform) formula [Sur96]:
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With this choice of the an and bn , numerator/denominator represent the digital imple-

mentation of a Fourier sine/cosine transform [Bra87, p. 17], where α (x, y, t) has an

angular frequency of 2π/(N samples) and the sample interval is in time or space units; the

Fourier aspect of phase sampling will be treated in greater detail in 3.2.2. The signs of

numerator and denominator are used to generate a 0-2π arctan, in contrast to its mathe-

matical definition used in Chapter 2, where it ranges from – π/2 to π/2. This is more con-

venient when converting the phases to grey levels.

For 3-step formulae, one can also choose n ∈{–1, 0, 1}, thus assume phase shifts of

{–α, 0, α} and write down the generally valid expression [Cre88, Schwi90, Gre92]
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Much work has been done to improve these simple approaches to very sophisticated
sampling schemes, frequently at the expense of increased N. These are often called algo-
rithms, although their flow diagrams are trivial; to distinguish them from another class of
phase-retrieval methods that are truly algorithms [Ger72, Fie82, Rav99], I will avoid the
term "algorithm" henceforth. Today, there are not only tailored formulae with excellent
rejection of various errors [Schwi83, Har87, Lar92b, Sur93, Schwi93, dGro95, Hib95,
M�o95, Schmi95a, dGro97, Hib97, Küch97, Ser97b, Sto97, Zha99], but also, the
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properties of phase-shifting formulae are by now so well understood [Fre90a, Lar92a,
Rat95, Sur96, Phi97, Sur97b, Sur98c, Dor99] that for many purposes phase-extraction
schemes can be tailored to adapt to the particular task. Good measurements reach an

accuracy of about λ/100 [Schwi83, Har87].

But the basic approaches with N = 3 to 5 have survived in ESPI because superb theoreti-
cal accuracy would remain theoretical where speckle noise and decorrelation set the
limits. Also, since ESPI is obviously not concerned with precision surfaces, the require-
ments are often lower.

Moreover, a small N helps to determine phases very quickly: since the most time-con-
suming step in phase calculation is the arctangent operation, it is advantageous to map
all possible values of numerator and denominator in two-dimensional look-up tables
(LUTs).

The size of these LUTs depends on the digital resolution as well as on the respective
number of samples involved. In the case of (3.15) with 8-bit digitisation, the LUT would
have 511�1021 entries, because the numerator can range from – 255 to 255 and the
denominator from – 510 to 510. These integers then serve as matrix indices to retrieve
the associated phase value, which is often represented by an 8-bit integer as well. This
has been successfully applied in practice (cf. Chapter 6.7) and simplifies the account of
[Nak95], where a 3-D phase LUT was used. But in general, the LUT approach works
only if all the coefficients an , bn can be integrated in the LUT; hence the requirement is
that the coefficients, or at least their ratios, be expressible by integers. An example is
given in Appendix B.

For all these practical reasons, we will restrict ourselves to standard three- or four-sam-
ple formulae in this work. From (3.14), we get the widespread four-step formula for

α = 90°,

ϕ πO
I I

I I
mod 2 = −

−
arctan 3 1

0 2
 , (3.16)

and the three-step formula for α =120°,

ϕ πO
I I
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−
− −

arctan 3
2

2 1

0 1 2
 , (3.17)

where a factor of ½ has been cancelled from the fraction. Note that this formula follows

likewise from (3.15) because, for α =120°, I–1�I2 . If however α = 90°, (3.15) delivers

the three-step (non-DFT) formula



                                                              3.2 Phase-shifting ESPI                                                          59

ϕ πO
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arctan 1 1

0 1 12
 . (3.18)

To simplify (3.18), it is usual to accept a phase offset – which is hardly relevant in clas-
sical, and less so in speckle interferometry – and choose a representation in which the
coefficients are equal for all intensity samples:

( )ϕ πO
I I

I I
− ° =

−
−

45 2 1

0 1
mod 2 arctan  . (3.19)

As mentioned above, the phases obtained from such calculations can be mapped onto a

grey scale of, say, 256 steps. When ϕO crosses a 2π boundary, it jumps back to zero, and

so do the associated grey levels; this is why the images thus generated are known as
sawtooth images. Since speckle interferometry is about comparing phases, we will
dedicate the following subsection to finding out the best way to do so.

3.2.1 Calculation of phase changes in ESPI

There are several ways to come from interferograms to ∆ϕ (x, y), the displacement phase

map which is represented in a sawtooth image; and since the accuracy in measuring

∆ϕ (x, y) is the pivotal issue in this work, it is certainly worthwhile to investigate the

different strategies in detail.

In what follows, we will refer to the first two approaches by the handy terms "phase of
difference" and "difference of phase"; this nomenclature follows [Moo94], one of the
relatively few papers on ESPI concerned with quantitative performance issues. For the
third method, I propose the term "complex division". All of the methods have been
introduced together with phase-shifting ESPI [Nak85, Cre85b, Ste85]. First of all, the

treatment concerns temporal phase shifting, i.e. we shift the phase in time, αn =α (tn), to

obtain a temporal sequence of phase-shifted interferograms In(x, y, tn); but once we have
clarified the different methods, the transfer to spatial phase shifting is very simple.

3.2.1.1 Phase-of-difference method

The first approach to think of when processing secondary interferograms is to determine
their phases as is familiar from primary interferometric fringes. Given a set of images In,i

of the initial object state, one then needs only one frame I0, f of the final state, so four or
five images are sufficient to use the phase-shifting methods of (3.16) or (3.17),
respectively. As only one frame of the final object state is involved, we shall call the In,i

plus I0, f a "reduced" data set. The phase-shifted secondary correlation fringes In,c are
formed according to
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(3.20)

where the first cosine describes the speckle noise in the correlation fringes and the

second cosine is the envelope, phase shifted by αn . This approach offers one significant

advantage: if the object under test can initially be observed at rest, the capturing of one
interferogram suffices later on to obtain phase-shifted correlation fringes.

There is another important consequence of (3.20) that has, as far as I know, not been

emphasised before: the first cosine depends on 2ϕO . This is of course owing to the

squaring operation – and would not look very different if we were dealing with the
modulus –, but it means that we cannot distinguish between positive and negative
speckle intensity changes anymore. Thus, half the information delivered by the intensity

changes is discarded, with important consequences for the measured ∆ϕ. The situation is

represented in Fig. 3.3: the black curves show the result of using squared correlation
fringes as in (3.20) for the standard four-sample phase calculation of (3.16).
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Fig. 3.3: Left: calculated ∆ϕ, averaged over ϕO , vs. pre-set ∆ϕ, for the methods to be compared in this
subsection. Right: measured profiles of vertical sawtooth fringes, averaged over 200 rows.

To the left, a simulation result is shown: for each pre-set ∆ϕ, 64 different ϕO , uniformly

distributed over [0,2π), were inserted into (3.20) to form the corresponding sets of In,c ,

where α = 90°. These 64 sets of In,c were inserted as the In in (3.16) to yield 64 values for

∆ϕ, whose average appears as calculated ∆ϕ. The average over all ϕO thus gives the

expectation value of the calculated vs. the true displacement phase. On the right, the

measured ∆ϕ � ∆ϕ (x), i.e. for vertical sawtooth fringes (cf. Fig. 3.4), averaged over 200

rows and represented as grey values, confirms that indeed the extraction of ∆ϕ is almost
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impossible after the squaring or rectification process. The white curves refer to the
difference-of-phases method and will be discussed below in 3.2.1.2.

Evidently, the phase-shifting method is not directly applicable to speckle correlation
fringes. It will only work acceptably if the individual speckle phases are suppressed, i.e.
the secondary interferograms must be smoothed to approximate the cosinusoidal enve-
lope of (3.20) as closely as possible. This is usually done by a low-pass filter and
reduces the spatial resolution.

The left-hand part of Fig. 3.4 shows the fringe profile plotted in Fig. 3.3 on the right:
surprisingly, the image does yield direction information, although the averaged fringes do

not. The reason is that for π/4 < ∆ϕ < 3π/4, the average is actually made up of interme-

diate grey values; for the other ∆ϕ, black and white occur more frequently. The standard

deviation of the difference between the calculated ∆ϕ and the best fit of a noise-free

sawtooth image (cf. Chapter 4), σ∆ϕ , is 62.1°, and the pdf of the calculated ∆ϕ shows
four pronounced maxima, as depicted in the grey-level histogram. All the histograms in
this subsection have been generated from 5.0 fringes, so that the measured phases ought
to be uniformly distributed. On the right side of Fig. 3.4, the sawtooth image was calcu-
lated from correlation fringes previously smoothed by a 9�9 averaging filter, which

reduces σ∆ϕ to 7.7°. Although this is quite large a filter, the speckle structure has not dis-
appeared; and since the spectral power density of a speckle pattern keeps increasing
toward the spatial frequency of zero, it is not possible at all to remove the speckle noise
in the correlation fringes by low-pass filtering. Therefore, the measured phases are still
not uniformly distributed: this effect cannot be suppressed either.

 
Fig. 3.4: Results of calculating ∆ϕ from raw (left) and 9�9 low-pass filtered correlation fringes

(right). Inserted histograms show relative pixel counts of grey levels from 0 to 255.

But remembering that we have initially been enforcing positive intensity values only to
display them conveniently on a screen, one might argue that there is no real need to do
so. Therefore we have to settle the question whether a kind of "signed" correlation
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fringes exists that circumvents the problems associated with squaring or rectification. If
we form fringes according to

( )I I I ORn s f n i O O n, , cos( ) cos( )= − = + − +2 ϕ ϕ ϕ α∆  , (3.21)

with the subscript s for "signed", all of the information is being preserved. Unfortu-
nately, when we insert these In,s into a phase-shifting formula like (3.13), we cannot

measure ∆ϕ : because of a bn n∑ ∑= = 0 , the contributions from the first cosine are

cancelled, and what we then measure by phase shifting is just the speckle phase. This
has been verified experimentally and demonstrates that really some information is
lacking from our reduced set of images In,i and I0, f .

Nonetheless, some specialised methods exist that can determine both ∆ϕ and ϕO , correct

for ϕO and thus generate acceptable sawtooth images from unfiltered correlation fringes.

In [Kuj89] a so-called "speckle phase correlation method" is derived for α =120° that

indeed uses I{0,1,2},i and I0, f 
* without filtering. The same is done in [Moo94] for α = 90°

and I{0,1,2,3},i and I0, f . However, none of these methods can find the correct speckle phase
without help: the equations involve an arccosine and a square root and have four solu-
tions, which again reflects the loss of information brought about by the rectification.

This problem is solved by initially generating a smoothed phase map ∆ϕ filt in the usual

way (Fig. 3.4, right side), which serves as a reference: that solution for ϕO which brings

∆ϕ –ϕO closest to ∆ϕ filt is selected as the correct speckle phase and subtracted. In this
way, the phase measurement from raw correlation fringes can be significantly improved,
as shown in Fig. 3.5.

 
Fig. 3.5: Results of calculating ∆ϕ with the method of [Kuj89] (left) and [Moo94] (right); the

underlying sets of interferograms come from two different experiments with α =120° and
90°, respectively.

                                           

* With a misprint in one of the expressions, which should read c
I I I

I=
+ +

−1 2 3
43

 in the

nomenclature used.
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The left image in Fig. 3.5 was calculated according to [Kuj89] from a data set with

α =120°, which reduced σ∆ϕ = 62.6° as obtained from raw correlation fringes (image not

shown) to σ∆ϕ = 24.0°. To the right, the method of [Moo94] was applied to the previous

data set with α = 90° that led to the results in Fig. 3.4, and σ∆ϕ dropped to 27.2°. In both

cases, the accuracy is more than doubled and most of the initial spatial resolution is
maintained. The price for this is increased computational effort: a reference phase map

must be generated first, whose lower resolution may influence the choices for ϕO some-

what, and one out of four phase values must be selected for every pixel. Since generally
no ideal reference image will be available, the errors in it will also influence the choice

of ϕO and propagate into ∆ϕ. Finally, the histogram distortion can in neither case be

removed.

Another method that uses I{0,1}, i and I{0,1}, f with α = 90° has been proposed in [Own88];

while it is obviously not suitable for highly dynamic phenomena, it does find ∆ϕ unam-

biguously. The result of this calculation can be seen in Fig. 3.6.

Fig. 3.6: Result of calculating ∆ϕ with the method of [Own88].

Both the phase map (σ∆ϕ = 53.2°) and the histogram of the phase distribution show that

this method is rather susceptible to noise; therefore it has been used in [Own88,

Own91b] with smoothing the sine and cosine terms before calculating ∆ϕ. The argument

of calculation speed that led to the development of this method is not important
anymore; but interestingly, the very same scheme has meanwhile been applied in
temporal phase unwrapping, again for reasons of, inter alia, speed [vBru98, vBru99].

As these considerations have shown, the use of ESPI correlation fringes for phase-shift-
ing purposes is problematic when we are considering raw, i.e. unfiltered, phase data.

This is because one uses only one set of phase-shifted data to determine ∆ϕ. Neverthe-

less, this approach may sometimes be a good way to perform phase measurements when
dynamic objects are studied.
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3.2.1.2 Difference-of-phases method

Provided it is possible to record two sets of phase-shifted interferograms In,i and In, f for
both object states, one can calculate two speckle phase maps by, e.g., (3.16):

ϕ π

ϕ π

O i
i i

i i

O f
f f

f f

x y
I x y I x y

I x y I x y

x y
I x y I x y

I x y I x y

,

,

( , ) arctan
( , ) ( , )

( , ) ( , )

( , ) arctan
( , ) ( , )

( , ) ( , )

mod 2

mod 2

=
−
−

=
−
−

3 1

0 2

3 1

0 2

 
,

(3.22)

and then determine the phase change

( )∆ϕ π ϕ π ϕ π π( , ) ( , ) ( , ), ,x y x y x yO f O imod mod 2 mod 2 mod 22 = −  . (3.23)

Admittedly, this requires more information than the phase-of-difference approach – 8
images with (3.16), and 6 with (3.17) –, but eliminates all the problems brought about by
the ambiguity of intensity differences. Also, the pixels are truly regarded as independent
entities, which accounts appropriately for the speckle nature of the wavefront to deter-
mine. In this case, the phase calculation reproduces the expected fringe profile rather
well, as the white curves in Fig. 3.3 demonstrate. The displayed sawtooth edges are
somewhat blurred by the averaging over the residual speckle noise; but the correspond-
ing measured phase map, shown in Fig. 3.7, is of excellent quality when we compare it

with the other unfiltered results obtained so far. In that case, σ∆ϕ =18.2° without any

low-pass filtering. Also, the pdf of measured phases is now uniform, which shows that
computational biases are negligible for this method.

Fig. 3.7: Result of calculating ∆ϕ with the difference-of-phases method.

This confrontation clearly indicates that it is necessary to genuinely measure the speckle
phases twice to get the best sawtooth image. While an approximate recovery of informa-
tion from reduced data sets is possible, the performance of this approach remains
restricted. Therefore, the performance data given in Chapters 5 and 6 are based on saw-
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tooth images from the difference-of-phases method without exception. A practical merit
of keeping ready the speckle phase distributions for every recorded object state is that
one need not compare all data to the initial state anymore. In other words, it becomes
possible to track phase differences incrementally even if the first and last state show
decorrelated speckle patterns [Flo93]. We will come back to this issue in Chapter 6.7.

3.2.1.3 Complex-division method

Both of the methods discussed thus far have in common that they require one phase cal-
culation and one subtraction, and differ in the order of these operations. There are how-

ever also methods to calculate ϕO in only one computation step. They require two

complete phase-shifted data sets and combine the steps of phase calculation and differ-
ence formation in one formula. Examples of such calculations have been given before
[Ste85, Ste90, Fac93, Hun93a, Sal96]; however the somewhat laborious derivation of
the formulae can be generalised and greatly simplified when treated by the formalism of
complex division [Bur98]. As mentioned above, the numerator in phase-shifting formu-
lae should correspond to the sine and the denominator to the cosine of the phase angle to
be found, so that we can switch to complex notation and write:

( )

( )

ϕ π
ϕ
ϕ

ϕ ϕ

ϕ π
ϕ
ϕ

ϕ ϕ

O i
O i

O i
O i O i i

O f
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O f
O f O f f

i z

i z

,
,

,
, ,

,
,

,
, ,

arctan
sin

cos
arg cos sin arg( )

arctan
sin

cos
arg cos sin arg( )

mod 2

mod 2

= = +

= = +

�

�

 
.

(3.24)

Now ∆ϕ can be determined according to

∆ϕ π ϕ ϕ πmod mod2 2= − = − =
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where
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Eventually we combine these expressions to get

∆ϕ π
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

πmod mod2 2=






 =

−
+

arg arctan
sin cos sin cos

cos cos sin sin
, , , ,

, , , ,
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O f O i O i O f

O i O f O i O f
 , (3.27)

which provides a generally valid instruction on how to compose the expressions of
phase-shifting formulae; of course, the same result follows from the trigonometric rela-
tionship for the difference of arctangents [Cre94]. Now we can instantly establish one-
step calculations; for instance, from (3.16),
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∆ϕ πmod 2
3 1 0 2 3 1 0 2
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=
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and (3.17) changes to

∆ϕ πmod 2 =
− − − − − − −
− − − − + − −

arctan
( )( ) ( )( )

( )( ) ( )( )
3

2 2

2 2 3
2 1 0 1 2 2 1 0 1 2

0 1 2 0 1 2 2 1 2 1

I I I I I I I I I I

I I I I I I I I I I
f f i i i i i f f f

i i i f f f i i f f
. (3.29)

These formulae help to save processing time, since (i) no intermediate images are
formed, and (ii) only one arctangent calculation per pixel is required. But due to the
involved multiplications, this method can be accelerated by LUTs only if enormous stor-
age space or substantial data reduction in the LUT are acceptable.

As the complex-division method is mathematically equivalent to the difference-of-

phases approach, the performance in terms of σ∆ϕ is exactly the same for both of them. It

has however been demonstrated in [Vik93] that phase differences can be determined
from six intensity samples even with an unknown phase shift.

3.2.2 Spectral transfer properties of few-sample phase shifting formulae

In our context of spatial phase shifting, the number of phase samples must be as small as
possible, e.g. three or four; at the same time, the phase extraction method should possess
the best possible tolerance of speckle intensity and phase gradients. The latter cause
deviations of the phase shift from its nominal value. A valuable tool to investigate the
behaviour of phase-sampling formulae under linear phase-shift miscalibrations (also
called "detuning") is the so-called "Fourier description" of phase-shifting formulae. It
was begun in [Ohy86, Ohy88], developed to its full potential in [Fre90a] and is nowa-
days a common tool to assess the performance of phase-sampling formulae [Lar92a,
Hib95, M�o95, Schmi95a, Hib97, Zha99, Mal00]. We will restrict the discussion to lin-

ear miscalibration sensitivity here, for which the Fourier description is particularly
suitable. Moreover, it will provide a means to quantify how the signal sidebands in the
frequency spectra of SPS interferograms (cf. Fig. 3.29) will be used and/or altered by the
phase calculation.

To understand the behaviour of some few-sample methods in the frequency domain, we
will briefly review the underlying principles. Some emphasis is put on the spatial version
of phase extraction; but the phase-shift parameter x, denoting one spatial co-ordinate,
can be replaced by t as well. As (3.14) indicates, the general task in phase determination
is to generate signals that are proportional to sine and cosine of the phase of an unknown

signal, say, I(x), and then extract its phase ϕ by an arctangent operation. We start with

the continuous (analogue) description of the process, which will help to clarify the prop-
erties of the discrete (digital) version. An extensive overview of the formalism, and also
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of the spectral characteristics of many phase-shifting formulae besides the ones that we
will examine here, can be found in [Mal98, pp. 113-245].

3.2.2.1 Analogue synchronous detection

When I(x) is modulated with a so-called carrier frequency νx , we can write

I x I x M x x xb I x( ) ( ) ( ) ( ( ) )= + ⋅ +cos ϕ πν2 (3.30)

and use the well-known method of "synchronous detection" to extract the phase ϕ (x) in

(3.30). An early application of this method to spatial fringe analysis has been given in
[Ich72]; moreover, it is the principle upon which lock-in amplifiers are based. The first
step of synchronous detection is to multiply the input signal I(x) with suitable "filter

functions" of the frequency ν0x , where generally ν0x �νx is assumed. It is however

essential to note that we will later be concerned with the effects of νx ≠ν0x . To measure

the phase, we define the filter functions as

S x x

C x x
x

x
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=
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,
(3.31)

and the multiplications yield the signals
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(3.32)

Both of the equations contain contributions from the pure carrier frequency and from

difference and sum frequencies. Since νx �ν0x , the difference frequencies are low; in the

ideal case, νx –ν0x = 0, and the low-frequency contribution is determined by ϕ (x) alone.

One can think of the fringes resulting from the multiplication as a moiré effect [Wom84,
Ara97, Kat97]. The second step of synchronous detection is to remove, or "filter out",
the high-frequency terms by integrating the product functions, which gives the so-called
"filter outputs". This integration, or filtering, is achieved by the cross-correlation
functions

S x I x S x x dx

C x I x C x x dx

' ( ' ) ( ) ( ' )

' ( ' ) ( ) ( ' )

= −

= −

−∞

∞

−∞

∞

∫

∫
(3.33)

if we calculate them for x' = 0. The "filter outputs" therefore are
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S I x S x dx x
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(3.34)

Using the central ordinate theorem [Bra87, p. 136] together with the convolution theo-
rem [Bra87, p. 110], we can replace I(x), S(x) and C(x) by their Fourier transforms*

[Fre90a; Mal98, p. 134] and rewrite (3.34) as

S I S d

C I C d
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ν ν ν  ,

(3.35)

where tilde denotes the Fourier transforms and the sign convention [Bro87]

~
( ) ( ) exp( )f f x i x dxx xν π ν� +

−∞

∞

∫ 2 (3.36)

is adopted, i.e. the phase runs forward in the Fourier transform.

It is seen from (3.35) that the spectrum of I(x) is weighted, or filtered, by the spectra of
S(x) and C(x), which is why we have called them filter functions. We will therefore refer

to 
~( )S xν  and 

~( )C xν  as filter spectra. Since I(x), S(x) and C(x) are real functions with

Hermitian Fourier transforms, we can simplify the integrals (3.35) to [Fre90a]
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.

(3.37)

This is, the filter outputs are indeed composed of all input spatial frequencies that may

be present in I(x), with weights determined by the moduli of the filter spectra, ~( )S xν

and ~( )C xν ; we will refer to these latter also as filter responses. With our initial choice

of S(x) and C(x), we have

                                           
* To apply the convolution theorem, we must use S(x'–x) and C(x'–x) in (3.33), which changes the
correlation into a convolution. The sign change in (3.33) then simply leads to a complex
conjugation in (3.35). This is possible since S(x) and C(x) are real functions, which means that their
Fourier transforms are Hermitian. This is, their real parts are even and remain unaffected by the
sign change, while their imaginary parts are odd and must be inverted after the integrations in
(3.33), although their contributions vanish anyway.



                                                              3.2 Phase-shifting ESPI                                                          69
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being proportional to the Fourier sine and cosine transforms [Bra87, p. 17] of I(x) at the

frequency ν0x , and the spectral descriptions read:
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This models the ideal case that we can evaluate the signal over an infinite amount of

space, which leads to unity filter responses at the nominal frequency ν0x and perfect

suppression of all other νx .

Finally the third step of synchronous detection is the extraction of ϕ (x), using (3.34) and

(3.39), by means of
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It was shown in [Fre90a] that a correct phase determination requires
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(3.41)

this is, the filter spectra must have equal magnitudes (also called "responses") and be 90°
out of phase (also called "in quadrature"), so that S'(0) represents the sine and C'(0) the

cosine of ϕ (x). As a summary of the involved operations, the whole procedure has been

given the name of "quadrature multiplicative moiré" [Wom84].

In (3.40), (3.41) need only hold for ν0x , since nothing is detected at other νx ; but when

we confine the integration to a finite interval (–X, X) instead of (–	, 	), the filter

responses will broaden around ν0x . This need not be a disadvantage, because more

signal energy – if present – may be utilised in this way; and as long as (3.41) remains

valid, ϕ (x) can still be correctly determined also for νx ≠ν0x . The objective of phase sam-

pling is now to satisfy (3.41) with only a short sequence of digitised samples of I(x).
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3.2.2.2 Digital synchronous detection

Let us now assume that we are working on a discrete pixel grid, where the pixels are
assumed to be point detectors with distance dp . Let M be the number of pixels in x

direction and k their individual numbers. Using the "filter property" of the δ function, the

filter outputs are now – with an appropriate choice of the origin of the co-ordinate
system – given by
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(3.42)

i.e. the signal is being sampled by a sequence of δ functions only. For convenience we

retain the assumption of infinite spatial extent of the signal. To measure ϕ (x) at a given

pixel k0 and thus introduce the spatial resolution of the phase measurement, the sampling
pulse sequence must be "windowed" by selecting only a few intensity samples at

(k0+n)dp , with n ∈{0,.., N–1}, so that, in the simplest case of using a rectangle function

as a window,
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(3.43)

where, following [Bra87, p. 52], rect(x) =1 for 0 � x < 1, and zero elsewhere.

Considering the spectra ~( )S xν  and ~( )C xν  of the expressions under the integrals in

(3.43), we see that the sharp responses of (3.39) are still present but will undergo
convolutions with the spectrum of the sampling window. This spectrum is continuous
for any finite window, so that S'(x) and C'(x) acquire a significant sensitivity to signal

frequencies νx ≠ν0x . Recalling that S(x) and C(x) have been designed for, or "tuned" to,

ν0x , we now have found the reason for the "de-tuning" sensitivity of short sequences of

sampling pulses.

Due to the uncertainty relation between the spatial and the spectral domain, the spectral
"response peak" of phase-shifting formulae will generally be the broader the smaller N
gets, and vice versa. However, to obtain a narrower sampling-window spectrum, it is
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possible to replace the rectangle window by triangle or bell-shaped functions [dGro95,
Schmi96, Sur98c]. An extreme example with N =101 and a bell-shaped window function
has been studied in [dGro97]; but its response peak is still broadened about the nominal
signal frequency. Besides, it is certainly not applicable to spatial fringe analysis because
of the mere number of samples involved; and as discussed below in 3.4.4, we would be
ill-advised with too sharp a filter response for spatial phase shifting on speckle fields.

With practical choices of N = 3 or 4, the suppression of frequencies νx ≠ν0x indeed is

poor, and it is important to observe the validity of (3.41) over a larger range of νx .

With S(x) and C(x) according to (3.31), and ν0x =1/N, we arrive at the truncated digital

equivalent of (3.33),
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where � denotes the correlation. Note here that (3.44) is just (3.14) rewritten for spatial
phase sampling. We call the S(n) and C(n) the sampling functions, bearing in mind that

they are sequences of weighted δ pulses. These sampling functions constitute a pair of

digital filters; they act upon both amplitude and phase of the input signal I(xk), depend-

ing on νx . As suggested in [Mer83, Vla94, Sur96], one can also regard the two

processing "channels" (sine and cosine part) as one complex digital correlation:
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=with modϕ π  
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(3.45)

where arg(•) is the polar angle of a complex number; this corresponds to a notation

cn = bn + ian in (3.13) and is the starting point for the description of phase-shifting
formulae by complex polynomials [Sur96].

To illustrate the significance of the facts compiled thus far, we rewrite (3.16) as
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where P0x = 4 dp is the period of the carrier fringes, and α = 2π/P0x = 90°/dp . (This de-

notes the phase shift per pixel, not the phase gradient in °/m.) The filter functions are
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and the corresponding spectra read
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(3.48)

with ν0x =1/P0x . In these expressions, the sine terms represent the amplitudes and the

exponentials represent the phases of the filter spectra, so that the behaviour of ~( )S xν

and ~( )C xν  can be read off directly. Whenever we get a pure phase term, it is possible to

plot the rest of the expressions as real amplitudes, which we will denote by amp(�). For

more complicated formulae, it is not always possible to arrive at separable expressions;

but once ~( )S xν  and ~( )C xν  are established, one can obtain at least their moduli and

arguments separately.

This now gives us a means to explore the transfer characteristics of phase-shifting for-
mulae by plotting their spectra. Extending the common practice of plotting only the
amplitude spectra, we will consider the phase spectra as well. In all our spectra plots that

follow, the frequencies will be normalised by ν0x and the range of frequencies will be

from 0 to 2νN , where νN is the Nyqvist frequency 1/(2 dp), corresponding to α =180°/dp .

Consequently, when ν0x = 90°/dp , 2νN = 4ν0x ; and for ν0x =120°/dp , 2νN = 3ν0x . The

ordinates of the amplitude plots are dimensionless and scale with the an and bn in the
underlying sampling functions; the phases are shown in radians.

The spectral transfer properties of (3.48) are shown in Fig. 3.8: while the amplitudes of
~( )S xν  and ~( )C xν  are seen to be the same throughout the frequency spectrum, the

phases are in quadrature only at νx /ν0x =1 and νx /ν0x = 3, which corresponds to α = 90°

and 270°/dp (aliased as –90°/dp), respectively. Also, S'(x) will represent sin(ϕO) in the

former and sin(–ϕO) in the latter case: if we reverse the phase shift, the calculated phase

must change its sign too. It can also be seen from the phase spectrum that (3.16)

measures ϕO without offset: at ν0x , arg( ~( ))C xν = °0  and arg( ~( ))S xν = − °90 , as (3.41)

requires.

The zero transitions of amp( ~( ))S xν  and amp( ~( ))C xν  at νx = n�νN , n ∈{0, 1, 2},

cause the phases to jump by π; this corresponds to the "singular" cases of
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α ∈{0°, 180°, 360°}/dp , in which situations the differences of phase-shifted intensity

samples record only Ib , with no intensity modulation, and a phase measurement is
impossible. The filter outputs then must vanish because of the requirement that Ib be
suppressed.
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Fig. 3.8: Filter spectrum for 4-step-90° phase-sampling formula (3.16); left: amplitudes, right:
phases.

The spectral responses of simple sampling functions can sometimes be qualitatively
understood without Fourier analysis. For instance, a difference of two samples will be

maximal in the average over all ϕO when they are 180° out of phase. This behaviour is

reflected in Fig. 3.8: since in (3.16) the nominal phase difference of the intensity sam-

ples in S(n) and C(n) is 180°, their responses peak at the nominal frequency ν0x .

After this example, we now investigate the transfer properties of some phase-extraction
methods that recommend themselves for SPS because of their small number of samples.

3.2.2.3 Three-sample formulae

When we consider (3.18), we obtain

~( ) sin cos exp

~( ) sin exp

S i

C i

x
x

x

x

x

x

x

x
x

x

x

x

ν π ν
ν

π ν
ν

π ν
ν

ν π ν
ν

π ν
ν

=














 − +



















=






 ⋅



















4
4 4

1

2

1

2

4
4

1

2

0 0 0

2

0 0

 
;

(3.49)

this time the phase factor associated with ν0x is the same in both expressions, which

means that the phases always remain in quadrature; but in turn, the amplitudes depend

on ν0x as shown in Fig. 3.9. The samples for C(n) are now nominally 90° apart, but by

the argument used above, the maximum average response for that arrangement occurs

when they are 180° apart, i.e. at νx = 2ν0x . Also, (3.18) measures ϕO + π/2 instead of ϕO

(cf. Fig. 3.8). Therefore, in [Fre90a] we find S(n) and C(n) swapped, and the new S(n)
inverted, which cancels the offset. An example of how this works is given below in
(3.53) and (3.54).
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Fig. 3.9: Filter spectrum for 3-step-90° phase-sampling formula (3.18); left: amplitudes, right:
phases.

As to be seen from Fig. 3.9, reliable operation of (3.18), i.e. validity of (3.41), is assured

only within small deviations of νx from ν0x : while dS dx x x

~( ) / |ν ν ν0
0= , a maximum of

dC dx x
~( ) /ν ν  occurs at ν0x . A low influence of phase-shift errors would require both

gradients to be equal or at least close to each other; then the phase reconstruction would
tolerate some miscalibration. The graphs shown in Fig. 3.9 are also qualitatively valid
for phase calculation with (3.17), and more generally with (3.15), since S(n) and C(n) are

just scaled to shift up or down that νx which fulfils amp( ~( ))S xν  = amp( ~( ))C xν . This is

indicated by the curve labelled "amp( ~( ))S xν ⋅ 3 ", which would suffice to change (3.18)

to (3.17). The phase spectra are indeed the same in either case.

With 3 phase steps of 90°, it is more common to use the representation (3.19), which
formula has the transfer properties depicted in Fig. 3.10; in this case, the amplitudes are

equal for all νx , while again ~( )S xν  and ~( )C xν are in quadrature only at α = 90° and

–90°/sample; also, the inherent phase offset of – π/4 is clearly revealed by the graphs.
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Fig. 3.10: Filter spectrum for 3-step-90° phase-sampling formula (3.19); left: amplitudes, right:
phases.

It is possible to balance amp( ~( ))S xν  and amp( ~( ))C xν  for α =120° as well, yet at the

sacrifice of integer coefficients. From (3.14), one can easily derive
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( )ϕ πO
I I I

I I I
− ° = − − +

− −
15

0 259 0 707 0 966

0 966 0 707 0 259
0 1 2

0 1 2
mod 2 arctan

. . .

. . . (3.50)

with the transfer characteristics shown in Fig. 3.11, which are indeed very similar to
those of Fig. 3.10. Note the different normalisation of the frequency axis; here,

2νN = 3ν0x , and –(ϕO –15°) is detected at 2ν0x �α = 240°/dp (aliased to –120°/dp).
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Fig. 3.11: Filter spectrum for 3-step-120° phase-sampling formula (3.50); left: amplitudes, right:
phases.

But also for cyclical permutations of the intensity samples, which is equivalent to

changing the offset by integer multiples of α [Schmi95b], the transfer functions of our

formulae change considerably. This brings up the question whether a formula really can
benefit from such an operation: generally speaking, improving the matching of

amp( ~( ))S xν  and amp( ~( ))C xν  worsens the quadrature properties, and vice versa, so that

we are in need of a method to account for both aspects simultaneously.

An interpretation of ~( )S xν  and ~( )C xν  as complex phasors, also suggested in [Mal97], is

very helpful to reach conclusions about this point. Therefore we introduce the auxiliary
function

( ) ( )bsc C S Cx x x x( ) arg ~( ) ~( ) arg ~( )ν ν ν ν� + −  , (3.51)

where bsc stands for the bisector between ~( )S xν  and ~( )C xν . Of course, it is the bisector

only when the moduli of ~( )S xν  and ~( )C xν  are equal; its general range is

– π/2 � bsc (νx) � π/2. At νx =ν0 , 
~( )S xν  and ~( )C xν  are in quadrature, and bsc (ν0x) =

– 45°, which is the value indicating correct phase calculation. This is valid for all νx ,

since ( )arg ~( )C xν  is being subtracted, so that the angle between the phasors always has

one side on the real axis. The advantage of bsc (νx) is that it responds to changes in both

modulus and phase of ~( )S xν  and ~( )C xν . The ideal situation is sketched in Fig. 3.12 on

the left, being the graphical representation of (3.41).
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quadrature lost; see text.

In the centre of the drawing, ~( )C xν  is too large by a factor of �3 due to some error,

which changes bsc (νx) to – 30°: the calculated phase will oscillate around the true value
with a p-v amplitude of �15° (see Fig. 3.14). The same effect is produced when, e.g.,

( )arg ~( )S xν  deviates from its nominal value by 30°, as depicted in Fig. 3.12 on the right:

although the phasors for ~( )S xν  and ~( )C xν  have the same length, bsc (νx) = – 30°. The

– normally irrelevant – overall offsets of ϕO (see 3.2.2.4) that the two types of errors pro-
duce are not the same, however. Also, it must be stressed that the purpose and capability

of bsc (νx) is to analyse, not to design phase-shifting formulae.

A vector representation of filter spectra has already been used in [Mal97] to customise
phase-shifting formulae; however the influence of detuning had to be treated for ampli-

tudes and phases separately. With the help of bsc (νx), we can now valuate amplitude and
phase spectra of our phase-shifting formulae simultaneously, and it can be seen from
Fig. 3.13 that this approach is indeed able to greatly clarify the situation.
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Fig. 3.13: Left: bsc (νx) for phase-sampling formulae (3.16), (3.18) and (3.19); right: bsc (νx) for
phase-sampling formulae (3.17) and (3.50).

One finds that bsc (νx) produced by linear detuning is the same for the 90°-formulae
(3.16), (3.18) and (3.19),* and for the 120°-formulae (3.17) and (3.50), respectively. The
                                           
* bsc(νx) also reveals some redundancy in [Fre90a]: the reported "case examples" 1 through 4 for 90°-
phase-shifting formulae are indeed identical (with respect to p-v detuning errors, cf. Fig. 3.14). Also,
bsc(νx) solves the quadrature problems with cases 2, 3 and 5 that have been addressed on p. 547.
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interpretation of the values for νx � 0 is that ~( )S xν  and ~( )C xν  point in almost opposite

directions, while they have nearly the same argument at νx �νN . As mentioned above, for

νx = 0 and νx =νN , no phase information at all can be retrieved. The correct value of

bsc (νx) appears at νx =ν0x for α = 90° or 120°, respectively. It is interesting to note that

the p-v phase errors increase symmetrically for νx ≠ν0x when α = 90°, while for α =120°,
they rise more steeply for νx > ν0x than for νx < ν0x . Also, the slope of bsc (ν0x) is greater

for α =120° than for α = 90°, which immediately explains the observation that 120°-
formulae are somewhat less tolerant of phase-shift deviations than 90°-formulae [Cre96].

On the whole, this treatment shows that, except for convenience of computer imple-
mentation, no advantage or disadvantage is to be expected from different representations
of phase-sampling schemes. This has been found by quite a different approach in
[Lóp00] and also agrees with the findings in [Sur00], where the characteristic polyno-
mial theory [Sur96] was applied to show that different representations of a given for-
mula can be identified with constant phase factors that do not alter the formula's proper-
ties. However, this invariance need not hold for speckle interferometry, since different
selections of samples (here: pixels) to include in the calculation result in different utili-
sation of the spatial information in the speckle interferogram. Therefore, we will check
the validity of our findings experimentally in 3.4.5.

3.2.2.4 Four-sample formulae

As discussed, the choice of the an and bn is dictated by the necessity to get one sine and
one cosine term with no bias intensity, which is a significant restriction for only three
intensity samples. Sophisticated averaging or windowing approaches [Schmi95a,
Zha99], or the characteristic polynomial theory [Sur96], are not helpful here: the three-
step formulae are minimalistic in that they do not contain any redundancy, so they need
a correct signal to deliver the correct phase.

Therefore we take into account one more sample, which will give us a certain freedom to
customise our formulae. The largest impact on accuracy is to be expected from the sen-
sitivity to linear phase-shift miscalibrations. Recalling our finding of Chapter 2.2.5 that
phase extrema are very rare in speckle fields, it follows that the speckle phase fluctua-
tions over a few adjacent pixels will almost always contain a linear contribution; hence it
really makes sense to consider its effect. Possibilities to suppress the influence of linear
phase-shift deviations have been thoroughly investigated in phase-shifting research and
there are many formulae to cope with them. While there are even methods for exact
compensation that use three [Ran86, Ser95], four [Car66] or five [Lar96, Sto97] sam-
ples, they involve higher computational load, and fail to work as well as predicted on
speckle fields, so that we will instead consider again the minimalistic approaches, for
90° and 120° of nominal phase shift.
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A linear phase-shift miscalibration causes δϕO = ϕO,real – ϕO,calc to oscillate with half the

period of ϕO itself [Schwi83, Che85, Lar92c], as depicted in Fig. 3.14 for phase calcula-

tion with (3.19) and α = 95°. These 5°(� 0.087 rad) of miscalibration are propagated as

p-v error to ϕO,calc ; additionally, ϕO,calc acquires an overall offset, which is irrelevant un-

less absolute phases are desired. Under small miscalibration, δϕO has a quasi-sinusoidal

dependence on ϕO ; however it has been shown [Lóp00] that this dependence approaches

a sawtooth profile when the detuning error is large.

0

0.07

0.14

0 1.57 3.14 4.71 6.28

ϕ O /rad

δ ϕO /rad

Fig. 3.14: Deviation δϕO of calculated phase from true phase ϕO when α = 95° instead of 90°.
Arrows: alteration of phase measurements due to δϕO (see 3.4.6).

There is a simple intuitive way to understand these phenomena: when the sample spac-

ing is incorrect, errors periodical in ϕO will arise in the sine and cosine terms of the

phase-sampling formulae; their relative phase lag introduces a double(2ν0x)- and a zero-

frequency (offset) error [Lar92c] in their quotient, which then propagates into the calcu-
lated phase.

The fact that δϕO � – δ (ϕO + 90°) allows for a very simple approach of error

suppression. If the nominal phase shift is set to α = 90°/sample, we can use (3.19) and

construct two consecutive phase measurements with an offset of 90°,
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(3.52)

where we abbreviate ϕO – 45° by ϕ'O , cf. (3.19). In these two sampling sequences, we

have δϕ'O0 � – δϕ'O1 , which allows us to cancel the error by averaging the results. But

for this to function, we must modify the second formula to yield ϕ'O instead of ϕ'O + 90°:
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where we have used

( )
( )

sin cos

cos sin

ϕ ϕ
ϕ ϕ

= − + °

= + °
90

90
 
.

(3.54)

Then, when constructing the phase average, it is better to average the Nn and Dn terms

before executing the arctangent operation, as opposed to averaging ϕ'O0 and ϕ'O1 after

separate arctangent operations. This can be justified theoretically and has been done in
[Hun97]; to understand the basic idea, it is very helpful to think of adding weighted and
unweighted phasors, respectively, as detailed in [Stroe96]. Therefore, the N and D terms
are averaged according to [Schwi83, Har87, Schwi93]

ϕ π' arctanO
N N

D D
mod 2 0 1

0 1
= +

+  , (3.55)

which results in
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− − +  ; (3.56)

and this is the formula given in [Schwi93], subsequently referred to as 3+3 averaging
formula. Its transfer properties are shown in Fig. 3.15.
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Fig. 3.15: Filter spectrum for 3+3-step-90° phase-sampling formula (3.56); left: amplitudes, right:
phases.

As in (3.19), the offset of the reconstructed phase is – 45°; but the phases of ~( )S xν  and
~( )C xν  are in quadrature for all νx , and also the gradients of ~( )S xν  and ~( )C xν  are

matched: dS d dC dx x x xx x

~( ) / | ~( ) / |ν ν ν νν ν0 0
= . This assures stable performance for a

larger range of deviations, because ~( )S xν  and ~( )C xν  are nearly equal for a broader

range of νx . In [Ser97b], an iterative search for smallest miscalibration sensitivity

showed that (3.56) is an almost optimal solution. The offset-free version of the 3+3
formula, also given in [Schwi93], is
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ϕ πO
I I I I

I I I I
 mod 2

3

3
0 1 2 3

0 1 2 3
= − + − −

+ − +
arctan  ; (3.57)

this formula shows equal amplitudes for ~( )S xν  and ~( )C xν , similar to (3.19), but much

better quadrature stability than (3.19), as to be seen in Fig. 3.16.
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Fig. 3.16: Filter spectrum for 3+3-step-90° phase-sampling formula (3.57); left: amplitudes, right:
phases.

It is also possible to average two 4-step formulae [Schwi83, Har87], which yields a 4+1
formula, or to extend the averaging approach to even more samples [Schmi95a, Zha99].
Particularly the 4+1 formula is very frequently used in ESPI, but we ignore it here
because it requires 5 samples already; we will briefly discuss 5-sample formulae in
Appendix D.

While formulae with α = 90° are most effective against detuning due to the error fre-

quency having twice the signal frequency, it is also possible to design compensating

formulae with α =120°. A recipe to do so has been given in [Lar92b]; it is based on

arranging the an and bn (anti)symmetrically over the sampling sequence (which results in

frequency-independent quadrature) and matching the gradients of ~( )S xν  and ~( )C xν  at

ν0 . (At this point, we note that also (3.56) fulfils these criteria; in fact, all the formulae

with stable quadrature presented thus far have (anti)symmetrically arranged coefficients.
This so-called Hermitian symmetry of the coefficients is a necessary and sufficient
condition for the frequency independence of the quadrature, and it has been shown in
[Sur98a, Hib98] how to symmetrise phase-shifting formulae.)

The error-compensating symmetrical 3+1-sample formula for α =120° reads [Lar99]

ϕ πO
I I I I

I I I I
 mod 2

3

3
0 1 2 3

0 1 2 3

=
+ − −

− + + −
arctan

( )

( )
 ; (3.58)

its spectral characteristics, shown in Fig. 3.17, demonstrate that (3.58) also has reduced
sensitivity to linear phase-shift miscalibration.
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Fig. 3.17: Filter spectrum for 3+1-step-120° phase-sampling formula (3.58); left: amplitudes, right:
phases.

Since we have been dealing with different offsets of the reconstructed phase in (3.56)

and (3.57), we will again make use of bsc (νx) to find out more general properties of the

methods. Fig. 3.18 presents the corresponding plots for (3.56)-(3.58).
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Fig. 3.18: Left: bsc (νx) for phase-sampling formulae (3.56) and (3.57); right: bsc (νx) for formula
(3.58).

Again, we find errors increasing symmetrically on both sides of ν0x when α is nominally

90°; the key to error suppression is the vanishing slope of bsc (ν0x). The same is true for

α =120°; but as above in Fig. 3.13, we find a steep increase of errors for νx > ν0x , simply

because ν0x is not centred between ν0x = 0 and ν0x = 2νN and hence the bsc (νx) curve

cannot be symmetrical.

Generally, the error compensation cancels the oscillating error only; the zero-order error
(phase offset) persists, as can also be seen from the phase spectra of (3.56) and (3.58):

while the difference of arg( ~( ))S xν  and arg( ~( ))C xν  remains constant, the reconstructed

phase will depend on the phase-shift deviation, which gets obvious from the progression

of arg( ~( ))S xν  and arg( ~( ))C xν  with νx . Hence, in ESPI the correct absolute phase differ-

ence ∆ϕ is only obtained when the phase-shift error is the same in both sets of samples.

In TPS, this is generally not the case, but as long as the error is spatially uniform, the
determination of phase gradients will not suffer: a fringe offset in the sawtooth image is
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irrelevant. In SPS, the offsets fluctuate locally with the speckle phase gradients; but
since the speckle field is supposed to remain correlated during the measurement, the
errors cancel on subtraction of the speckle phase maps.

As mentioned above, these theoretical considerations do not account for the spatial
coherence present or not present within the sampling pixel window. For instance, a 3+3
formula need not automatically reduce the measurement errors, because its error com-
pensation might be superseded by low spatial correlation of the sampling points. There-
fore we will subject also the compensating formulae to an experimental check in 3.4.5.

3.3 Temporal phase shifting

Many of the peculiarities of TPS have already been treated implicitly in 3.2.1.1, so that
we now address only two more subjects: first, we consider the loss of modulation asso-
ciated with phase ramping instead of stepping, and second, we take a look at the power
spectrum of a speckle interferogram and consider a very simple method to determine the
average speckle size.

While the phase-shifted interferograms are recorded sequentially in time, the different αn

are adjusted by means of a phase shifter such as a mirror on a piezoelectric crystal in the

reference arm. While it is possible to set the αn statically, i.e. no change takes place

during the exposure of each frame, it is more convenient and has become popular to shift
the phase linearly during the recording sequence, so that each measurement becomes an
integral over a phase interval. This changes (3.12) to
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(3.59)

the additional factor is 0.9 when α = 90°, and 0.83 for α =120°, so that the overall effect

of the ramping approach is a slight decrease in the modulation of the data; however, the

measured ϕO remains the same whenever the integration interval is symmetrical. The

static method is referred to as the step method and the dynamically phase shifting
approach is known as integrating-bucket or simply bucket method [Wya75].

The equation system (3.12) or (3.59) is set up under the assumption that the unknowns
do not change from frame to frame, i.e. are temporally constant. While this is very likely

to be correct for Ib and MI , it is difficult to assure for ϕO , which is why vibration-isolat-

ing optical tables, phase stabilisation facilities and/or short exposure times are very
common with this method. The interferograms In(x, y, tn) must be recorded as quickly as
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possible to diminish influences by object changes or phase fluctuations in the interfer-
ometer, and the possibilities to carry out TPS measurements of rapidly moving objects or
under external disturbances are limited. Fig. 3.19 presents sawtooth phase maps from
experiments under various conditions. While TPS delivers good phase measurements
under temporally stable conditions, a vibrating interferometer (here: table without air
cushion) can cause wrong phase shifts and thus loss of direction information. With
locally different phase shifts, as caused by turbulent air in the beam paths, also the
qualitative correctness of the image may get lost.

  
Fig. 3.19: Sawtooth phase maps as results of deformation measurement with TPS under: stable

experimental conditions (left), vibrations (centre), and air turbulences (right).

Much work has been done to cope with the various error sources: phase-shift miscali-
brations [Moo80, Schwi83, Che85, Joe94, Sla95, Och98], vibrations [dGro96, Dec96,
Dec98, Hun98], unequal and/or uncalibrated phase steps [Gre84, Oka91, Far94, Ryu97,
Wei99], nonsinusoidal intensity profile [Hib95], and in a wider context, variable bias
intensity [Ono96, Sur97b], or variable fringe visibility [Lar96]. There have also been
attempts to reduce the data acquisition time by 2+1-frame methods [Ker90, Col92,
Fac93, Ng 96] or high-speed devices [Cog99, Hun99]. Many of these efforts are
concerned with the sensitivity of TPS to time-dependent phase fluctuations, which
shows that these are indeed a major obstacle.

3.3.1 Speckle "size" in interferograms

The experimental determination of the mean speckle size is usually done by calculating
the autocorrelation function of the speckle intensity field and determining the full or half
width of its central peak. As the speckles get smaller, this digital method grows imprecise
because the peak is then only a few pixels wide and requires fitting a curve to it to
estimate its width with subpixel accuracy. When dealing with speckle interferograms
however, there is a simpler method: one can conveniently determine the speckle size from
the power spectrum of an interferogram, in which the speckle size is "doubled" by adding
a reference wave [Enn75, Maa98]. To understand how this is meant, we first consider
briefly the power spectrum of a speckle pattern. The situation is depicted in Fig. 3.20.
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Fig. 3.20: Left: Imaging of a speckle pattern: L, lens; S, speckle field; AS, aperture stop; z, distance
of AS from CCD sensor. Right: power spectrum of speckle pattern in log display;
νx =νy = 0 is in the centre of the image and the positive and negative νN at its borders.

The aperture stop AS has a transmission function TAS (here a circle of diameter D) with
which the speckle pattern S is multiplied on passing the aperture plane. For simplicity,
we assume that z � f, whereby we have the far field of S�TAS in the image plane. The

field on the CCD chip is therefore FT AS AS( ) ~ ~
S T S T⋅ = ∗ , where FT stands for the Fourier

transform, ∗ for convolution, tilde denotes the transformed variables, and we omit pro-

portionality constants. The speckle intensity detected by the CCD is given by ~ ~
S T∗ AS

2
,

and using the Wiener-Khintchine theorem, we can write its Fourier transform as

FT ACF(AS AS
~ ~ )S T S T∗



 = ⋅

2
 – ACF denoting the autocorrelation function –, which is

simply a speckle halo, as shown in Fig. 3.20 in logarithmic scaling. The size of this
speckle halo in the frequency plane is proportional to D and therefore inversely
proportional to ds .

The maximal spatial frequency in the speckle pattern on the CCD is determined by the
interference of the outermost rays that pass the aperture, i.e.

ν
λmax,s = D

f  , (3.60)

which is of course only valid if TAS really reaches zero at the edges of the aperture. This
is the "band limit" mentioned in Chapter 2.3.2. For circular apertures, the speckle size is,
cf. (2.43),

d
f

Ds = 122.
λ

 , (3.61)

which links to (3.60) to yield the simple formula

ds
max,s

= 122.

ν  , (3.62)
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so that e.g. a speckle halo just fitting in the DFT's frequency plane, with

νmax,s = �νN = �1/(2 dp), is seen to come from a speckle pattern with ds = 2.44 dp . In Fig.

3.20, we have ds = 3 dp .

If we assume that a reference wave R of amplitude R is added as a point source in the
centre of AS, which is drawn in Fig. 3.21, the field on the CCD chip will be

FT AS AS( ( , )) ~ ~ ~
S T R S T R⋅ + = ∗ +δ 0 0 . The intensity on the sensor is ~ ~ ~

S T R∗ +AS
2

, and its

Fourier spectrum is FT AS
~ ~ ~
S T R∗ +





2
=ACF( ASS T⋅ ) + R 2 0 0δ ( , ) + ( ) ( , )* *S T R⋅ ∗AS δ 0 0

+( ) ( , )*S T R⋅ ∗AS δ 0 0 . The first term is again the speckle halo, the second term is a central

peak due to the uniform reference wave; these are often called the self-interference
terms. On inspecting the mixed or cross-interference terms, we find that they reproduce
the speckle field's amplitudes, with an envelope that is the aperture function again. The

convolution with the δ function of the reference wave reproduces this distribution and

multiplies it with R. The power spectrum of a speckle interferogram therefore looks as in
Fig. 3.21 on the right; again, the scale is logarithmic and ds = 3 dp .

R
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DFT
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z
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–νN  0 νx νN

−νN

0
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νN

Fig. 3.21: Left: Imaging geometry for ESPI: R, reference wave; other abbreviations as above in Fig.
3.20. Right: power spectrum of speckle interferogram in log display; frequency plane as
above.

The interference terms overlap in the centre and are point-symmetrical with respect to
each other; hence the shadow of the fibre guide, being an undesired but here instructive
part of TAS , is visible in each of them. The speckle halo is still the same as in Fig. 3.21,

but the extent of the spectra or "bands" of the interference terms, ( ) ( , )* *S T R⋅ ∗AS δ 0 0  +

( ) ( , )*S T R⋅ ∗AS δ 0 0 , in the frequency plane is exactly half that of the speckle halo. This is

the "doubling of speckle size" mentioned above. It occurs only when R is large enough
to suppress the speckle halo; the influence of R will play an important role later on.

As Fig. 3.21 indicates, the maximal spatial frequencies of the interference bands are
given by interference of R with the outermost rays passing the aperture. With
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ν
λmax,i = D

f2  , (3.63)

where the subscript i stands for interference, we arrive at

ds
max,i

= 0 61.

ν  , (3.64)

which allows for a very convenient determination of the speckle size from the power
spectrum of the interferogram. When the interference bands are centred on each other
(i.e. the source point of R is placed in the exact centre of AS), the edges of the frequency
plane are reached when ds =1.22 dp ; but using its corners, we can accurately determine
speckle sizes down to 0.86 dp .

The advantage of using interferogram power spectra gets clear when we consider Fig.
3.22: determining the speckle size from this image is very easy, while it is problematic
to apply the autocorrelation technique for so small a speckle size.

Fig. 3.22: Power spectrum of interferogram with ds =1 dp ; spatial frequency axes as in Fig. 3.20.

Finally, if the source point of R is not in the plane of AS, the δ function above will

broaden; then, on convolution with S�TAS , the sharp edges of the cross-interference
spectra will smear out. This behaviour provides us with a very accurate means to match
the curvatures of the two wave fields.

3.4 Spatial phase shifting

An elegant way to get rid of the problems associated with inter-frame temporal parame-
ter fluctuations is to acquire the phase-shifted data simultaneously. Since the phase shift
then has to take place in space instead of time, this approach is quite generally called
spatial phase shifting (SPS) [Schwi90, Tak90b, Kuj93, Vla94]; the underlying principle
has been known for a long time [Lei62]. With SPS, phase-measuring methods gain
access to unstable environments and transient events. For very rapid phenomena, the use
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of pulsed illumination represents an effective way to suppress even the intra-frame fluc-
tuations and freeze virtually anything. In principle, it gets possible to track the object
phase at the frame rate of the camera, with the additional benefit that any frame of the
series can be appointed the new reference image.

The increased temporal resolution of this approach has, however, to be paid for in terms
of spatial resolution, since it is of course necessary to spatially separate the In . In analogy
to TPS, we can distinguish between phase stepping and phase ramping. The former is
implemented by generating several images of the same object and recording them
simultaneously on several sensors, or different parts of the same sensor. The necessary
phase shift between the images can be generated by polarisation optics [Smy84, Kuj92,
vHaa93], diffraction gratings [Kwo84, Kuj88], CGHs [Bar99] or combinations of these
[Kra98, Kem99, Het00]. For the phase retrieval to work properly, the In must be aligned
with subpixel accuracy and all have the same Ib and MI , which is difficult to achieve
[Kuj91a, Het00]. If parts of one and the same sensor are used for the sub-images, reso-
lution is lost; if several full-chip images are taken, they will have to share the light
energy available. High expense on the components, great adjustment effort and high
sensitivity to misalignment are to be expected when working with set-ups of this type.

The phase-ramping or bucket method of SPS works with one detector, on which a dense
additional fringe pattern is generated to function as a so-called spatial phase bias or, in
the Fourier terminology, carrier frequency. The – low-frequency – signal of interest dis-
torts the carrier pattern and can be retrieved from it by a number of methods [Wom84].
This approach has first been implemented with vertical carrier fringes in [Ich72, Mer83]
as analogue real-time processing of TV line signals. (Note here that only SPS lends itself
to this technique: TPS requires digital processing since separate TV frames are
involved.) The first studies were soon followed by digital implementations [Toy84,
Toy86, Fre90b,c, Küch90, Sho90, Küch91, Kuj91b], allowing for arbitrary directions of
the carrier fringes. Also, it was demonstrated in [Tak82] that the signal can conveniently
be retrieved in the frequency plane by a Fourier-transform method; we defer details to
Chapter 6.5. Other methods to retrieve phase from images with a spatial carrier are the
phase-locked-loop method [Ser93] and the frequency demodulation technique [Ara96].

Later it was realised that this approach could be applied to speckle interferometry as well
[Ste91, Wil91, Gut93]. A standard ESPI set-up is very easily changed to an SPS system;
it is sufficient to laterally displace the focus, or source point, of the reference wave to
introduce the fringe carrier. Fig. 3.23 shows the modification, with a magnified portion
of a speckle interferogram: the fine fringes on the speckles are clearly discernible.
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Fig. 3.23: ESPI set-up slightly modified (cf. standard configuration in Fig. 3.1) for spatial phase
shifting.

In the following subsections, we will go through some details pertaining especially to
SPS to get an overview of the quality criteria for interferograms with a spatial carrier.

3.4.1 Geometrical description of spatial phase shift

The lateral offset ∆x of the reference wave's origin generates a quasi-linear geometric

path and hence phase difference between the object wave O and the reference wave R
over the sensor. Fig. 3.24 sketches the principle.
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Fig. 3.24: Left: incidence of two spherical waves with origins displaced by ∆x; right: construction
of corresponding pathlength differences ∆r =
rO
–
rR
.

While a phase shift in the sensor's y-direction may be added by a displacement ∆y, this

case is still one-dimensional in the appropriate co-ordinate system. Hence it is sufficient

to consider the phase difference α(x), given by
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where x = 0 is defined to be the y axis in the middle between the waves' source points.
This is not generally the central sensor column: since the centre of the aperture should
lie on the optical axis over the centre of the sensor, the object wave's origin cannot be
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shifted from there. However, y = 0 does lie on the central row of the sensor. The corre-
sponding phase gradient in x-direction,

α π
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 , (3.66)

is quasi-constant when ∆z is much larger than everything else, which is quite reasonable

to assume when using common imaging optics. Then ∆z will be on the cm scale, whilst

the other quantities are on the mm scale. It turns out that the y co-ordinate also has a

weak influence on αx ; hence the carrier fringes are not exactly straight. In fact, they

have hyperbolic shape, which also follows from the definition of a hyperbola as the set
of points for which 
rO
–
rR
 is constant. Fig. 3.25 depicts the situation for an average

nominal phase gradient of αx (x, y) =120° per sensor column and the optical configura-

tion of Fig. 5.1. The spatial dimensions refer to the sensor of the camera that was used
throughout the work to follow, ADIMEC MX12P with 1024�768 pixels of size
(7.5 µm)2.
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Fig. 3.25: Spatial distribution of αx(x, y) on the CCD sensor area for z =10.2 cm and ∆x = 2.9 mm.

Clearly, the continuous phase progression over the sensor leads to an integration over the
pixels, so that this is an integrating-bucket method. When the phase runs along columns
or rows only, the recorded In are described by (3.59), since also the camera pixels are
rectangular integration windows, only in space instead of time. The factors given in 3.3
for the decrease of MI remain valid in this case.

If, however, the carrier fringes are slanted with respect to the Cartesian sensor axes, the

situation is different: for instance, if ∆x = ∆y, the slant is 45° and the function over which

the phase progression is "windowed" becomes a triangle; for values below 45°, it
acquires trapezoidal shape. Fortunately, the windows remain symmetrical in any case,
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from which it follows that the detected phase angles will remain correct [Wom84]. To
determine the loss of MI due to a "composite" phase ramp (i.e. for phase shift in x and y
direction), it is easiest to integrate over its components separately, which gives

I I Mn b I
x y

O n

x y

= + ⋅ ⋅ ⋅ +
2 2sin( ) sin( )

2 2
α α

α α
ϕ αcos( )  ; (3.67)

not surprisingly, this reflects the theoretical 2D-MTF for square pixels. For αx =αy , and

hence a triangular envelope of the phase integration, the factor becomes 4 sin2(αx /2)/αx
2

and is indeed the transfer function of a triangle. We will be concerned with such a case
in Chapter 6.3.

The choice of the carrier frequency is influenced by contradictory requirements: on the
one hand, it should be as high as possible to allow a broad range of signal frequencies to
be measured. On the other hand, aliasing of too high frequencies must be avoided. In

general, αx must have the same sign in the whole measuring field to keep the phase

extraction unambiguous: a reversed, or aliased, phase shift leads to the wrong sign of the
calculated phase, cf. 3.2.2. In classical interferometry, this means that closed interfer-
ometric fringes are not allowed, and the complete fringe pattern must be properly
sampled; in speckle interferometry, the requirements are different and we will discuss
them in 3.4.4.

Since the In are arranged as adjacent pixels on the sensor, it is clear that the speckles
must be enlarged to obtain sufficient spatial correlation of speckle intensity and phase
within the sampling pixel cluster, so that the modulation detected by a phase-extraction
formula comes more from the phase shift than from crossing speckle "boundaries". The
ideal case is sketched in Fig. 3.26 for ds = 3 dp . Depending on the orientation and density
of the carrier fringe pattern, various phase-extraction formulae can be applied.

I1 I1 I2I2I0 I0

Fig. 3.26: Acquisition of three intensity samples I0, I1, I2 for SPS. Small squares: sensor pixels,
irregular outlines: speckles. Direction and spacing of the carrier fringes are indicated by
the vertical black bars; left: α = 90°/dp , right: α =120°/dp .

The speckles, and also the sampling pixel cluster, should be as small as possible for the
sake of spatial resolution; on the other hand, a somewhat larger pixel cluster can lead to
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more reliable phase measurements even when the speckle size is not increased. We will
consider this point in detail in Chapter 6.2.2.

In any case, the aperture must be smaller than in TPS; a first guess for the minimal
speckle size would be ds = 3 dp , because in (3.12), we need n�3. So small an aperture

entails some drawbacks: first, significantly less object light is available; and second, ∆x

can usually not be chosen freely, since for R to reach the sensor, ∆x must not exceed D/2

(cf. Fig. 3.21). The latter problem can be solved with customised imaging optics: a
narrow slit beside the diaphragm hole, allowing the focus of R to pass, will broaden the

possible range of ∆x (cf. Fig. 5.1). Finally, when the test surface undergoes a tilt, the

decorrelation of the speckle field proceeds faster with narrow than with wide apertures:
that portion of the speckle field which is collected by the aperture is being panned "out
of view" sooner when D is small.

Once these problems are overcome, it becomes possible to study dynamic phenomena;
using (double-)pulsed illumination, even very rapid transients can be frozen [Ped93,
Ped94, Ped97c, Sched97, Pet98, Pet99]. Moreover, the decrease in spatial resolution is
in practice more than offset by the low data storage requirements, since mostly the saw-
tooth images are smoothed anyway during data processing.

3.4.2 Evaluation of SPS interferograms

The intensity samples for the phase calculation are picked from an interferogram in

analogy to (3.12) which we rewrite as a spatial version (restricting ourselves to α = α(x),

i.e. the phase changes from column to column of the image):

I x y t I x y M x y x y t x yn k n b k n I k n O k n n k n( , , ) ( , ) ( , ) ( ( , , ) ( , ))+ + + + += + ⋅ +cos ϕ α  , (3.68)

this is, to find the phase at a pixel in column k of the image, some neighbouring pixels
are needed to provide the phase-shifted interference data. The equation system expressed

by (3.68) then imposes the restriction that ϕO(xk ,y) � ϕO(xk+n ,y) for all n, and the same

applies to Ib (xk ,y) and MI (xk ,y); this is, spatial fluctuations of these quantities should be

as small as possible. The time dependence of ϕO can be neglected unless ϕO fluctuates

substantially within the integration time for the camera frames; αn has no time

dependence at all, because the phase shift is determined by the stable geometry depicted
in Fig. 3.24.

The In are then processed as described in 3.2; however, when working spatially, it is rea-

sonable to use evaluation formulae with n ∈{–1, 0, 1} or n ∈{–1, 0, 1, 2} because, as Fig.

3.26 shows, the central pixel of the cluster will be the one that has best spatial correla-

tion with its neighbours and to which the resulting ϕO should be assigned. From this it

follows that 1 < k < M or 1 < k < M–1, i.e. no values for ϕO can be obtained for the first
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and the last, or the last two, image columns; but considering the large numbers of pixels
on modern sensors (here: 1024 columns�768 rows), this restriction is negligible.

The natural way to determine deformations from a pair of interferograms, Ii (x, y) and
If (x, y), is the difference-of-phases method, since two frames, each one subjected to
(3.68), suffice to generate two speckle phase maps. However, with three-sample meth-
ods one can also obtain correlation fringes from SPS interferograms according to

I x y I x y I x yn c k f k n i k, ( , ) ( , ) ( , )= −+  , (3.69)

where the subscript c denotes correlation fringes and n ∈{–1, 0, 1}; this is, we shift If by

one column to the right and subtract Ii , then subtract the unshifted images, and finally
shift If one column to the left and subtract Ii [Ped93, Ped94]. But the lateral image shift

of course causes lower speckle correlation between If (xk�1 ,y) and Ii (xk ,y) than between
If (xk ,y) and Ii (xk ,y), resulting in non-constant fringe contrast within the set of the
In,c(xk ,y), and consequently, unnecessary errors in the phase calculation. Hence it is easy
to understand why apparently this method has not been used with four-sample formulae

and n ∈{–1, 0, 1, 2}: an offset of two columns would lead to very faint correlation

fringes in 
If (xk+2 ,y)–Ii (xk ,y)
, unless the speckles are larger than 3 dp . Therefore, corre-
lation fringes from SPS are even less suitable for the phase-of-differences method than
are those from TPS.

When SPS is tested under the same disturbances as the TPS measurements shown above
in Fig. 3.19, the difference-of-phases method leads to the example results presented in
Fig. 3.27.

  
Fig. 3.27: Sawtooth phase maps as results of deformation measurement with SPS under: stable

experimental conditions (left), vibrations (centre), and air turbulences (right).

While the experiment under good conditions yields slightly higher noise than for TPS,
vibrations do not alter the phase shift, since it is determined geometrically here, and the
quality of the measurement is preserved. Of course, when the frequency and/or
amplitude of the vibrations gets too high, the modulation in the speckle interferogram
may be washed out; but as mentioned, pulsed illumination solves this problem. Under
turbulences, there is no simple way to avoid warping of the phase front; but the image
from SPS is far easier to interpret than that from TPS. As long as the sawtooth fringes
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remain resolvable, they should lead to a usable result, and possibly reveal the nature of
the turbulence in addition.

3.4.3 Relation of speckle size and magnification

For usual imaging optics, f # = f /D is confined to a maximum of 22 or 32, which may
prevent reaching the desired ds in some cases. Considering

d M fs = +122 1. ( ) #λ , (3.70)

where M is the magnification (image size : object size), we can immediately see that the
maximum object size that can be imaged gets smaller when ds is to be increased, and
vice versa. Fig. 3.28 gives an overview of the necessary f-numbers when a certain mag-
nification is required. The plots are scaled for the pixel size of 7.5 µm of the MX12P
camera.
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Fig. 3.28: Double-logarithmic plot of magnification M vs. f-number for various pre-set speckle
sizes.

Let us consider a practical example: with a sensor of 1024�1024 pixels, we would need
M = 0.02 in order to image (37.5 cm)2 on the chip; for ds =1 dp , f # �10; but for ds = 3 dp ,
f # � 28, which may not be possible with standard imaging optics. It also follows from
(3.70) that the speckles tend to get very large when M >1, even for low f # [Løk97,
Aebi97]. This is the reason why SPS is applicable at no expense in microscopic ESPI
[ElJa99]: the speckles are large enough in any case.

3.4.4 Spatial phase shifting on speckle fields

We have seen in Fig. 3.21 and Fig. 3.22 that the positive and negative interference bands
overlap exactly in the spatial frequency plane when the source point of the reference
wave coincides with the centre of the aperture. As the origin of the reference wave is
laterally displaced, the overlap of the interference spectra gets smaller; ideally they can
be fully separated in the frequency plane, as shown in Fig. 3.29 for two different settings
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of phase shift and speckle size. In the Fourier formalism, the carrier frequency manifests

itself as a constant phase factor, which shifts the interference spectra by �νc , with νc

being the spatial carrier frequency, and thus turns them into the so-called signal side-
bands. We defer a more detailed discussion to Chapter 6.5.
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Fig. 3.29: Power spectra (log scale) of speckle interferograms with carrier frequency; left:
αx =120°/column (νc,x =1/(3 dp)), ds = 3.5 dp ; right: αx = 90°/column (νc,x =1/(4 dp)),
ds = 2.5 dp . To allow for sufficient ∆x to obtain αx =120°/column, the fibre end is in a slit
beside the aperture (cf. Fig. 5.1); to the right, ∆x � D/2, and the fibre guide obscures part
of the aperture. The contrast of the images has been enhanced to make the speckle halo
visible.

The width of the side bands in an interferogram's power spectrum indicates the range of
speckle phase gradients that distort the carrier fringes. As already hinted in 2.2.3.2, these
distortions are equivalent to local miscalibrations of the phase shift, which makes great
demands on the miscalibration tolerance of the phase-reconstruction formula. Also, its
spectral response should utilise as much of the signal as possible; but as we have seen in
3.2.2, neither is easy to be had.

Complete separation of the interference bands is desirable because then all frequency

components of the signal will be unambiguous. If αx is to have the same sign throughout

the interferogram, one has to demand that the positive/negative signal frequencies

occupy no more than the positive/negative half-plane, (νx+ ,νy) and (νx– ,νy), in the fre-

quency spectrum. If these boundaries are crossed, the signal bands will overlap around

νx = 0, or with aliasing (see below) around νx =�νN , or both. We will consider examples

of such power spectra in Chapter 5.5.3.

However, it is possible to permit sidebands larger than in Fig. 3.29 on the right and still

avoid their mixing when we record information in the νy co-ordinates as well and thus

truly utilise the 2-D nature of the measurement. Depending on the speckle size and
shape, there may then be various solutions to arrange the signal bands advantageously in
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the spatial frequency plane. An example of how to obtain very large, "clean" (i.e. non-
overlapping) sidebands will be given in Chapter 6.5.

The speckle size is determined from power spectra with a spatial phase shift by

ds
+ c

=
−

=
−− −

122 0 61. .
ν ν ν ν

 , (3.71)

where 
ν+
 is the largest and 
ν–
 the smallest spatial frequency of a sideband and


νc
= (
ν+
+
ν–
)/2. This of course needs to be modified when 
ν+
 > 
νN
: due to alias-

ing, �(νN+νa), where subscript a denotes the aliased contributions above νN , will appear

in the Fourier plane at �(νN –νa). To find the minimum permissible speckle size when


νc
is given and no aliasing is to occur, we use

ν νc
sd

+ ≤0 61.
N  ; (3.72)

considering the examples of Fig. 3.29, we have νc =1/(3 dp) for αx =120°/column; there-

fore, 0.61/ds �1/(6 dp), which gives the condition that ds �3.66 dp . Similarly, for

νc =1/(2 dp), ds �2.44 dp .

For real sensors, the merely geometrical notion of νc is a more or less accurate approxi-

mation: the higher spatial frequencies will usually be attenuated by the falling pixel
MTF and the read-out electronics. This is not visible in Fig. 3.29 due to the logarithmic
display; examples may be found in Fig. 3.31 and Fig. 3.34. Such a "low-pass" behaviour

shifts the actual �νc�, or the "centre of gravity" of the sidebands' detected power, below

their geometrical centre, νc,geom . This raises the question whether an advantage can be

gained by calibrating the phase shift on �νc�, which minimises the actual phase-shift

deviations. However we retain the geometrical definition for three reasons: (i) With
respect to the high spatial frequencies, it is indispensable to operate the camera with its

pixel clock activated. Unfortunately, this damps νx much more strongly than νy (for the

camera used, the pixels are read out in x direction at a rate of 20 MHz as independent
video lines, whose frequency is only 15.625 kHz), which would greatly complicate the

treatment of composite x-y-phase shifts if we used �νc,x� and �νc,y� for calibration. (ii)

Shifting a sideband outward, until the measured �νc,x� reaches its nominal value, is a

waste of signal energy, because more and more of the sideband then comes to lie in the
low-MTF regions of the frequency plane. (iii) The problem affects the methods for

νc,x =1/(3 dp) more than those with νc,x =1/(4 dp); but we have seen from Fig. 3.13 and

Fig. 3.18 that phase-shifting errors are less severe for νx < 1/(3 dp), so that one may even

obtain a slightly increased performance when �νc,x�< 1/(3 dp).
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Despite these considerations, an overlap of the sidebands at the edges or in the centre of
the frequency plane may be permissible and even advisable from the standpoint of light
economy (remember that this is associated with smaller speckles and larger apertures).
This need not upset the phase calculation: as seen before, any phase-extraction formula
has its characteristic frequency response and will therefore select only a part of the inter-
ferogram's spatial frequency content anyway. One could therefore say that phase maps
from SPS are being smoothed intrinsically by convolution with the phase-calculation
pixel cluster. Hence, the spatial resolution of SPS is not governed by the speckle size
alone.

3.4.5 Spectral side-effects of spatial phase calculation

As mentioned above, the findings of 3.2.2 require some experimental inspection because
they were derived, so to speak, in the absence of speckle. In particular, the spatial phase
calculation in SPS is influenced by the spatial correlation of the pixels selected for proc-
essing, as demonstrated in Fig. 3.30 for intensity sampling by (3.18) and (3.19), respec-
tively.

I0 I2I1 I0 I1 I2

S'(xk) S'(xk)

C'(xk) C'(xk)

Fig. 3.30: Processing of intensity samples by (3.18) (left) and (3.19) (right), where the smaller
outlines in white and black indicate the smaller coherence areas required for S'(xk) and
C'(xk) alone.

In (3.18), the first and last intensity sample are used for S'(xk) and all three samples for
C'(xk); the terms are balanced with respect to the central pixel, being the target pixel of
both calculations. In (3.19), both S'(xk) and C'(xk) are constructed from only two
consecutive samples; hence they make lower demands on the spatial coherence of the
pixels. Of course, the complete sampling window is still three pixels wide, and S'(xk) and
C'(xk) are associated with slightly different portions of the speckle field, so that their
spatial correlation may suffer. The same line of argument applies to all other phase-
shifting formulae, where different an and/or bn are large, small, or vanish, in different
representations of the formulae.
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To find out the significance of this consideration, we study ~( , )S x yν ν  and ~( , )C x yν ν

experimentally. First, we generate two separate arrays I(x, y)�Sx(n) and I(x, y)�Cx(n),
this is, we use (3.68) to process 2-D images with a 1-D phase shift. The results, when
visualised as images, should yield two fringe patterns that look very much like the
speckle interferogram, but have a phase lag of 90° and hence deserve the names of
"sine" and "cosine" image. This processing method has been used in [Sin94] in the
context of phase demodulation.

The power spectra of the "sine" and "cosine" images, 
~( , ) ~( )I Sx y xν ν ν⋅

2
 and

~( , ) ~( )I Cx y xν ν ν⋅
2

, can be compared with that of the original interferogram,

~( , )I x yν ν
2

, to reveal the changes.* This yields information about the actual manipula-

tion of the interferogram's frequency content by the phase calculation.

The phase lag between the "sine" and "cosine" fringe patterns may be estimated when
we determine their phases as if they were interferograms and then subtract these phase
maps as if we wanted to measure a deformation. The "double" phase determination of
course leads to a circular argument, which we must avoid by using the Fourier-transform
method (cf. Chapter 6.5).

To valuate the spectral transfer characteristics of phase-shifting formulae, we could sim-
ply choose white noise, e.g. a random distribution of grey values, as a dummy interfero-
gram for input; but since our objective here is an experimental check of the findings in

3.2.2, we use actual interferograms. Starting with α = 90°, we choose the interferogram

with the spectrum of Fig. 3.29 (right side) as input, which indeed accounts for the whole

range of interest, νx = 0 up to νx =νN . The power spectra that we compare are scaled line-

arly this time to fit the expected deviations; the low-frequency part of the spectra then
has to be masked out. The first example is the phase calculation by (3.18), whose outputs
are compiled in Fig. 3.31. The images of the power spectra have been spatially smoothed
to make differences more easily discernible.

                                           
* Realising that the phase-shift is one-dimensional, it would suffice to investigate the νx only; but
since we will be concerned with full 2-D information in Chapter 6.3, we include the νy here already,
bearing in mind that they contribute little information now.
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Fig. 3.31: From left to right: ~
( , )I x yν ν

2
; ~

( , )
~

( )I Sx y xν ν ν⋅
2

 of (3.18); ~
( , )

~
( )I Cx y xν ν ν⋅

2
of (3.18);

pixel histogram of phase lag between I(x, y)�Sx(n) and I(x, y)�Cx(n) of (3.18); the range of
the abscissa is 0-2π. The spatial frequency axes of the power spectra are as in Fig. 3.29.

As discussed in 3.4.4, the measured power spectrum shows significant attenuation of

high νx already in the interferogram, which is now clearly visible on the linear scale.

This appears to be quite common with pixel-clocked CCD cameras, cf. the power spec-

tra reproduced in [Sal96, Ped97a,b]; hence, when looking at ~( , ) ~( )I Sx y xν ν ν⋅
2

 and

~( , ) ~( )I Cx y xν ν ν⋅
2

, we must bear in mind that even a maximal response at νN will fail to

produce a high output when the corresponding frequencies are already weak in the input
data; but differences of the two spectra will remain discernible. Comparing now the
spectra of I(x, y) modified by Sx(n) and Cx(n) with what Fig. 3.9 predicts, we see that

indeed ~( , ) ~( )I Sx y xν ν ν⋅
2

 peaks at νx =νN/2, while the maximum of ~( , ) ~( )I Cx y xν ν ν⋅
2

is shifted towards νN . Hence, the values I(x, y)�Sx(n) and I(x, y)�Cx(n) will not gener-

ally represent sin ϕO(x, y) and cos ϕO(x, y). This affects the quadrature properties pre-

dicted by Fig. 3.9, as the histogram of the phase lag demonstrates: the peak is centred at

89.6° but is broadened considerably (σ �19°).

On the other hand, we can expect from Fig. 3.10 that (3.19) will filter the interferogram's

frequencies equally by ~( )S xν  and ~( )C xν , and indeed this is what we find in Fig. 3.32,

with the same input interferogram as above.

  

Fig. 3.32: From left to right: ~
( , )

~
( )I Sx y xν ν ν⋅

2
 of (3.19); ~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.19); pixel

histogram of phase lag between I(x, y)�Sx(n) and I(x, y)�Cx(n) of (3.19).
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In contrast to what Fig. 3.10 suggests, the mean phase lag shows reasonable stability: the
peak is at 83.4°. Thanks to the matching responses of Sx(n) and Cx(n), the peak is some-

what narrower than in Fig. 3.31 (σ �17.3°). From these findings, we may expect that

both formulae should be almost equally suitable to evaluate SPS interferograms with

ν0x =1/(4 dp).

To verify this, we consider the Fourier spectra ~( , ) ~( )I Sx y xν ν ν⋅  and ~( , ) ~( )I Cx y xν ν ν⋅ ,

from which we can obtain bsc (νx ,νy) experimentally by (cf. 3.2.1.3)

( ) ( )bsc I C I S I C

S

C

x y x y x x y x x y x

x

x

( , ) arg ~( , ) ~( ) ~( , ) ~( ) arg ~( , ) ~( )

arg
~( )
~( )

,

ν ν ν ν ν ν ν ν ν ν ν

ν
ν

= ⋅ + ⋅ − ⋅

= +






1

(3.73)

which is again – 45° when (3.41) is valid. This gives us an idea of how well the "sine"
and "cosine" images correspond to their theoretical descriptions. Applying the above
calculations to these images, we eventually obtain a phasor map in the frequency plane

that should range from – π/2 to π/2. As usual in DFT, we can use the equivalence

[–νN,0]⇔[νN,2νN] to come from the image to our familiar plot of bsc (νx). A first exam-

ple of this is presented in Fig. 3.33; the power spectrum of the input interferogram is
again that of Fig. 3.29.

2  3 4|0  1 2 νx/ν0x

νN

  νy

0

–νN

 -1.57

0.785

0

0.785

1.57

0 1 2 3 4νx/ν0x

Fig. 3.33: Left: bsc (νx ,νy) for (3.18) as calculated from (3.73), with 0�black and 2π�white; note
that νx =νy = 0 is in the centre of the image. Right: bsc (νx) for (3.18) (black) and (3.19)
(white); average of 50 rows from the small black frame on the left.

On the left, we find the distribution of bsc (νx ,νy) for (3.18); the one for (3.19) would be

indistinguishable from it in this size, which confirms that the performance of (3.18) and
(3.19) is almost equal despite the differences explained above. It is only at first glance

surprising that the signal sidebands are almost invisible in bsc (νx ,νy): the phase calcula-

tion of (3.73) does not distinguish between signal and noise frequencies. The difference
is solely that those regions of the frequency plane where there is no signal, and hence
relatively little spectral power, are quite a bit more noisy.
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To the right, the plot of bsc (νx) as output by (3.18) (black) and (3.19) (white) does
indeed show that both compare quite well with the corresponding graph in Fig. 3.13. The

high noise around νx = 0 and νx = 2νN reflects the suppression of Ib , i.e. the fact that
~( ) ~( )S C0 0 0= = . It is interesting to note that, in agreement with the larger absolute filter

output of (3.18), the susceptibility to noise is indeed somewhat lower than for (3.19); but
this affects a frequency range that produces large errors anyway, so that the difference in

performance will be very small. For this case of α = 90°, we therefore conclude that the
utilisation of different sets of pixels for different representations of the 3-sample 90°
formula does not invalidate the theoretical considerations in 3.2.2.3.

For α =120°, we use an interferogram with a power spectrum as in Fig. 3.29 on the left;
this time, the signal sidebands cover a smaller part of the frequency plane. When this
interferogram is processed with (3.17), we can expect a qualitative behaviour resembling
that in Fig. 3.31 because the sampling formulae are both derived from (3.15). As to be
seen from Fig. 3.34, this is indeed the case; again the high-frequency preference of
~( )C xν is clearly visible. The distribution of the phase lag has a mean of 89.6° and a

standard deviation of 22.0°.

   

Fig. 3.34: From left to right: 
~

( , )I x yν ν
2

; ~
( , )

~
( )I Sx y xν ν ν⋅

2
 of (3.17); ~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.17);

pixel histogram of phase lag between I(x, y)�Sx(n) and I(x, y)�Cx(n) of (3.17).

Investigating (3.50) with its equal spectral responses of Sx(n) and Cx(n), the output spec-
tra from processing the same interferogram as above are indeed equal, as to be compared
in Fig. 3.35; but this time the phase quadrature is disturbed (centre at 104.9°, and

σ = 26.4°).
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Fig. 3.35: From left to right: ~
( , )

~
( )I Sx y xν ν ν⋅

2
 of (3.50); ~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.50); pixel

histogram of phase lag between I(x, y)�Sx(n) and I(x, y)�Cx(n) of (3.50).

From Fig. 3.13, we should expect equal performance from (3.17) and (3.50), but the
quadrature deficiency of (3.50) raises doubts in this respect. Therefore we use the help of

bsc (νx) again; Fig. 3.36 gives a comparison of the two methods.

2 3|0 1 νx/ν0x

νN

  νy

0

νN

 -1.57

0.785

0

0.785

1.57

0 1 2 3νx/ν0x

Fig. 3.36: Left: bsc (νx ,νy) for (3.17); right: bsc (νx) for (3.17) (black) and (3.50) (white); average
calculated from same image region as in Fig. 3.33.

Again, we find good agreement with the theoretical curve of Fig. 3.13, except for the
slightly higher noise of (3.50) as we leave the signal sideband. However, this difference
does not lead to a detectable performance loss, since there is comparatively little power
outside the sidebands, which in addition is greatly attenuated by the filter functions.

Since (3.17) is a DFT formula, it was possible to check the performance of 120 different
120° formulae, where the phase offsets of the sine and cosine weighting functions were
varied in 3° steps, with coefficients according to (3.14); two out of these are (3.17) and
(3.50). A pair of interferograms from an object tilt was processed to a sawtooth image

with the 120 different formulae, and each of them was evaluated for σ∆ϕ ; the result was

that indeed all the formulae gave performances equal to within 0.4%. Therefore, when

α =120°, it is best to choose the representation with the simplest coefficients; and

although such a test is not possible with the three-step 90° formulae, the findings thus far
strongly indicate a similar behaviour.
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In the error-compensating formula (3.56), S(n) requires only two samples but C(n) uses
four, whilst in (3.57), both terms include four samples; but also for these methods, the
performances are virtually identical. Therefore we will not compare these in detail, but
we do investigate the performance of (3.56) against that of (3.58); these results are
shown in Fig. 3.37.

 2  3 4|0  1 2 νx/ν0x

νN

     νy

0

–νN

    2 3|0 1 νx/ν0x

νN

     νy

0

–νN

-1.57

-0.785

0

0.785

1.57

0 1 2 3 4νx/ν0x

 -1.57

-0.785

0

0.785

1.57

0 1 2 3νx/ν0x

Fig. 3.37: Top row: bsc (νx ,νy) for (3.56) (left) and (3.58) (right); bottom row: bsc (νx) for (3.56)
(left) and (3.58) (right).

From the images as well as from the plots, we can see that (3.56) operates with greater
stability in the whole spatial frequency range, including the signal regions. Also for the

3-sample formulae investigated before, the tendency was recognisable that α = 90° gives

slightly safer phase determination than α =120°. For the reasons mentioned above in

3.2.2.4, this difference is even more pronounced when we attempt to correct phase-
shifting errors. After our numerous considerations of spatial frequencies, the reasons for

this are clear: setting νc,geom to νN/2 assures best utilisation of the frequency plane and

best suppression of detuning errors.

Our scrutiny of the effect of different sampling pixel clusters yields the interesting result
that the representation of the used formula can be chosen at convenience. This facilitates
a simple general strategy for placing the signal sidebands optimally: given the invariant

course of bsc (νx), or bsc (νx ,νy) for composite x- and y-phase shift, one can refer to that

representation of the phase-extraction formula which gives equal frequency responses of
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S(n) and C(n), and maximise the signal utilisation (in which the system MTF will also
play a role) while minimising the phase-shifting errors. Once this is done, one can go
back to a simple representation of the formula, which, as we have seen, will not affect its

performance. For the case of ds = 3 dp , it was indeed found that the best νc,geom for, say,

(3.19) was α � 75°/sample, and for, e.g., (3.17), the minimal error occurred around

α �100°/sample. But the difference in performance was only 2-3%; and since also these

values may change with the sensor and electronics used, we do not further pursue this
detail.

3.4.6 Distorted phase distributions due to miscalibrated phase shift

None of the formulae investigated, including the error-compensating ones, will perfectly
suppress the oscillating phase errors sketched in Fig. 3.14. This has important conse-
quences for the statistics of the measured phases. In the presence of a systematic phase-
shift deviation, the uniform distribution of the speckle phases (cf. (2.6)) will be modified
by the faulty measurements, as pointed out in [Kad91]. The arrows in Fig. 3.14 indicate

the direction to which the true ϕO values are biased by measuring ϕO+δϕO under exces-

sive phase shift: phase readings of 0 < ϕO < π/2 are increased by δϕO , and those of

π/2 < ϕO < π are decreased. The same thing happens between π and 2π, so that the meas-

ured values will be more or less concentrated at � π/2 and � 3π/2. Hence, the

histograms of measured speckle phases will show characteristic fluctuations. For phase

shifts that are too small, δϕO changes its sign, whereby phase measurements cumulate at

� 0 and � π. This is demonstrated by Fig. 3.38, where histograms of measured speckle

phases are compared for different phase shifts.

      
Fig. 3.38: Influence of real phase shift on measured speckle phase pdf when reconstructed by (3.19)

(αideal = 90°/sample) with ds = 3 dp . Left, �αreal� < 90°; centre, �αreal�= 90°, right,
�αreal�> 90°. Abscissae range from 0 to 2π; ordinates give relative frequencies.

This effect has been used in [Kad91, Bot97, Dob97] to calibrate the phase shift. In SPS
however, this calibration is different from the Fourier method because it optimises the
centre of gravity of the sideband instead of its geometrical centre. As explained above,
this involves the sensor MTF and the transfer spectrum of the phase-extraction formula.

Therefore αgeom will rarely coincide with �α�; I judge the calibration on αgeom to be more
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reliable, accurate and advisable from the standpoint of signal utilisation, and in what

follows, α will denote αgeom .

Moreover, Fig. 3.38 teaches us that even with the correct �α�, the deviations will not

vanish, which is of course owing to the speckle phase gradients that inevitably cause
local detuning: the smaller the speckles, the larger the deviations will get. This is partly
due to increasing phase gradients on the camera pixels as the speckles get smaller, and
also, for smaller speckles, the Ik+n will not even lie within one statistical coherence area
anymore. Hence, we have an oscillating measurement error regardless of the adjusted

phase shift. Since the phase offset k�α in a spatially phase-shifted interferogram varies

by α from sample to sample, also δϕO will vary cyclically. This effect has been given the

name "high-frequency fringe error"; in classical interferometry, it causes a fine ripple in
the measured phase map [Cre96]. In speckle interferometry, where sawtooth images

∆ϕ (x, y) are generated by subtracting speckle phases ϕO,i (x, y) and ϕO, f (x, y), δϕO

alternately cancels and doubles, depending on ∆ϕ (x, y). Independent of the

miscalibration's sign, δ (ϕO) = δ (ϕO + π) � – δ (ϕO + π/2) (cf. Fig. 3.14); therefore δϕO

cancels when ∆ϕ (x, y) is 0 or π, and doubles in between. This is in contrast to (3.55),

where δϕO is averaged out by addition of two sampling sequences offset by π/2; the

∆ϕ (x, y) maps however are formed by subtraction. The effect of this can be seen in Fig.

3.39 for ds = 3 dp : the phase-measurement error depends on the phase to be found. The
error images on the right are the absolute differences between the actual phase maps and
their least-squares-fitted noise-free counterparts (see Chapter 4.2). The inserted white

error curves allow a quantitative comparison of δϕO vs. ∆ϕ (x, y).

0 π ∆ϕ(x) 2π

70

0
0 π ∆ϕ(x) 2π

δϕΟ /°

0 π ∆ϕ(x) 2π

70

0
0 π ∆ϕ(x) 2π

δϕΟ /°

Fig. 3.39: Fringe profiles (left) and corresponding δϕO (right) from a displacement measurement
with α = 90°/column and various phase-extraction formulae: top, (3.19); bottom, (3.57).
All images come from the same region of interest and have 256�64 pixels; the error
curves on the right are vertically averaged.

When the phase is calculated by (3.19) (upper row), a significant ripple is produced

around ∆ϕ (x) = π/2 and ∆ϕ (x) = 3π/2 that also leads to a higher average error. In the
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lower row, the error compensation of (3.57) does not remove the ripple completely, but
is good enough to suppress it to approximately the level of the speckle noise: almost no
high-frequency oscillations can be seen in the sawtooth image. The remaining profile of

δϕO is still periodical but the frequency is halved to 1/(2π). The importance of phase-

shift deviations and their correction is clearly emphasised by Fig. 3.39.

Moreover, we observe that in both of the error graphs, δϕO is higher for ∆ϕ (x) = π than

for ∆ϕ (x) = 0. This reminds of correlation fringes, which also have low noise for ∆ϕ = 0,

and also the reason is similar: a phase difference of zero is always measured reliably
because both interferograms simply look the same in this case. It is then unimportant

what formula is used: the error minima are almost identical in both δϕO images. At

∆ϕ = π, the carrier fringe pattern is "inverted" from the first to the second interferogram,

so that phase-calculation errors with a period of 2π will change their sign and introduce

the largest deviations upon subtraction of the speckle phase maps.

It is now interesting to see what fringe profiles we can obtain with our 120° formulae.
The error suppression by (3.58) is theoretically somewhat inferior to (3.57); the ratio of
remaining errors of the methods should be 4/3 [Lar99]. For Fig. 3.40, a pair of interfero-

grams with ds = 3 dp and α =120° was processed with various corresponding formulae.

  

  

  
Fig. 3.40: Fringe profiles (left) and corresponding phase errors (right) from a displacement

measurement with α =120°/column and various phase-extraction methods: top, (3.17);
middle, (3.58); bottom, Fourier method. Scales are as in Fig. 3.39.

The error profile produced by (3.17) is very similar to that from (3.19) (Fig. 3.39, upper
row) both qualitatively and quantitatively. From the graphs presented here, it is hard to
tell which is better, so that we defer the answer to Chapters 5 and 6. As could be pre-
sumed, (3.58) leaves a faint ripple that is only just discernible in Fig. 3.40; in this case,
only the Fourier transform approach (cf. Chapter 6.5) is capable of suppressing the
oscillations below the speckle noise.
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There is yet another consequence of this phase-dependent error: in a similar way as

above for miscalibrated α, the measurements of ∆ϕ tend to concentrate at 0 and π. They

"leak" most strongly from ∆ϕ = π/2 and 3π/2, which are therefore the least frequent val-

ues in the sawtooth image, but also from all ∆ϕ other than 0 or π. When detuning cor-

rection is present, the relative frequency of ∆ϕ = 0 will increase at the expense of ∆ϕ = π,

where the largest errors occur and which is consequently the rarest entry in the map of

∆ϕ (x, y). The relative frequencies of ∆ϕ values in our full-size (1024�768 pixels) test

sawtooth images, not just the portions shown before, are summarised in Fig. 3.41.

 

  
Fig. 3.41: Pixel histograms of phase values in sawtooth images calculated by various phase-

sampling formulae. Upper row refers to Fig. 3.39; left: result from (3.19); right: results
from (3.57). Lower row refers to Fig. 3.40; left, (3.17); centre, (3.58); right, Fourier
method. The abscissae range from 0 to 2π; the ordinates give relative frequencies.

Since the displacement's phase gradient is constant in the test images and the histograms
were generated from an integer number of fringes (5.0), the true phase distribution is

uniform as in Fig. 3.7; but depending on the amount and type of δϕO , various distortions

are present. For α = 90°/sample, (3.57) (upper row, right histogram) yields the most

realistic phase statistics with only a small preference for ∆ϕ � 0. In the centre of the

lower row of Fig. 3.41, one can recognise the residual ripple in the phase map from

(3.58) by a small increase of the distribution at ∆ϕ � π; generally speaking, the amount

of detuning sensitivity may be seen from the height of that peak. Finally, the Fourier
method (lower row, right histogram) suppresses this deviation as well and leads to
almost uniform phase statistics.

While these effects exert a smaller influence on the measuring accuracy than the histo-
grams may suggest, they are characteristic of SPS. As seen above in Fig. 3.7, TPS yields
perfectly uniform distributions when the phase shift is well calibrated; but in SPS the
speckle phase gradients always cause systematic distortions. These even allow one to tell
from the histogram of a sawtooth image whether it is from TPS or SPS, and in the latter
case, what type of phase-extraction formula was used.
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4 Quantification of displacement-measurement errors
Since a major part of this work deals with the "quality" of displacement phase maps, it is
vital to have a numerical figure of merit at hand that allows to compare measurements
accurately enough. While the human brain's image processing allows to tell a "bad"

sawtooth image ∆ϕ (x, y) from a "good" one at just a glance, it runs into problems when

small quality differences have to be found or even quantified. Therefore, we must find a
reliable and standardised method to determine noise levels numerically.

The general problem when determining the noise in measured displacement phase maps

∆ϕmeas(x, y) is: what does the noise-free reference phase map ∆ϕref (x, y) look like, and

how can one obtain it? In practice, unless excellently calibrated displacements are avail-
able, one has to fall back upon the actual measurement. One common approach is to

generate ∆ϕref (x, y) by spatially smoothing the noisy phase map ∆ϕmeas(x, y) as much as

possible and to obtain an average displacement phase-measurement error

�δϕ�=�
∆ϕmeas(x, y) – ∆ϕref (x, y)
� or a so-called root-mean-square (r.m.s.) displacement

phase-measurement error σ∆ϕ = ( ( , ) ( , ))∆ ∆ϕ ϕmeas refx y x y− 2  from a comparison of

the "raw" and the smoothed data. Such approaches are widely used and give reasonable
results, but the best way to reduce the noise in a sawtooth image will most likely depend
on the input image; this is, the smoothing filter's parameters and/or the number of itera-
tions remain a matter of user judgement. Since we intend to compare TPS and SPS, and
to find improved phase-extraction methods for SPS later on, we need comparable per-
formance data throughout a very wide range of fringe densities and noise levels, so that
smoothing images "by hand" does not seem to be universal and accurate enough. There-

fore, to generalise the process of finding the best-matching ∆ϕref (x, y), I felt the need to

develop an almost fully automatic procedure.

4.1 Previous methods

We start with a brief survey of some existing noise reduction methods; while their
objective has seldom been an accurate quantification of experimental errors, their pur-
pose is certainly to improve the reliability of experimental data, which happens by

approximating ∆ϕref (x, y), the true phase map, as closely as possible. Although we are

aiming at a method to evaluate sawtooth images, we also include some achievements of
noise handling in secondary interferograms. We will, however, put some emphasis on
the processing of sawtooth images and point out specific difficulties with various
filtering schemes.
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4.1.1 Processing of correlation fringes

There is a wealth of smoothing and filtering methods to generate clearer fringes from
ESPI subtraction images that can then be used for the phase-of-difference method, or
possibly for direct evaluation. It is important to realise that the design of filters for cor-
relation fringes must take into account that the speckle noise is multiplicative in
secondary interferograms. This is not a generic property of the speckle effect [Tur82];
however when correlation fringes are formed as described in Chapter 3.1, this is valid, as
can instantly be seen from (3.4) and related expressions.

The general problem is to smooth the correlation fringes as much as possible while
preserving details of the image, which is a demanding task in image processing. A help-
ful tool to quantify speckle noise is the so-called speckle index [Cri85], here defined for
a 3�3 neighbourhood of pixels (k, l) as

( )

( ) ( )

s
N I

I I I I

kl

kl

kl k i l j k i l j kl k i l j
ji

k l

N

=
−

−

= =

−

∑

∑∑+ + + + + +
=−=−

1

2

1

9

2

1

1

1

1

1 1

1 ∆

∆

,

max min , ,, , ,

with

� �

(4.1)

where –1� i, j �1 in an image of N 
 
2 pixels, and the normalisation accounts for the exclu-

sion of the image edges. Depending on the specific application, a larger neighbourhood
(
imax
,
jmax
 >1) may be chosen. The quantity s can be regarded as a measure of the
noise-to-signal ratio and is useful to assess the performance of specially designed filters.

When the reference data are known (typically in computer simulations), it is possible to
employ a quantity called image fidelity, defined as [Dáv94]
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and indicating the similarity of a real image to the ideal one; as in (4.1), the error is
weighted by the bias intensity to obtain a noise-to-signal figure.

Many types of specialised routines, partly involving considerable computational or
experimental effort, have been developed. These are, inter alia, low-pass filtering with
contrast enhancement, polynomial fitting [Var82], binarising and xor processing

[Nak83], geometric filtering [Cri85], image segmentation, fringe thinning with phase
interpolation [Yat82, Ost87, Eich88], variance algorithm [Cre87], averaging over differ-
ent speckle pattern realisations, either in the image plane [Cre85c, Fre92] or in the
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Fourier-transform plane [Hun92, Hun93b], scale-space filter [Dáv96], wavelet analysis
[Kau96, Ber97] and direct correlations [Schmi97].

The simple approach of discarding the high spatial frequencies of the speckles in the
Fourier plane has been shown to require considerable user interaction [Ker89], unless
the fringe patterns are very simple, or to blur image details, e.g. holes or edges [Dáv96].
This can be circumvented by recording the frequency content of the speckle pattern
separately and dividing it out from that of the correlation fringe image [Bie89]. Equiva-
lently, it can be subtracted on a logarithmic scale, which accounts for the multiplicative
nature of the noise.

All of these methods have led to substantial improvement in the fringe evaluation while
simultaneously minimising interaction and arbitrariness; but the advent of phase-shifting
in ESPI has greatly superseded their application. However, phase shifting is still not
fully available in double-pulse addition fringes [Kau94, Pou95], so that the need contin-
ues to analyse correlation fringes. Today there are specialised fringe-fitting procedures
[Yu 98, Schmi98] that rely on a priori information such as the sign of deformation and
the power spectra of signal and noise, which leads to results that can easily compete with
the accuracy of standard phase shifting. Also, the use of Bayesian inference [Mar97,
Schmi97, Lir99] has proven helpful to restore low-noise data from correlation fringes.
A promising class of fringe filters is known as regularisation functionals [Mar97,
Ser97a], which are essentially narrow bandpass filters that adapt automatically to the
local fringe frequency and thus evade the problems associated with fixed filter sizes.
While the listed methods are very powerful, their main drawback remains that they
require the operator's careful choice of filter parameters to obtain the "best" results.

4.1.2 Processing of sawtooth fringes

In Chapter 3.2.1, we have seen that the difference-of-phases method is more suitable for
our purpose, so that we need not prepare perfect correlation fringes for the phase calcu-
lation, nor even try to obtain phase data from only one secondary interferogram. Unfor-
tunately, the figures of merit (4.1) and (4.2), normalised by the local speckle intensity,

fail in our intended application to phase maps because in ∆ϕmeas(x, y), the information
about the underlying speckle intensities is discarded.* In what follows, we will therefore
simply regard the phase noise as additive [Cap97] and investigate some standard
filtering procedures for phase maps.

                                           
* However, it has been shown in [Hun97, Leh98] that the reliability of ∆ϕmeas(x, y) is proportional to
MI, i(x, y)�MI, f (x, y), where i denotes the first and f the final object state; this has been used for
optimised filtering [Hun97, Cog99] and could also serve as a normalisation to obtain a signal-to-
noise figure for phase maps. While this way of generating ∆ϕref (x, y) leads to good results, it would
of course not eliminate the noise.
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Generally, low-pass filtering of sawtooth images is very efficient to suppress the "salt-
and-pepper" noise spikes, and consequently, even a filter size of 3�3 pixels effects a
significant reduction of the residual noise. The issue of image blurring is very much the
same as above, however the additional difficulty arises that the 0�2π phase jumps or,
equivalently, the 0�255 grey-level jumps, need to be preserved as faithfully as possible
by the smoothing operation.

4.1.2.1 Smoothing the arctangent

The edge-preserving property of the median filter has made it the common choice for
smoothing sawtooth images for a long time. However, this type of filter does not per-
fectly retain the 0�255 jumps. If the ideal grey value for a pixel is 0 or 255, the median
filter will not be able to reproduce it because it will never find values below 0 or above
255, which would be necessary if 0 or 255 were to be the median of a particular pixel
array. Fig. 4.1 illustrates the effect of median filtering by data from a measurement of a
mere out-of-plane tilt that should give a linear phase profile.
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Fig. 4.1: Effect of image smoothing by a median window. A single image row is displayed for
both raw and filtered data, but the median filtering was done, as usual, in 2-D.

While the spikes in the raw data could be removed with a 3�3 pixel filter, the distortions
of the fringe profile continued to distinctly calm down until the filter kernel size of 9�9
was reached. Even with so large a filter window, there are significant deviations from
the expected linear course of the phase. The 0�255 transitions where the phase is
"wrapped" (white-black edges in the image) remain sharp, but the fringe profile nearby
gets rounded off. Hence the raw data set will in fact be more accurate in those regions
despite the higher noise. With fringe densities as low as in the figure (some 5 fringes
over 1024 pixels), it would be possible and desirable to use very large median windows;
but due to the edge falsification, this must be ruled out.

There have been successful attempts to eliminate the edge falsification by generating a
second sawtooth image ∆ϕmeas(x, y)+ π, where the wrap edges are shifted a posteriori by

half a fringe width. Then both ∆ϕmeas(x, y) and ∆ϕmeas(x, y)+ π are filtered and only the
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wrap-free regions from both images reassembled, where, of course, the phase shift by π
must be undone in the second image [Vik90]; this is perfectly permissible because the
fringe offset in sawtooth images is arbitrary. It was found that the edge degradation is
very efficiently suppressed by this technique.

The so-called classification filtering method described in [Own91c] exceeds the per-
formance of the median filter: it is edge-preserving, much faster than the median
processing – that almost always involves pixel sorting – and also yields the best noise
tolerance of all filtering routines studied in [Own91c].

Another high-performance sawtooth-image filter is the partially recursive window
described in [Pfi93]; it proceeds line by line and stores the smoothed data back to their
original addresses, so that the filter window will operate on both smoothed and raw data
in subsequent image lines. The performance of this filter has been compared with other
filters recently in [Aebi99].

4.1.2.2 Smoothing sine and cosine

To cope with the problem of edges, it has also been adopted to work on, in the mathe-
matical sense, continuous data: the sawtooth image (signifying the optical phase) can be
decomposed a posteriori into the sine and the cosine part from which it was originally
generated [Lüh93] (cf. 3.4.5); this step has recently been given the name of
"trigonometric transform" [Sea98]. This gives two edge-free fringe profiles that can be
filtered with considerably larger filter windows, without affecting the 0�2π transitions
that appear again when the phase is re-calculated. However, too large a filter will attenu-
ate the contrast of the sine/cosine patterns or eliminate them completely, depending on
their spatial frequency; therefore the proper choice of filter size requires some care as
well. Fig. 4.2 shows the improvement brought about by this strategy when the same
filter size as above is used.
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Fig. 4.2: Effect of image smoothing by decomposing into sine and cosine part, low-pass filtering
each of them and re-calculating the phase. As above, single image lines are shown, and
the filtering was done in 2-D.
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Obviously, the edges and their heights are preserved in this case; but the fringe shape
still remains noisy. It improves a little when a median filter is used for the sine and
cosine images: unlike the low-pass filter that is simply an average formation, the median
filter really eliminates outliers. Yet it is clear that the ideal fringe profile will still not be
restored by this type of filtering operation. Moreover, it is definitely inappropriate for
the case of deterministic large-scale distortions of the fringe profile, as Fig. 4.3 shows.
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Fig. 4.3: Deterministically distorted fringe profile due to wrong phase shift; filtering in 2-D by the
sine-cosine method with 9�9-median windows.

In this case, a severe phase-shift miscalibration resulted in a concentration of calculated
phase values around 0 and 180° (see Chapter 3.4.6), and the filtering does not even
approximately restore the expected fringe profile. While this is certainly an extreme
example, it shows that filtering does not automatically generate an ideal reference phase
map ∆ϕref (x, y) where both random and deterministic errors ought to be small or absent.

Therefore, σ∆ϕ will be underestimated when calculated with the black curve in Fig. 4.3
as a reference.

From this, it gets clear that filtering sawtooth images to obtain reference data is always
only an approximation. This should perform well enough in most cases but seems inap-
propriate for us since there are some extreme fringe densities and noise levels to be
explored. And finally, the filter size cannot be standardised: the best choice would
change from image to image and still remain a matter of judgement.

4.1.2.3 Composite method

Recently it has been demonstrated that a very good filter can be implemented by using
the sine-cosine method with a small filter size together with a large number of iterations
[Aebi99]; the peculiarity of this algorithm is that the phase is always re-calculated
between the iterations. Once again, the phasor interpretation assists in understanding this
qualitatively: by determining the phases and re-deriving sine and cosine from them, the
length of the phasors is re-set to unity in each iteration, which counteracts the contrast
attenuation mentioned above and preserves any phase detail in the image that survives a
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single run of the filter kernel. Hence, one can in principle use arbitrarily many iterations
and therefore eliminate the speckle noise almost completely. This seems to be a promising
method to generate near-ideal reference data from whatever input fringe pattern. But still
the restriction is that the filter size must be optimised by the operator; and also, depending
on the accuracy required, the number of iterations may become very large. It was also
observed that at the borders of the image and/or at phase discontinuities in the image, the
phase profile gets more and more distorted with increasing number of iterations.

4.1.2.4 Comparing unwrapped data

The problem of white-black edges in the image can also be circumvented by unwrapping
the phase before comparing raw and smoothed data. Clearly, the raw image must not be
filtered before unwrapping, which restricts the application of this method to rather good
results with low to medium noise and moderate fringe density. Even then, the result will
not be a direct conversion of phase to displacement, since almost all unwrapping algo-
rithms substitute "bad" pixels by some "better" estimate and hence tend to suppress
errors without the user's request.

The attractive feature of this method is that, if the – continuous – theoretical displace-
ment function is qualitatively known, one can generate completely noise-free reference
data, e.g. a best-fit plane. The parameters for the displacement function are adjusted to
match the measured values best, which will be done by an iterative fitting process. An
example of this is presented in Fig. 4.4: the sawtooth image ∆ϕ (x, y) whose fringe
profile has been shown in Fig. 4.1 and Fig. 4.2 was unwrapped – without prior filtering –,
and a best-fit plane was subtracted from the resulting height data ∆d(x, y). Hence, the

residual displacement deviations δ d(x, y) – scaled back to grey levels to allow a

comparison with the previous figures – could be directly evaluated for their rms, σδ d .
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Fig. 4.4: Deviation δ d between unwrapped sawtooth image and best-fit plane (δ d = 0). "1/4 data":
average of 4 lines of input image; "1/8 data": average of 8 lines of input image; see text.
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Comparing the deviations δ d in Fig. 4.4 with the deviations of the white curves in Fig.

4.1-Fig. 4.3 from the expected linear fringe profile, it is evident that a substantial unin-
tentional smoothing has occurred: the spikes have been removed. This is in part due to

the abovementioned pixel replacement during the conversion of ∆ϕ to ∆d by the

unwrapping algorithm; but the more important contribution comes from the data reduc-
tion that could not be switched off [Ett97]: on unwrapping with the highest selectable
resolution, an image with, e.g., 1024�768 pixels will be shrunk to 256�192 averaged
height values, which, as known, reduces the spatial resolution and the noise. On testing a

two times lower output resolution, one finds however that the values for σδ d are almost

the same for the corresponding image lines out of a 256�192 entry field (denoted by
"1/4 data" in Fig. 4.4) and out of a 128�96 entry field (denoted by "1/8 data" in Fig.
4.4), respectively; this is, little further data smoothing takes place after the unwrapping
step. While the automatic noise suppression during unwrapping is certainly useful for
practical tasks, it runs counter to our intentions of quantitative error determination, and
is therefore not considered further.

4.2 Noise quantification in this work

For a quantitative comparison of TPS and SPS, we will have to test different speckle
sizes, fringe densities, and experimental set-ups, which means that a universal method is

needed to find the reference data from which to calculate σd . From the preceding discus-

sion, it appears desirable to avoid estimating ∆ϕref (x, y) from the experiment, which

means that the theoretical displacement function should be known. Furthermore,
unwrapping should be avoided because it involves additional, and sometimes unknown,
image processing by the unwrapping algorithm.

A concept fulfilling these requirements is fitting a synthetic, noise-free sawtooth image
to the completely unprocessed original one. This of course requires that we know very
well what type of fringe pattern the experiment should generate. We choose a linear
phase course in x- and/or y-direction as displacement function, which gives straight and
equidistant sawtooth fringes with arbitrary density and direction. This approach is suffi-
ciently general for our purpose: provided the field of sensitivity is quasi-uniform, it
adapts to out-of-plane tilts, and in-plane rotations.

Since the global phase is not controlled in most of the experiments, the positions of the
white-black edges can vary considerably for otherwise identical displacements; therefore
the synthetic fringe pattern has to be given the correct phase offset as well.

Together, we have three parameters to optimise in order to obtain the best-matching
synthetic image: (i) the number of fringes per image width (1024 pixels) in x-direction,
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Nx ; (ii) the number of fringes per image height (768 pixels) in y-direction, N'y ; and (iii)
the phase offset N0 at some arbitrary point. For the latter, a practical choice is the upper
left corner of the images that is interpreted as (0,0) by computer graphics.

In the plots that follow in Chapters 5 and 6, N'y is multiplied by 4/3 to yield Ny �"fringes
per 1024 pixels", so that the fringe densities, not the actual fringe numbers in the image,
are equal when Nx =Ny . Since we are evaluating phase maps, the signs of Nx and Ny must
match the respective phase gradient in the image. Every triple (Nx, Ny, N0) is a point in
IR3 from which a noise-free sawtooth image can be generated. Since we are interested in

the rms of the displacement-measurement error, σd , first a least-squares fit must be run

to find that ∆ϕref (x, y) which minimises σ∆ϕ , and then σ∆ϕ must be converted to σd via

the interferometric sensitivity vector. The quantity actually used for the fit are the pixels'
grey values in the 8-bit phase map representations.

In multidimensional parameter spaces, it is generally not easy to implement fitting algo-
rithms; most of them are extensions of one-dimensional strategies. They tend to be
mathematically complicated and require some care to make them reasonably fail-safe.
Apparently, there is only one genuinely multidimensional fitting strategy, namely the
"downhill simplex method" that is described in detail in [Pre88]. It is easy to code and
extend to more degrees of freedom, which is presumably why several mathematics pro-
grams also include a "simplex" module. Although the simplex method is comparatively
slow, it has a high inherent robustness (indeed, it never failed to terminate correctly in
thousands of runs for this work).

A simplex in IRn is a (hyper-)body set up by n+1 vertices; it is the simplest body one can
create in the respective dimensionality. In IR3, a simplex is a tetrahedron. Because this is
the parameter space that we are in with our type of sawtooth images, we consider this
example to clarify how the strategy works. Initially, the routine is passed a starting ver-
tex, which is the user guess for (Nx, Ny, N0). From this, the noise-free fringe system

∆ϕref (x, y) is calculated to compare it with ∆ϕmeas(x, y). The resulting σ∆ϕ is assigned to

the first vertex. Then, the three other vertices are established by simply varying each one
of the parameter co-ordinates a little; this 3-bein ensures that a volume is generated

instead of a plane or a line. Each of the vertices defines a slightly different ∆ϕref (x, y)

and thus leads to its corresponding σ∆ϕ , so that we have a set of four different σ∆ϕ . The

vertex that has generated σ∆ϕ,max is the worst-fitting point, and hence the one to move

through the IR3 to find a location closer to the minimum for it. (There are many local
minima, but with an accuracy of ¼ fringe for the starting values, the absolute minimum is
safely found.) This is done by means of the geometrical operations sketched in Fig. 4.5.



116                                  Quantification of displacement-measurement errors                                        

⇒σ∆ϕ,min

⇒σ∆ϕ,max

a)

b)

c)

d)

Fig. 4.5: Downhill simplex data fitting strategy in 3 dimensions (see text). Figure taken from
[Pre88].

During the fitting process, the simplex must remain non-degenerate, i.e. truly 3-dimen-
sional, which is guaranteed by the shown sequence of trials. Assumed the "worst" and
"best" vertices are as in Fig. 4.5 at the beginning – or any other stage – of the fitting
process, the first trial is step a), a reflection of the worst point through its opposite – here
shaded – surface (generally, through the centre of gravity of all other vertices). If the

new σ∆ϕ is then found to have decreased, an expansion as in step b) will be tested. If σ∆ϕ

decreases further, this larger step toward the minimum is done. If no improvement
comes about by step a), step c) is executed: the tetrahedron just shrinks away from the

worst point. If this does not reduce σ∆ϕ either, the tetrahedron is simply contracted to-

wards the best-fit point, as in step d): only the "best" vertex is fixed, and all three other
points are moved towards it, so that the resulting tetrahedron will be the dashed outline.
Then the process repeats with a new worst point, and if we are lucky, the former worst
point could be the new best one. In each iteration, the currently worst estimate of
(Nx, Ny, N0) is subjected to the trial sequence, whereby the tetrahedron creeps through the
IR3 to enclose the minimum, and then to contract until the desired relative accuracy of
the rms values is reached. As an example, Fig. 4.6 presents a comparison of ideal and
measured phase map at the final iteration of the fitting procedure. In this case, the itera-

tions terminated at (σ∆ϕ, max – σ∆ϕ, min)/σ∆ϕ, min =10–5. The ideal data have been digitised

for visualisation only, but the fitting routine uses the C language's long double

numerical format.
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Fig. 4.6: Downhill simplex algorithm at work, just executing the last iteration. Upper half, best-fit
∆ϕref (x, y), laid over ∆ϕmeas(x, y) still visible in lower half.

The disadvantage of the method is that every iteration involves the generation of
1024�768 synthetic phase values and the comparison to their measured counterparts.
This took � 4 s on the Pentium-233 system used. Consequently, one determination of

σ∆ϕ with 40 to 50 iterations took some 3 minutes, so that most of the results of Chapters

5 and 6 come from batch-fit sequences that ran overnight. An advantage of this
expensive approach is that the output is an average over the whole image and therefore
statistically very reliable.

The method was tested with synthetic fringe patterns with various known amounts of
random noise, and it was verified that with the termination threshold given above, the
pre-set Nx , Ny and N0 could be found with an accuracy of 0.01 fringes even at very high

σ∆ϕ , which were therefore also determined correctly. Re-starts of the routine always led

to the same results within this accuracy.

The least possible σ∆ϕ for non-constant phases is (by digitisation of measured data) 0.29

grey values or 0.41°; the largest detectable σ∆ϕ (trying to find a fringe system in random

noise, e.g. a speckle phase map) amounts to 73.9 grey values or 103.9° (see also
[Own91c]). This is the rms of a uniform distribution within the range [–128,128), corre-
sponding to phases in the range [–180°,180°). The error is confined to [–180°,180°)

because phase errors larger than 180°, i.e. of �(180°+ ε), 0 < ε < 180°, are wrapped back

onto �(180°– ε) due to the cyclic nature of the phase. As an example, consider Fig. 4.1

and Fig. 4.2: the noise spikes are highest near the black-white edges, but this of course
does not mean that the noise also is. The pronounced "salt-and-pepper" noise near the
sawtooth edges is only a characteristic of the visual phase representation. These merely
visual problems with the representation of a non-unique phase have also been discussed
in Chapter 2.3.2.

As mentioned before, the fitting method can be easily extended to greater dimensional-
ity. If, for instance, a correlation fringe pattern is to be evaluated, two degrees of free-
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dom, namely Ib and MI , are added and the algorithm can determine the fringe visibility
in IR5. More complicated fringe structures could also be treated. But every new variable
increases the number of iteration steps as well as the time for a single iteration, so that
the issue of speed gains importance in such applications.

Since the resulting measurements of σ∆ϕ will mostly appear converted to graphs of σd in
the following chapters, it may be helpful at this point to provide the reader with a picto-
rial representation of the various amounts of noise. The image parts grouped in Fig. 4.7
are taken from an out-of-plane TPS measurement series with decreasing object
illumination.

The last sawtooth image in the figure is hardly discernible as such and therefore raises
the question whether results like this are of any use at all. It turned out, however, that the
filtering procedure described in section 4.1.2.2 still improved the image sufficiently to
enable correct unwrapping; but as explained above, the phase error could be determined
without doing so. Other examples of sawtooth images severely degraded by synthetic
Gaussian noise have been presented in [Kad97].

Fig. 4.7: Image segments from results of deformation measurements using TPS with varying, and
rather weak, object illumination. σ∆ϕ as grey values: 13.3, 21.2, 28.0, 40.3, 51.9 and
63.1; as phase: 18.8°, 30.0°, 39.5°, 56.9°, 73.3° and 89.0°, in obvious order.

From the preceding overview of methods, it is clear that the approach to noise quantifi-
cation presented here is new only in that it avoids unwrapping before the best-plane fit;
however, it is the only strategy known to me that can generate noise-free data with no
user interaction – except for the input of starting parameters – even from the worst of
results, and is hence free of arbitrariness. While this may not always be necessary, it is
desirable from a methodological point of view.
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5 Comparison of noise in phase maps from TPS and SPS
Over the years, TPS has become a well-established technique that is confidently used in
many applications; SPS is far less frequently used in ESPI and seldom considered as an
alternative despite its ease of use and immunity to instabilities. And there are indeed rea-
sons to doubt whether SPS can compete with TPS in ESPI: the small aperture needed to
generate speckles large enough for SPS leads to decreased light efficiency, reduced spa-
tial resolution, and also accelerates aperture-plane speckle decorrelation. Moreover, the
spatial intensity and phase variations of the speckle field obstruct an accurate phase cal-
culation, all the more as the number of available phase samples is very limited.

But also in TPS, where almost any error-compensating phase extraction with any num-
ber of intensity readings could be employed, it is customary to use Carré's [Car66] or
Schwider's [Schwi83] formula. This is because not even the most sophisticated of for-
mulae will help against speckle decorrelation and pixels with too low modulation MI .
Therefore, the uncertainty estimates have not changed much over the years; they range

from λ/15 [Nak85] to λ/30 [Rob86, Ker88] or even λ/50 [Vik91, vHaa94], depending on

whether correlation fringes or speckle phase maps are evaluated, and in the latter case,
also on the fringe density.

As yet, there are no corresponding data available for SPS, so that the decision which
method to use remains a matter of presumptions. The present chapter is intended as an
attempt to fill this gap [Bur00a]. Although it must be borne in mind that the data pre-
sented here are, strictly speaking, only valid for the interferometer and test object used,
they do allow a comparison of TPS and SPS.

There are many parameters to be tested in such a study. The most essential ones are the
phase shift and the reference-to-object intensity ratio to use. Speckle size and shape can
be expected to play a special role for the fringe quality in SPS; and by varying the fringe
densities, we will get an idea whether the reduced spatial resolution of SPS matters in
practice. Moreover, we will test the performance of TPS and SPS under very low illumi-
nation levels to learn what restrictions the smaller aperture for SPS effects.

Although we will of course use imaging optics, we will determine the speckle size as if
we were dealing with objective speckles; this is owing to the slightly modified objective
shown in Fig. 5.1. When we take D as the diameter of the aperture and z as its distance
to the camera chip, (2.43) remains perfectly valid, although there is no "free" scattering
after the lens anymore; but z is large enough for this simple geometrical formula to
function correctly, as was also confirmed by accurate measurements of the speckle size
as described in 3.3.1.
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While the out-of-plane measurements can be carried out with the same interferometer
geometry for both methods, the symmetrical-illumination in-plane layout for TPS
[Lee70] cannot be reproduced for SPS. Therefore we will test two different approaches
of in-plane displacement measurements with SPS to gain a "three-dimensional" insight.

In order to obtain comparable data, it is essential to carry out both TPS and SPS meas-
urements under experimental conditions as similar as possible. Therefore I built a
speckle interferometer suitable for TPS and SPS measurements; especially for the out-
of-plane set-up, only a minor change is necessary to switch from one method to the
other. For the other configurations, changes of rather different extent are necessary.
While it was possible to maintain the imaging geometry for the mixed in-plane/out-of-
plane configurations and also for the pure in-plane TPS set-up, the pure in-plane SPS
assembly has little in common with the "standard" set-up.

5.1 The experimental set-up

The out-of-plane arrangement is shown in Fig. 5.1. The basic layout is similar through-
out Chapters 5 and 6, and the front-end changes of the set-up for the other geometries
are described later in the context of the corresponding measurements.
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Fig. 5.1: Optical set-up used for TPS and SPS. Abbreviations: M, mirrors, BS, beam splitters, L,
lenses, MO, microscope objectives, PF, polarisation filter, PZT, piezo actuator, A,
aperture stop; upper left: detailed view of A as seen from the direction of the camera.

The light from a 50-mW HeNe laser (λ � 633 nm) is split by BS1. The object light is

expanded by MO1 and collimated by a large lens of 250 mm focal length, L1. This
serves to obtain an almost uniform field of sensitivity [dVeu97]. The mirror M3 directs
the light onto the object at an angle of �11.5° to the surface normal, which gives a
quasi-out-of-plane sensitivity. The light spot on the object has a diameter of some 10 cm,
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of which only 28.5�21.5 mm2 are imaged onto 1024�768 pixels of the CCD sensor by
L2 ( f =100 mm) with a magnification of M � 0.26. For a perfectly uniform field of sen-
sitivity, the object would have to be imaged telecentrically; but thanks to the small field
of view, the error introduced by the conventional imaging geometry is negligible.

The object, a flat aluminium plate, can be tilted about all three spatial axes; however the
x and y rotation axes lie 4.5 cm behind the plate's surface, which gives rise to lateral
speckle displacement during out-of-plane tilts. The axis of in-plane rotation coincides
with the optical axis. The aluminium plate is coated with a white chalk spray that causes
complete depolarisation. Thereby an incoherent background is present in all of the
measurements, which is a realistic scenario.

A second beamsplitter BS2 together with mirror M2 guides the reference light path close
to the one of the object. The mirror M2 can be displaced by means of the piezo-electric
translator PZT (PI-170) and thus adds the possibility to use TPS. The polarisation filter
PF attenuates the reference light to the extent required. By MO2 the reference wave is
coupled into a single-mode fibre that is held in place by a bent syringe needle. The refer-
ence wavefront that leaves the fibre end (cut with blunt scissors) is very smooth.

The aperture stops A are laser-cut aluminium plates of 0.2 mm thickness with circular or

elliptic holes of various diameters to generate different speckle sizes. The distance ∆x of

the fibre end relative to the centre of the aperture stop determines the spatial phase shift

αx (∆x). It is set to zero (∆x = 0) for the TPS measurements and to the desired αx (∆x) for

SPS, and calibrated by the Fourier method [Bot97]. Since the necessary ∆x is frequently

larger than the radius of the aperture, there are slits adjacent to the holes through which
the reference light can pass, which is also depicted in Fig. 5.1 as seen from the direction
of the camera. To obtain "clean" power spectra of the interferograms, the rest of the slit
is covered again once the fibre end is correctly positioned, which becomes very impor-
tant for the smaller apertures. The aperture shape for elliptical speckles is indicated by
the broken line; thus the speckles will be elongated in x direction.

For TPS, the slits are covered completely and the fibre end is brought to the centre of the
aperture. The syringe needle then obscures a part of the aperture, which becomes the
more important the smaller the aperture is. To remove the spatial phase shift, the Fourier
method can assist as well: the interference sidebands in the frequency plane are shifted
into each other (see Chapter 3.3.1).

To shift the phase temporally, a control bit from the PC triggers a digital sawtooth wave-
form generator (HP 33120A) that drives the PZT via an HV amplifier (built in-house).

The voltage ramp is chosen so as to generate a nominal phase shift of α t , matching

αx (∆x) to obtain comparable data. While the temporal phase shifting is in progress, a
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sequence of consecutive camera frames* is stored, of which the first and the last one are

subtracted. They have a nominal phase difference of 2π and should look exactly the

same. If their mean brightness difference exceeds a certain threshold, an external
mechanical or thermal disturbance is presumably present, the frames are discarded and
the sequence is repeated. Otherwise the phase shift of all recorded frames is assumed to

be correct; additional tests** confirmed α t to be accurate within �5% when this tech-

nique was used. The subtraction method is known as "dark frame" calibration method
[Che85]. Note here that both SPS and TPS are implemented as integrating-bucket
versions.

5.2 Preliminary investigations

To obtain the best performance for both of the methods, some experimental parameters
have to be fixed. These are the phase shift to work with and the optimal reference-to-
object intensity ratio. The latter will be treated in Chapter 6.1.1 in a wider context; for
now, let us retain that the standard beam ratio B=R /�O� is 10:1 in this chapter. Also, it
is important to get to know the test object and to assess the reliability of the results. The
preliminary steps are briefly described below.

5.2.1 Choice of phase shift

Since it is essential for light efficiency to keep the speckles as small as possible, the
number of phase sampling points for SPS is restricted to the minimum, which is three
(see Chapter 3.2). Therefore, we use a three-phase formula also in TPS. For this number

of samples, the two common values for the phase shift to choose from are α = 90° or

α =120°. Theoretical results [Cre88, Sur97a] suggest that for TPS, 120° should be the

better choice. For SPS however, the findings of Chapter 3.2.2 indicate an advantage for

α = 90°. The error quantification established in Chapter 4.2 now allows us to check these

presumptions experimentally. For this purpose, I recorded a series of out-of-plane tilts
with various sawtooth fringe densities for each of the phase shifts in question, by both

TPS and SPS. The resulting σ∆ϕ in the sawtooth fringes was converted into σd and plot-

ted over the number of fringes in the sawtooth image. This graph is Fig. 5.2.

The σd measurements show that a phase shift of 120° is clearly the better alternative for

TPS: particularly in the region of low fringe densities, the 120° method yields distinctly

                                           
* It turned out that the frame grabber was not capable of recording a full-format sequence of 10242

pixel frames (frame frequency: 12.5 Hz) reliably, which is why only 1024�768 pixels were used.
** These rely on executing a temporal phase-shift sequence without removing the spatial phase shift.
The global phase offsets between the recorded interferograms can then be determined by
calculating their phase maps with SPS and subtracting them. In principle, the same was done in 5.3;
see also [Lai91, Küch94, Win95].
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the lowest error. Apart from the generally higher noise level, the accuracy of the SPS
measurements shows a less pronounced dependence on the phase shift. Moreover, the
90° formula performs slightly better, in contrast to the theoretical findings in [Bot97],
but in agreement with the more speckle-specific investigations in Chapter 3.2.2. The
slight difference in performance does however not appear to discourage using 120° also
for SPS in this study, and we will do so to maintain comparability, but will come back to

α = 90° in SPS in Chapter 6.1.2.
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Fig. 5.2: Test of phase shifting angles for TPS and SPS: σd in wavelengths over fringe count Nx .
For TPS, ds = dp , and for SPS, ds = 3 dp .

For higher fringe densities, TPS and SPS deliver similar performance; this is partly due
to the aforementioned fact that significant speckle displacement occurs for larger tilts,
which contributes the larger part to speckle decorrelation when the speckles are small.

5.2.2 Reproducibility of the σd values

While the fitting algorithm described in Chapter 4.2 yields a very reliable average of
phase errors in one sawtooth image, this tells us nothing about whether we will get the
same error in a second experiment. This deserves particular attention because the test
object had not been specially made: it was a large mirror mount onto which a rotation
stage was fitted with the aluminium plate on it. The out-of-plane tilts were generated by
manual setting via the fine-thread screws of the mirror mount, and the in-plane rotations
by manual setting of the rotation stage via a reduction gear. While the latter yielded
excellent reproducibility of the measured displacement errors, the former showed some

fluctuations, which had to be investigated in more detail to learn how reliable the σd

measurements are. Fig. 5.3 shows the results for a set of SPS experiments. For each of
the speckle sizes 1.5, 3, and 6 dp , the tilt sequence was repeated 10 times; the averages

�σd� with their respective standard deviations σσd are given in the figure. This was done

for both vertical and horizontal sawtooth fringes.
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Fig. 5.3: Reproducibility of measurements of σd vs. Nx and Ny for out-of-plane tilts. Left: tilt about
y-axis, vertical fringes; right: tilt about x-axis, horizontal fringes. Note that the ordinates
begin at σd = 0.04 λ to expand the error bars.

For a speckle size of 6 dp , the reproducibility is excellent. At low fringe densities, the
spatial phase measurement works well because of the low intensity and phase gradients
in the speckles; but as the tilt increases, aperture-plane decorrelation impairs the accu-

racy. For ds = 6 dp , the σd curves are very similar for Nx and Ny . At lower speckle sizes, a

higher bias noise is present (the curves start from higher values of σd
Nx, Ny = 0), but in

turn, �σd� increases more slowly with the fringe density. Apparently, a reduction of ds

effects an increase of σσd particularly for tilts about the x axis. Hence, there are most

likely random in-plane object shifts of some µm, and subsequent speckle pattern shifts
on the sensor, when the object is tilted so as to produce horizontal fringes.

Therefore we will consider vertical fringes in most of the out-of-plane investigations;
although the performance was also checked with horizontal fringes and found to essen-
tially agree with Fig. 5.3, we would learn little from displaying those curves as well.

Since the tilts were adjusted by hand, there was also some fluctuation in the fringe den-
sities given on the abscissae of the plots. The error amounts to �¼ fringe for each
"basic" displacement step of 5, 10, 20, 30, and 40 fringes; and for compositions of
several of these (e.g. 100 fringes � 10+20+30+40 fringes), the deviation sometimes
accumulated to �1 fringe, which still seems negligible for plotting. Also, there was
slight interaction between the axes, i.e. the fringes were rarely exactly vertical or hori-
zontal; this deviation remained within �¼ fringe per step as well and was not system-

atic. Although each curve for �σd� consists of only 12 data points, i.e. 12 different fringe

densities, the values are linked to "curves" for the sake of a better overview. This applies

likewise to the σd plots to follow, and will prove useful there.

Finally, in the TPS experiments, also the stability of the interferometer plays a role for
the accuracy of measurements. As mentioned before, I applied rather stringent a criterion
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to accept a phase-shifted frame sequence. Since the laboratory was in the 1st floor, with a
railroad and a motorway nearby, it saved much time to do these experiments with the
least possible building vibration – whose maximal power was at � 4.3 Hz –, i.e. between
midnight and 4 a.m.

5.3 Zero-displacement-gradient measurements

Of the results of phase measurements that will be presented here, those with zero dis-
placement gradient are the most general ones, since they do not depend on the specific
assembly's parameters but should be comparable for any set-up with only the speckle
size as the relevant quantity. The way to obtain such measurements is to leave the object
untouched and to compare two nominally identical object states, differing only by a

controlled or random global phase offset ∆ϕ. Unfortunately, in SPS the measured σd

depends strongly on ∆ϕ, which is due to the ample intensity and phase gradients in the

object speckle field; this has been discussed in detail in Chapter 3.4.4.

Therefore, the evaluation of zero-displacement measurement errors in SPS is quite an

elaborate procedure: one has to collect a set of phase maps with various ∆ϕ that suffices

to reconstruct the underlying continuous curve of σd vs. ∆ϕ and then determine the mean

of the errors. Since the interferometer was fortunately too stable to produce phase drifts

and fluctuations uniform in [0,2π), the piezo-driven mirror assisted in generating the

phase offsets. Of course, it has to move very slowly to generate quasi-stable interfero-
grams; I used an amplitude-modulated triangle waveform that was theoretically suitable

to distribute the global phases uniformly over [0,2π) when the interferograms were cap-

tured and stored at a fixed rate of 1/3 Hz. Fig. 5.4 shows results from this procedure for

three different speckle sizes and 120 measurements of σd for each of them.
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Fig. 5.4: Dependency of σd as determined by SPS on the phase offset ∆ϕ for various speckle sizes
and Nx =Ny = 0, cf. the error fringe profiles given in Fig. 3.39 and Fig. 3.40.
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As in Chapter 3.4.6, the qualitative appearance of the graphs in Fig. 5.4 suggests that the
underlying phenomenon could mainly be a linear miscalibration of the phase shift: when
we subtract one phase map from another, the errors thus produced theoretically cancel at

phase differences of ∆ϕ = 0 and π, and add up in between these values. In particular, this

explanation seems reasonable because the smaller the speckles, the higher their phase

gradients in units of dp and thus the larger σd . At ∆ϕ � π, however, σd does not reach the

minimum at ϕ0 � 0 again, which tells us that there are other error sources than wrong

phase shift alone; this has been interpreted in Chapter 3.4.6.

The dependence of σd on ∆ϕ is also found within displacement fringes (in which ∆ϕ
progresses deterministically from – π to π), so that the σd which we assign to sawtooth

images is in itself an average over all ∆ϕ. Examples of this behaviour are the white
curves in Fig. 3.39 and Fig. 3.40.

As can be seen from Fig. 5.4, the distribution of the ∆ϕ is still too irregular to permit a

direct calculation of the average; this effect does come from random phase fluctuations in
the interferometer. Therefore it was necessary to fit suitable functions (given in the figure
as well) to the data points and to determine the mean values of these instead. The values
finally obtained constitute the entries for Nx =Ny = 0 appearing in the following plots.

With TPS, none of the described detours is necessary; the phase error does not depend
on the global phase offset, provided the phase shift is calibrated exactly enough. Conse-

quently, one measurement with Nx =Ny = 0 suffices to determine the corresponding σd .

Furthermore, σd is uniformly distributed in sawtooth fringes from TPS, and there is no
such thing as an error fringe profile in this case.

5.4 Out-of-plane displacements

The sequence of tilts described in 5.2.2 was carried out for both phase-shifting methods;
the results for vertical fringes (varying Nx) are graphed in Fig. 5.5. The conversion factor

from phase to displacement is λ/713°, or equivalently, λ/(507 grey levels); this means

that one wavelength of displacement gives rise to almost two fringes in the sawtooth

image. Hence, the maximal detectable σd,max in the sawtooth images (cf. Chapter 4.2)

corresponds to 104�λ/713 � 74�λ/507 � 0.146 λ for the out-of-plane geometry.

In the interpretation of these plots, we will again have to bear in mind that we encounter
both types of speckle decorrelation here: (i), aperture-plane decorrelation, which pro-
gresses faster for small apertures (large speckles) as we increase the tilt; (ii), sensor-

plane decorrelation or speckle pattern displacement due to object tilt, which leads to an
increasing pixel position mismatch between initial and final speckle pattern and affects
the fringe quality more strongly for small speckles. It is true that the fringe quality could
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be partly restored by re-positioning the images to compensate the shift of the speckle
pattern, as suggested in [Leh98]; but as this would frequently involve non-integer pixel
shifts, we do not further pursue this approach. Despite this minor flaw in the set-up, we
will be able to carry out the intended comparison.
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Fig. 5.5: σd for ESPI displacement measurements with SPS (left) and TPS (right) as a function of
speckle size for out-of-plane displacements. The parameter for each curve is Nx , the
number of vertical fringes per 1024 pixels, as indicated in the legend boxes.

Not surprisingly, the zero-displacement measurements with SPS turn out best with very
large speckles, since this minimises the problems for the phase calculation. But the high
sensitivity to aperture-plane decorrelation leads to a fast deterioration of the fringe qual-
ity as the tilt increases. Also, at Nx =100, one fringe would consist of only one speckle at
ds =10 dp , and this is clearly below the limit of 4 speckles given in [Tan68]. For ds = 5 dp ,
which corresponds to 2 speckles per fringe when Nx =100, we can already observe a
distinctly reduced error. Further reduction of the speckle size does not greatly improve
the performance for this and other high Nx .

On the other end of the scale, at ds =1.5 dp , σd from SPS consists chiefly of bias noise

(i.e. σd is already at � 0.08 λ for Nx = 0) until decorrelation sets in. At moderate fringe

densities, i.e. up to some 30 fringes over the image width, we observe σd to increase

steeply for a speckle size below some 2.5 dp , which shows that the SPS method is not
very tolerant of low spatial coherence of the data points. In general, the SPS experiments
confirm a speckle size of about 3 dp to be most suitable. Since the available amount of
object light grows as 1/ds

2, we will not stop here, but try to further reduce ds , without

increasing σd , in Chapter 6.4.
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In the TPS experiments, a speckle size around 1 dp turns out to yield the best results for
low fringe densities; yet at larger tilts, we obtain better measurements with larger
speckles. This is due to image-plane speckle displacement: the same lateral speckle dis-
placement introduces less noise when the speckles are larger, although the pattern in
itself decorrelates faster.

With large speckles, the TPS measurements are worse than those from SPS as soon as
the object is moved. For high fringe densities and ds =10 dp , some entries are missing
from the curves because decorrelation had advanced in such a way that no trace of
fringes was left (of course, the fitting algorithm did find a minimum in the coarse ran-
dom phase map; but it always does). In this case, reducing the speckle size brings about
a larger improvement of performance.

For Nx � 40, SPS performs better than TPS for any speckle size. This demonstrates a
peculiarity of SPS: because of the spatially extended phase-sampling window (see
3.4.4), some smoothing of the phase values takes place as they are determined. The sam-
pling window has an extent of 3 pixels in the x direction only, which could introduce
anisotropy; but the errors from the Ny measurements agree with Fig. 5.5 quite well, so
that the one-dimensional phase sampling has no detectable effect.

The drastic increase of σd for the speckle size of 0.5 dp is somewhat surprising, since it

has been proven in [Leh98] that very good TPS measurements remain possible even
with much smaller speckles. In our case however, there are also slight random in-plane
shifts of the object that accompany the tilts. They do not show up in the left-hand graph
of Fig. 5.3 because of the larger speckles used there; but at ds = 0.5 dp , the accuracy
suffers noticeably from this minor effect.

To get an impression of what the obtained sawtooth images look like, Fig. 5.6 provides

some example results; the corresponding σd values may be found from Fig. 5.5.

Summarising this subsection, one can state that TPS is significantly more accurate than

SPS at low fringe densities. For SPS, the best range of ds is 2.5 to 3.5 dp , with σd � λ/15

for moderate fringe densities; for TPS, we find ds � dp to give a typical σd of � λ/20.

Imperfections of the test object prevented an extension of the TPS study towards smaller ds .
It turns out that in the presence of speckle decorrelation, SPS benefits from larger ds and
spatial phase sampling, so that the advantage of TPS fades quickly with increasing
object displacement.
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Fig. 5.6: Some examples of maps of ∆ϕ (x, y) that have been evaluated for σd . Upper row, Nx = 5;

lower row, Nx = 50; left, SPS with ds = 3 dp ; right, TPS with ds =1.5 dp .

5.5 In-plane displacements

When carrying out in-plane displacement measurements using SPS and assessing its per-
formance, the reference is the ingenious symmetrical pure-in-plane TPS configuration
[Lee70] with its excellent sensitivity. A pure-in-plane SPS configuration using a double
aperture has been established [Sir97a], and we will investigate its merits, but it also seems
worthwhile to modify the set-up of Fig. 5.1 for more oblique object illumination and to
gain in-plane sensitivity in this way, since this arrangement is by far easier to handle.

Therefore we start the investigation of in-plane measurement accuracy with a set-up that
has a mixed in-plane/out-of-plane sensitivity (henceforth abbreviated by "mixed sensi-
tivity") and again offers a possibility to compare TPS and SPS under the same experi-
mental parameters. As soon as pure in-plane sensitivity is demanded, the interferometer
assemblies are rather different, also from each other; we will discuss these in the second
part of this subsection.
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5.5.1 Mixed-sensitivity interferometer

As mentioned earlier, the set-up of Fig. 5.1 need only be slightly changed to acquire a
non-negligible in-plane sensitivity component, which is shown in Fig. 5.7.
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Fig. 5.7: Mixed-sensitivity set-up for detection of in-plane object displacements by TPS or SPS.

To obtain in-plane displacement sensitivity, the object is illuminated obliquely by means
of the additional mirror M4, whose centre is placed at co-ordinates (–xM4, 0, zM4). The
geometry is chosen to give an angle of incidence of � 53° to the surface normal for the
object illumination. Thus the sensitivity vector Sx is inclined by 26.6° to the normal, and
the in-plane sensitivity is half the out-of-plane sensitivity. The latter is not greatly
reduced in comparison to the quasi-out-of-plane configuration, but of no concern here.
The collimated illumination is particularly important for in-plane geometries, as was
shown in [Kun97, Alb99].

M3 has to be rotated to illuminate M4, and since this lengthens the light path in the
object arm, M2 is appropriately displaced to bring the temporal coherence back to its
maximum. This is rather important because the laser is being operated without an etalon
and its coherence length is therefore only �10 cm. This configuration detects in-plane
displacements along the x axis; for y-sensitivity, there is another mirror M5 above the
object (not shown here) with its centre at (0, xM4, zM4), so that the in-plane components of
Sx and Sy are of equal modulus and orthogonal on the x-y-plane. A rotation of the object
about the z axis then yields horizontal (with Sx) or vertical (with Sy) fringe patterns that
fulfil the conditions listed in Chapter 4.2. Thanks to the expensive bearing, the repro-

ducibility of the measured σd was excellent for this type of displacement, also with

smaller ds .
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The conversion factor from phase to displacement is λ/288° or λ/(205 grey levels),

which means that one wavelength of in-plane displacement generates 0.8 sawtooth
fringes. This has an important consequence: even "good" sawtooth images with low

phase error σ∆ϕ yield a large displacement error σd after the conversion. Indeed, as Fig.

5.8 shows, the ordinate scale of previously 0.146 λ for the out-of-plane measurements

changes to σd,max � 0.36 λ.
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Fig. 5.8: σd for ESPI displacement measurements with SPS (left) and TPS (right) as a function of
speckle size for in-plane displacements. The parameter for each curve is Nx , the number
of vertical fringes per 1024 pixels, as indicated in the legend box.

Since no object tilts are involved here, the image decorrelation is exclusively of type (ii).
Evidently, this does not change the qualitative course of the plots: they strongly resem-
ble those of Fig. 5.5. Again, a speckle size between 2.5 and 4 dp is found to be a good

choice for SPS and about 1 dp for TPS. The evaluation of σd with TPS and SPS, respec-

tively, for various Ny , led to similar performance as for Nx .

On comparing the σd obtained here with those from Chapter 5.4, it turns out that here the

σd are about 2.5 times as large as in 5.4, particularly for the SPS measurements, where

the factor is nearly exact. This is a direct consequence of the reduced sensitivity (� 40%

that of the out-of-plane configuration) and tells us that the σ∆ϕ in the underlying saw-

tooth images are very similar in both cases. The displacement information is encoded in
the interferograms in the same way, but by different displacements, for the out-of-plane

and in-plane configurations. Hence it is not surprising that also the σ∆ϕ are on a compa-

rable level. This result confirms that we now have reasonable performance data for
smooth-reference ESPI set-ups with TPS and SPS at our disposal.
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5.5.2 Purely in-plane sensitive interferometer for TPS

In the previous subsection we have seen the disadvantageous effects of a low sensitivity

on the σd of displacement measurements. Besides, it is desirable from a practical point of

view to measure the Cartesian components of displacement separately because this sim-
plifies the evaluation greatly. The way to carry out pure in-plane displacement
measurements is known since a long time [Lee70] and has become the common choice
because of its ease of use and its high sensitivity that is hard to surpass [Sir93, Joe95].

The basic interferometer is modified for symmetrical oblique object illumination as
sketched in Fig. 5.9. Component numbers skipped, or not starting from one, indicate that
the "original" components are still in place, which helps restoring the former set-up
accurately. In particular, the fibre assembly is disabled, but not removed.

By BS1, the light is divided into two beams of almost equal power; the "reference" beam
is directed into MO4 via M2 and M5. Although there is no distinction of object and ref-
erence beam in speckle-reference set-ups, we declare this beam the reference because it
is the one to undergo the temporal phase shift by means of the PZT that moves M2.
Since M2 reflects the beam at 45°, the phase shift must be re-calibrated. Theoretically,
the voltage ramp used for normal incidence should be augmented by �2; due to imper-
fections of the PZT, the true value was 1.33.
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M1

L4

L3
MO3

BS1

M4

M8M5
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M2/PZT

Object

CCD
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HV
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Waveform generator
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frame memory 
 trigger bit

Fig. 5.9: Optical set-up used for pure in-plane TPS measurements. Abbreviations: M, mirrors, BS,
beam splitter, L, lenses, MO, microscope objectives, PZT, piezo actuator, A, aperture
stop.

The "object" beam reaches M4 and then MO3, which is of the same type as MO4. Also
the collimating lenses L3 and L4 are of the same type ( f =140 mm), and via several other
mirrors each beam illuminates the object at an angle of 45°. In this configuration, B is
very close to unity to maximise MI .
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The layout seems somewhat complicated, but is necessary to attain equal paths for both
beams, and also facilitates leaving the imaging unit with L2 and A completely
unchanged.

The sensitivity vector lies in the object's plane in horizontal direction; in this case, only
x-displacements can be measured. The object rotation generates 1.4 horizontal sawtooth
fringes per wavelength of in-plane displacement. Consequently, the conversion factor

from phase to displacement is λ/509° or λ/(362 grey levels), which is approximately

halfway between the out-of-plane and the in-plane sensitivity that we have previously
been dealing with. (It would however be easy to increase this value: if both incidence
angles were � 53°, as in 5.5.1, we would get 1.6 sawtooth fringes per wavelength of dis-

placement.) The measured σd are shown in Fig. 5.10.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 2 4 6 8 10d s /d p

σ
d

/ λ

0 5 10 15

20 30 40 50

60 70 90 100

N y

Fig. 5.10: σd for ESPI displacement measurements with pure in-plane TPS as a function of speckle
size for in-plane displacements. The parameter for each curve is Ny , the number of
horizontal fringes per 1024 pixels, as indicated in the legend box.

Again, the ordinate reflects the change in sensitivity: σd,max � 0.20 λ for this geometry.

But since only 57% of the displacement of 5.5.1 are necessary to generate the same
number of fringes, there is less speckle decorrelation present than in Fig. 5.8. This
improves the performance significantly for higher fringe densities, although the opti-
mum of the speckle size still wanders towards two or more pixels for larger rotations.
Over the whole range of fringe densities, the accuracy is comparable to that obtained in
the out-of-plane TPS study. Apart from the comparison with SPS that we are to con-
tinue, this shows that speckle-reference ESPI is not very much inferior to the smooth-
reference configurations and that a 3-D TPS system with Cartesian sensitivities would

have well-balanced systematic σd in each of the directions.
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5.5.3 Purely in-plane sensitive interferometer for SPS

A set-up that facilitates exclusive in-plane displacement detection also with SPS has
been described in [Sir97a]. Because the sensitivity of this configuration is also adjust-
able, we are able to compare the merits of SPS and TPS also with pure in-plane interfer-
ometers of equal sensitivity. Fig. 5.11 shows a schematic of the interferometer.

The laser beam is expanded, collimated and directed normally onto the object by M4,
which is located so as to be out of the viewing paths. By M5 and M6, some of the scat-
tered light is directed towards the aluminium coated prism MP. It is attached directly in
front of the double aperture DA so that each "object beam" finds its own aperture to
reach the sensor. In this case, the imaging lens ( f =140 mm) is located immediately
behind the apertures, but still we can use the (equal) diameters of the apertures D for the
determination of speckle sizes by means of (2.43). Like the set-up of 5.5.2, this in-plane
configuration generates horizontal fringes only.
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Fig. 5.11: Optical set-up used for pure in-plane SPS measurements. Abbreviations: M, mirrors, MP,
mirror prism, L, lenses, MO, microscope objective, DA, double aperture; lower left:
detailed view of DA as seen from the direction of the camera.

By means of the distance ∆x between the centres of the apertures, each of diameter D,

the two speckle fields interfere at an angle on the sensor, which introduces the spatial
phase shift. Due to the spatial extent D of both the sources of "reference" and "object"
light, the power spectrum of the interference sideband that carries the signal is twice as
broad for a given speckle size as it is for the interferogram of one speckle field and a
point source. In other words, there will be twice the phase shift miscalibrations and
nearly twice the number of phase singularities disturbing the interferogram. Moreover, B
is fixed to unity, which makes all the improvements for smooth-reference SPS (see
Chapter 6) inapplicable. It is quite instructive to compare the power spectra of interfero-
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grams from the set-up in Fig. 5.11 with those from a smooth-reference configuration
(see Chapter 3.4.4). Fig. 5.12 shows the spatial frequency content of speckle-reference
SPS interferograms for two different speckle sizes.

  
Fig. 5.12: Power spectra of interferograms from pure in-plane SPS set-up; left, ds = 3.6 dp ; right,

ds = 6.0 dp . The scaling is logarithmic and contrast-enhanced.

The double aperture generates signal sidebands that are of the same extent as the speckle
halo itself, and at least 50% of the spectral power is inevitably contained in the speckle
halo, in contrast to smooth-reference interferograms. Hence, if the signal frequencies are
to be well separated from the speckle noise and to remain below the Nyqvist limit, the
speckle size must be twice that which was derived for a point-source reference in
Chapter 3.4.4.

In contrast to the TPS set-up, where the in-plane sensitivity is obtained by symmetrical
oblique illumination, the SPS in-plane method relies on oblique viewing of the object.
Unfortunately, the imaging geometry is now quite different from all the assemblies pre-
sented before, and also, the viewing under � 45° introduces a considerable perspective
error. In principle, this could be corrected by use of prisms as described in [Sir97b], but
in order to valuate the configuration in its basic version, this was not done here.

Owing to the perspective and the altered imaging geometry, the field of view is
68.5�36.5 mm2; we will have to take the greater image height into account when com-
paring fringe densities. (We continue working with the familiar fringe counts because this
keeps the quantity of "pixels per fringe" comparable.) Moreover, the apparent height of
the object (size in y-direction) changes with the x co-ordinate: it ranges from 35 to 38 mm,
so that the height statement is necessarily an average. Since the height changes have
opposite sign for the two viewing directions, there is also a position mismatch between
the superposed speckle images that is largest at the left and right edges of the field of
view, and can vanish only on a vertical line in its centre. This causes a slight sensitivity to
displacement gradients, as in shearing ESPI, but fortunately does not affect displacements
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in x-direction. Furthermore, the quality of the mirror prism bears some relevancy: a
pyramidal shape error (i.e. the prism is a segment of a high three-sided pyramid) will
cause a rotation of the images against each other. Indeed, such an image rotation, of � 2°,
was present, that added to the position mismatch caused by perspective.

The perspective error plays a role in so far as the fringes are not exactly localised on the
object surface. In white light-images of the object however, no significant defocusing
was present over the width (size in x-direction) of the image, which is due to the large
depth of focus by the small apertures.

Since the aperture sizes D can be no larger than the separation of their centres, ∆x, we have

D x
d z

D

z

x
s

x
≤ ⇒ = ≥ = °∆

∆122

360

.

λ λ
α  , (5.1)

where z � f is the distance of the aperture to the camera sensor. Hence, if we adjust αx to

120°/column again, the smallest speckle size we can get is ds � 3.7 dp . This can be seen
in Fig. 5.13, where this entry is the first one on the abscissa. Nevertheless, the plots are
scaled as in Fig. 5.10 to make the visual comparison easier. Because we have a symmet-

rical 45° set-up also here, the conversion factors and σd,max are the same as in 5.5.2.
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Fig. 5.13: σd for ESPI displacement measurements with pure in-plane SPS as a function of speckle
size for in-plane displacements. The parameter for each curve is Ny , the number of
horizontal fringes per 1024 pixels, as indicated in the legend box.

The first thing to notice is the large difference between the σd for zero and nonzero dis-

placements, which shows that the imaging imperfections described above come into play

as soon as the object is moved. From then on, however, the σd depend only weakly on the

fringe density. This weak dependency has three reasons: (i) Due to the larger field of
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view, we need only 59% of the rotation used in 5.5.2 to generate equal fringe counts, so
that there is less decorrelation owing to speckle displacement alone; (ii) the noise level

generally rises more slowly as it approaches σd,max , as careful inspection of the preceding

plots reveals. Hence, because we already start from a relatively poor fringe quality, there
is less possibility for the measurements to deteriorate. And (iii), the long paths for the
object beams and the oblique observation lead to problems with light efficiency, so that a
certain noise floor is already due to the camera, especially for the larger speckle sizes.

According to the figure, the best speckle size is around 6 dp ; in this case, the spectral
width of the signal sideband, or the extent of apparent phase-shift miscalibrations, corre-
sponds to the case of ds = 3 dp and a smooth reference. We have seen before that this was
a reasonable choice, only now there is no way to suppress the speckle character of the
interferogram by a bright reference wave, so that the signal cannot be made to stand out
against the speckle noise. This leads to a displacement error that is much larger than in
the case of pure in-plane TPS.

5.5.4 Direct comparison of the in-plane geometries

To summarise the findings from the in-plane experiments in a useful form, we shall re-
consider them in a direct confrontation; this is done in Fig. 5.14 with some selected Ny

for each set-up. The TPS mixed-sensitivity configuration does not appear here since the

pure in-plane configuration outperforms it clearly; the σd,max for the pure in-plane set-ups

are still at � 0.20 λ, which is indicated by the dashed white grid line.
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Fig. 5.14: Confrontation of σd for the different in-plane measurements. SPS mixed-sensitivity set-up:
all black; pure in-plane symmetrical set-up for TPS: all white, bold lines; and for SPS:
black bold lines, white filled symbols. The selected Ny are indicated in the legend box.

For Ny = 0, the σd for both of the SPS methods are very similar. With increasing dis-

placement, the pure in-plane configuration gains an advantage thanks to its high sensi-
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tivity, but also because the field of view is larger; the discussion given in 5.5.3 applies
likewise here. But since the displacement data are output as sawtooth images first, it is
also important how co-operative a sawtooth image will be in unwrapping. To understand
this, Fig. 5.15 provides a visual demonstration of the best sawtooth images from each
method for Ny =10 (which corresponds to 7.5 fringes/768 pixels, cf. Chapter 4.2).

  
Fig. 5.15: Visual comparison of sawtooth images with Ny =10 from the various pure in-plane set-

ups. Left: TPS pure in-plane, ds =1.5 dp ; centre: SPS mixed-sensitivity, ds = 3 dp ; right:
SPS pure in-plane, ds = 6 dp .

The images confirm that TPS delivers good phase maps (σ∆ϕ � 25.7°) with good sensi-

tivity. The result from the mixed-sensitivity SPS configuration has reasonable quality in

terms of σ∆ϕ (� 43.0°); but on converting to displacements, the σd value (cf. Fig. 5.14)

suffers from the relatively low in-plane sensitivity. For the pure in-plane measurement

by SPS, the σd value is lower; but as to be seen, σ∆ϕ has the highest value of all the

examples (� 64.3°). While this example does not present images that are difficult to

unwrap, it does show that the σd figure of merit alone can be misleading when the qual-

ity of images is to be judged. In terms of σ∆ϕ , the mixed-sensitivity method is preferable

for SPS: for Ny = 0, its σ∆ϕ is around one-half that of the pure in-plane SPS method, and

it is still by some 14% better at Ny =100, which may then allow to skip some filtering
before unwrapping can take place.

Moreover, the mixed-sensitivity SPS set-up has a great advantage in light efficiency
over the pure in-plane SPS configuration; and in Chapter 6, we will explore methods to

improve measurements with a smooth reference wave, so that the deficiency in σd is

reduced. Finally, a 3-D SPS system with two pure in-plane assemblies is difficult to
implement, while – at the sacrifice of orthogonal sensitivity vectors – it would not be
difficult to use layouts with oblique illumination.

On the whole, the results presented here show an advantage for TPS when in-plane

displacement measurements are concerned. For moderate fringe densities, σd � λ/20 is

realistic, while both of the SPS approaches yield λ/6 to λ/7.
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5.6 Impact of light efficiency

In the preceding subsections we have already mentioned the potential influence of the
aperture size on the measurement in terms of light economy. During the investigations
presented thus far, it was easy to collect sufficient object light: the laser was powerful
and the image field was rather small. But it is not unusual in practice to have very little
object light available. In these cases, TPS should be in favour because it will function
with very small speckles, which in turn allows for large apertures to collect a greater
amount of the scattered light. It is even stated that under conditions difficult in this
respect, the aperture should be opened up as wide as possible [Leh97a, Leh98]. There is
no way to do so in SPS: for phase shifting to make sense, sufficient spatial coherence
over the spatial sampling window, and hence a certain minimum speckle size in the
direction of the phase shift, is necessary.

This subsection presents some measurements of σd under shortage of object light for

TPS and SPS, carried out with the out-of-plane configuration of Fig. 5.1. Aiming at get-
ting an idea of the difference between the methods, we simply consider ds =1 dp for TPS
and ds = 3 dp for SPS, although both values could still be decreased. With this setting, the
usable object wave intensity in SPS is smaller by almost an order of magnitude than in
TPS when circular apertures are used.

This can be partly circumvented by enlarging the speckles only in the direction of the
spatial phase shift, which is easy to achieve by using an elliptical or rectangular imaging
aperture [Pfi93, Ped93, Sal96]. The idea is sketched in Fig. 5.16 for the example of

αx =120°/column (of course, the relevant parameter is the number of samples and not

αx ). The corresponding elliptical aperture shape was indicated in Fig. 5.1; its area, and

hence the object intensity it transmits, is three times that of the circular aperture.

I0 I1 I2I2I0 I1

Fig. 5.16: Adjustment of speckle width suitable for SPS with optimal light economy. Black bars:
orientation and spacing of carrier fringes, small squares: sensor pixels, irregular filled
shapes: mean speckle size and orientation; grey values of the shading on the speckles
indicate their relative brightness.

The situation depicted on the left is the result of using a circular aperture: 2/3 of the
coherence area are superfluous for the phase calculation and the speckle field appears
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rather dark. But one can reduce the speckle size from dsx�dsy = 3�3 dp
2 to

dsx�dsy = 3�1 dp
2, where dsx is the speckle width and dsy the speckle height, to produce a

brighter speckle image. On the right, an elliptical aperture generates speckles that are
just large enough to allow for phase calculation; the speckle intensity is greater by a
factor of three, indicated by the speckle outline in lighter grey. The question arises what
improvement the change to elliptic speckles will bring about: the plus in object light
gives better MI or, optionally, allows to reduce the gain of the camera amplifier; on the
other hand, the non-circular average speckle shape causes the measurement to become
anisotropic with respect to displacement fringe orientations.

For TPS and SPS with circular and elliptic aperture, the behaviour of σd was studied

with the out-of-plane set-up as in 5.1. To control the object illumination, I used a series

of neutral density filters (D ∈ [1.0, 5.0]) directly behind MO1. The basic laser power

density of OI =1.1 mW/cm2 on the object was thus attenuated to values between 110 and
0.01 µW/cm2. The absolute value of sensor illumination could not be measured accu-
rately enough, but since we are still dealing with the comparison of TPS and SPS, the
given power scale will be sufficient for our purpose.

For each series, the chosen object intensities ranged from the first turning up of signal to
the optimum where further increase of the illumination power did not improve the meas-
urements anymore. At the lowest light level the interference was only just detectable in
the speckle interferograms,* whereas the speckle pattern alone was completely immersed
in electronic noise. The reference light was always adjusted so as to obtain a high aver-
age brightness of the interferograms, which decreases the contrast MI /Ib but maximises
MI and thus reduces the noise somewhat. Even so, we have high noise and low MI due to
beam ratios exceeding 1000:1. This corresponds to R �190 grey levels and
�O�� 0.2 grey levels, which of course cannot be reliably measured; therefore the optical
densities of the filter set served to determine �O�, and from this, R /�O�=B, by extrapo-
lation from measurable values. Fig. 5.17 shows the improvement attainable by switching
to elliptical apertures.

At very low OI (left-hand regions of the plots), electronic and digitisation noise are

indeed the most significant error sources: the fringe density influences σd only weakly.

With increasing OI however, the familiar relationship of fringe density and error appears

again. To the left, σd is plotted for various Nx as a function of OI . The slope of the

                                           
* Also, the light scattered off the object was detectable only by dark-accommodated eyes.
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graphs is largest around B =1000 (marked by the arrows for either aperture shape); the

use of an elliptical aperture reduces σd by as much as 15% in these regions of OI .
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Fig. 5.17: σd for ESPI displacement measurements with SPS at low levels of OI . "Dark"�black:
dsx�dsy = 3�3 dp

2; "bright"�white: dsx�dsy = 3�1 dp
2. Fringe densities Nx (left) and Ny

(right) as indicated in the legend boxes.

The σd measurements for various Ny are plotted on the right-hand side of Fig. 5.17. The

black graphs for the circular aperture look very much like those on the left, which con-

firms the expectation that the values of σd vs. Nx and Ny are very similar when the circu-

lar aperture is used. The white curves reveal the drawback of switching to an elliptical

aperture: σd rises more rapidly with Ny than with Nx , so that the advantage initially

gained vanishes for Ny > 50. Again, this comes from the speckle pattern displacement

which results in a larger σd for smaller ds . Thus for object tilts resulting in horizontal

fringes, associated with vertical speckle displacements and the (small) speckle height
dsy , this error source is more important than for tilts that generate vertical fringes, which
are associated with horizontal speckle displacements and the (large) speckle width dsx .

While the quantitative impact of the aperture shape is of course specific of the interfer-
ometer, Fig. 5.17 does show that the anisotropy by an elliptical aperture is not negligible.
On the whole, the greater amount of light is seen to be helpful; but of course, the
improved SPS measurement must be set in relation to the performance of TPS at low OI ,
of which Fig. 5.18 gives an overview.
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Fig. 5.18: σd for ESPI displacement measurements using SPS vs. TPS at low levels of OI .
"Dark"�black: SPS with dsx�dsy = 3�1 dp

2; "bright"�white: TPS with dsx�dsy =1�1 dp
2.

Fringe densities Nx (left) and Ny (right) as indicated in the legend boxes.

The results from TPS are distinctly better, and OI can even be lowered to 0.01 µW/cm2.
The improvement by using TPS amounts to � 30% for low densities of both horizontal
and vertical fringes over quite a large range of OI . This confirms that TPS is less prob-
lematic under critical illumination conditions, all the more since ds can – and should – be
further reduced in order to maximise the amount of light collected. The occasional

crossing of the curves for Ny is due to the greater σσd for tilts about the x axis that was

described in 5.2.2.

Surprisingly little power is necessary to reach the plateau of nearly constant errors; it turns
out that a 0.5-mW laser would have been powerful enough for the out-of-plane
experiments. Also, this experiment demonstrates impressively the advantage of the phase-
shifting technique: even with 2-3 bits of signal resolution, it is possible to obtain usable
results [Dör82, Ker88, Vro91, Hac00]. It may also be worth noting that both TPS and SPS
reach their best performance at the same level of OI , which is �10 µW/cm2 in this case.

From the results in this subsection, it follows that the decision for or against elliptic
speckle is not a general one: it depends on the expected result of the experiment, as well
as on the amount of light actually available. We will briefly return to this issue in
Chapter 6.1.3.



                                                                                                                                                            143

6 Improvements on SPS
The comparison of TPS and SPS has shown that TPS yields lower measurement errors
especially in the region of low fringe densities. Since it is generally more preferable to
record several sawtooth images with few fringes than one image with many fringes

[Flo93, Her96], we shall therefore explore some ways to reduce the σd associated with

SPS in this chapter. First of all, the beam ratio in the interferograms is shown to be of
great importance; but there are also possibilities to reduce the measurement error by
phase calculation formulae tailored for SPS. And lastly, we employ the "single-frame"
measurement capability of SPS to introduce some improvements.

6.1 Optimisation of experimental parameters

6.1.1 Beam ratio

Although the best intensity ratio of reference to object wave, B, has been thoroughly
investigated [Sle86, Leh95, Maa97] in order to maximise the interferometric modula-
tion, it has also been stated that the least permissible MI can be set quite low, e.g. at
some 8 grey levels or even less [Dör82, Ker88, Vro91, Hac00]. Consequently, phase
shifting in ESPI yields reasonable results for quite a large range of B. In what concerns
TPS, we can expect the errors to remain approximately constant as long as MI is beyond
its lower threshold. With growing intensity of the reference wave, the modulation drops
and electronic noise and digitisation errors gradually gain the upper hand over the signal.

For SPS however, the speckle character of the object wave constitutes an error source
that depends on the object intensity: the intensity readouts In (cf. (3.12)) from a set of
adjacent pixels should have equal Ib and MI if the phase calculation is to function cor-
rectly; but the brighter the speckles are, the greater become their intensity gradients and
the worse is the mismatch of the interferometric parameters on adjacent pixels. It is clear
that the absolute intensity errors drop when the beam ratio is increased; but this is of no
consequence for the measurement, because the modulation goes down as well. An
improvement comes about only by a decrease of the relative intensity errors, and it has
been shown in a simple form in [Bur99a] that this is indeed the consequence of a
brighter reference wave.

To describe the phenomenon, we first need to know how statistical intensity fluctuations

are propagated to phase errors σϕο by the phase calculation. Assuming a standard devia-

tion of σI for the intensity readings, this relationship is described by Eq. (12) of [Bot97]

in a general form for 3-bucket formulae. For αx =120°/sample, it reads
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where σϕο is the standard deviation of the calculated phase averaged over all ϕO , and σI

that of the interferogram intensities. In a simple approximation, σI is composed mainly

of the standard deviation of intensity on adjacent pixels (x, y) and (x�1, y), σO0 ,O�1 , and

of that of the imaging system's electronic noise, σe .* Hence we rewrite (6.1) as
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2 2
0 1

2

8

3

,
 . (6.2)

In a speckle field, σO0 ,O�1 depends on the degree of spatial coherence [Goo75],

µA(x0, x�1), of the points (x, y) and (x�1, y). For a circular aperture and ds = 3 dp , we find

µA(x0, x�1) � 0.81. Moreover, σO0 ,O�1 is conditioned on O0 , which relationship is

analytically known [Don79]. We can generalise (2.52) to read

( )σ µ µ µO O A A AO O
0 1

2 2 2 2 2 21 2 1, ( ) ( )
±

= − + −  , (6.3)

and inserting (6.3) into (6.2), we can calculate σϕO , which is the same for both object

states: σϕO = σϕO,i = σϕO, f . For the phase difference ∆ϕ = ϕO, f – ϕO,i we therefore get

σ∆ϕ = �2σϕO and from this the corresponding quantity for the displacement, σd , as a

function of the beam ratio B = R/〈O〉. These data can be compared with the experimental

results.

Fig. 6.1 shows the performance of various evaluation methods for sawtooth images with

Nx =10, Ny = 0, ds = 3 dp and αx =120°/column from an out-of-plane configuration with

SPS; for TPS, ds was set to 1 dp . Curves in Fig. 6.1 that are not addressed here will be
discussed later on.

The theoretical curve of σd vs. B for SPS is the bold white line and matches the meas-

ured data reasonably if we shift it vertically by adding a constant displacement deviation

of σd0 = 0.05 λ. This is not an arbitrary adjustment of data: since (6.2) does not account

for spatial fluctuations of the phase ϕO between adjacent pixels, the predicted values of

σd will be too small. Of course, adding a constant σd0
 relies on the simple assumption

that the influence of speckle phase gradients on σd does not depend on B.

From the figure we see that TPS works well from B �1 on, and σd only starts to increase

from B �100 on, where �O� is already weaker than the electronic noise. The quasi-con-

stancy of σd vs. B in TPS has also been reported in [Hun97] for a beam ratio between

                                           
* With the imaging system used, a realistic value for σn was � 2.5 grey levels; this corresponds to a
resolution of only 6-7 true bits. With optimum intensity resolution, the usable beam ratios would
have been even higher.
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0.1� B �10. For SPS, σd first decreases as the reference wave gets stronger, and has its

minimum around 30. With fading MI , the influence of electronic noise grows and so

does σd . This behaviour agrees reasonably with our theoretical prediction.
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Fig. 6.1: σd for various ESPI measurements of out-of-plane displacements by SPS and TPS as a
function of B. All measurements were done with Nx =10 and Ny = 0.

Hence, in SPS a proper choice of the beam ratio is far more important than it is in TPS.
Fortunately the best SPS results turn up in a region of high beam ratio, which alleviates
the problem of poor light efficiency somewhat. Based on these results, for most of the
investigations in Chapter 5 B was set to 10, at which setting both SPS and TPS operate
with near-optimum performance.

Besides the variation of the beam ratio, there is another possibility of reducing σd : the

individual speckle intensities can be accounted for in a modified phase calculation for-
mula. This approach is described in detail in 6.2.1, where also the curves for "SPS with
(modified) intensity correction" in Fig. 6.1 will be explained. For a discussion of the
Fourier transform method (FTM), see 6.5.

6.1.2 Phase shift

In Chapter 3.2.2 we have considered the spectral transfer properties of phase-shifting
formulae and discussed some points that are relevant for their application to signals with
a broad spectrum. In Chapter 5.2.1, we collected some preliminary evidence that

αx = 90°/sample should be the better choice. Since it is now our aim to get the best pos-
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sible performance from SPS, we investigate this issue in more detail by experiment and
carry out the same kind of comparison that we did for SPS and TPS. The results are
shown in Fig. 6.2, where the left part is the same plot as Fig. 5.5.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8 10d s /d p

σ d /λ

0 5 10 15
20 30 40 50
60 70 90 100

N x

 0 2 4 6 8 10d s /d p

0 5 10 15
20 30 40 50
60 70 90 100

N x

Fig. 6.2: σd for ESPI displacement measurements by SPS with αx =120°/column (left) and
αx = 90°/column (right) as a function of speckle size for out-of-plane displacements. The
parameter for each curve is Nx , the number of vertical fringes per 1024 pixels, as
indicated in the legend boxes.

The figure shows clearly that αx = 90°/column yields indeed better performance over the

whole range of fringe densities. The difference is small at low fringe densities, whereas
it gets significant over Nx � 30; it is most pronounced at the optimum speckle size of
3 dp .

In the face of these findings, it seems more appropriate to set αx = 90°/sample. As

already hinted in 3.2.2.3, it was found that the phase calculation with the 90° formula

(e.g. (3.19)) tolerates large miscalibrations of αx ; there is practically no loss in perform-

ance for deviations of αx of up to �15°/sample. Moreover, the error-compensating 90°

formulae are more suitable than those with α =120° for the averaging procedures de-

scribed in 3.2.2.4.

The phase determination with αx =120°/sample quickly loses accuracy when

αx >120°/sample and functions even slightly better when αx �100°/sample. This can be

attributed to the facts that (i) the sidebands of the interferogram's power spectrum

already contain aliased super-Nyqvist frequencies 
νx
 > 
νN
 at νx0 =1/(3 dp) and ds = 3 dp

(cf. 3.4.4), and (ii) also the horizontal MTF of the camera that I used drops considerably
for higher spatial frequencies. Hence, the signal power is utilised more efficiently by the
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90° method, where the sidebands are neatly centred in the (νx�, νy) half-planes, as

depicted in Fig. 6.3.

  

  
Fig. 6.3: Interferogram power spectra (log scale). Upper row, ds = 3 dp ; lower row, ds = 2 dp ; left,

αx = 90°/column; right, αx =120°/column. Irregularities in the spectra are due to the fibre
guide obscuring part of the aperture. The contrast of the images has been enhanced to
make the speckle halo visible.

It is also clear that a decrease of the speckle size, as shown in the lower row, will shift

the advantage even more towards αx = 90°/sample because of minimised "crosstalk" of

the sidebands around both ν = 0 and ν =νN , as discussed in Chapter 3.4.4. On the other

hand, the sidebands have less overlap with the speckle halo for larger phase shifts; but
evidently, the issue of speckle size is more important.

6.1.3 Speckle aspect ratio

In Chapter 5.6, we saw what improvement a change to an elliptical aperture can bring
about when the available illumination power is critical. However it is by no means nec-
essary to choose a 1:3-elliptical aperture. For instance, an aspect ratio of, say, 1:2 means
less anisotropy, at the cost of light, while an aspect ratio of, say, 1:4 improves the light
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gain but generates elongated speckles, and accordingly, a distinct anisotropy of meas-
urement. The change in performance need not be restricted to the spatial direction in
which the speckle size is reduced: the finer overall phase structure of the speckle pattern
could increase the noise in the whole measurement, which would diminish the advantage
gained by the larger aperture.

This subsection attempts to answer the question what speckle aspect ratios can be used

and at what gain or expense. Since the course of σd as a function of object illumination is
similar for TPS and SPS (cf. Fig. 5.18), we just retain here that the gain in accuracy may
be related to the gain in light as before, only now we are concerned particularly with the
geometrical side-effects due to the anisotropy of the measurement. To find out their
nature and extent, we carry out the experiments with sufficient object light in an out-of-
plane configuration.

The "overall" effect of decreasing the speckle height dsy , while keeping the width dsx

constant, can be studied by a series of tilts about the y axis, giving rise to vertical saw-
tooth fringes. The speckle decorrelation with increasing Nx is then governed by dsx and is
therefore the same for all dsy . Fig. 6.4 presents some results from these series.
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Fig. 6.4: σd for ESPI displacement measurements by SPS with various speckle aspect ratios as a
function of speckle width dsx for out-of-plane displacements. The parameters for the
curves are Nx and the respective aspect ratio, as indicated in the legend box.

This figure should be interpreted as follows: given a certain speckle width dsx , the aspect
ratio dsy /dsx indicates the respective speckle height dsy indirectly; e.g. at a speckle width



                                             6.1 Optimisation of experimental parameters                                       149

dsx of 3 dp and an aspect ratio of 1:2, the corresponding speckle height dsy is 1.5 dp .
Consequently, dsx � dsy in this study.

For zero displacement, σd is virtually independent of the speckle aspect ratio. For the

other curves, corresponding to Nx = 20, 50, and 100, there is indeed a very slight system-

atic dependence of σd on the aspect ratio from dsx = 4 dp downwards. This corresponds to

dsy � 2 dp and shows that the finer phase structure does reduce the accuracy; but com-
pared to the performance gain that a wider aperture offers under critical light conditions,
the effect is negligible.

Things are different when we consider a series of tilts about the x axis; in this case we
test the effect of the varying speckle heights and investigate the measurement
anisotropy. Fig. 6.5 shows the results for the same fringe densities as above.
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Fig. 6.5: σd for ESPI displacement measurements by SPS with various speckle aspect ratios as a
function of speckle width dsx for out-of-plane displacements. The parameters for the
curves are Ny and the respective aspect ratio, as indicated in the legend box.

The order in this graph is best understood if the data are first read vertically: for small
speckle widths, a reduction of dsy , and therefore the aspect ratio, is accompanied by a

larger σd . This effect increases with the fringe density, for reasons already discussed in

Chapter 5.4. However for larger dsx , smaller dsy tend to yield lower σd than for an aspect

ratio of 1:1 because the fringes are better resolved and decorrelate more slowly, as also
described in Chapter 5.4.
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No general recommendations can be derived from this behaviour because the anisotropy
effects are specific of the used interferometer. The decision for or against elliptical
speckle depends on the expected result of the experiment, as well as on the amount of
light actually available, and there may also be cases where an elliptical aperture is very
helpful in suppressing aperture-plane decorrelation.

For moderate fringe densities, it is always possible to gain twice the object light by using
a 1:2 aperture without sacrificing too much of the isotropy. In this work however, there
is no shortage of object light; and later on, we will also use a phase shift in x- and y-
direction to make use of the 2-D extent of circular speckles. Hence we will keep using
circular apertures.

6.2 Modified phase reconstruction formulae

Besides the optimisation of optical parameters, it is of course desirable to utilise some of
today's knowledge about phase-sampling methods to tailor phase calculation methods
specially for SPS. As mentioned before, the most stringent restriction for error suppres-
sion is the small number of sampling points available in the speckles that we even wish
to make as small as possible. In the following paragraphs, we explore possibilities to
construct few-sample formulae with reasonable rejection of errors due to speckle inten-
sity and phase gradients, and eventually we test the combination of these approaches in
out-of-plane ESPI deformation measurements.

6.2.1 Consideration of speckle intensity gradients

One possible way to reduce the phase errors induced by the fluctuations of the object
wave's intensity has already been shown in 6.1.1. As we have seen in Chapter 2.2.3.1, it
would be very difficult to account for the Ix statistics of a speckle field in SPS: the
assumptions that we could model by a modified three-sample formula would be too
crude in the case of speckle intensity.

There is however an exact method of compensating the errors due to intensity fluctua-
tions; it relies on an additional measurement of the speckle intensity alone before or
during the displacement observation. In the linear equation system constituted by (3.68),
we usually assume O, and hence Ib and MI , to be constant in all the equations. If how-
ever each equation gets its own On from a speckle intensity image stored beforehand,

it is still possible to solve for ϕO , as long as we use three phase steps of

(–α, 0, α). Details of this procedure are outlined in Appendix C; with Dn � In – On , we

arrive at [Bot97]

( )
( )ϕ π

α

α
O

O D D O D D O D D

O D D O D D
mod 2

0 1 1 1 0 1 1 1 0

1 1 0 1 0 1

=
− + − + −

− − −

− − −

− −
arctan

( ) cos ( ) ( )

sin ( ) ( )
 , (6.4)
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which is for α = 90°:

ϕ πO
O D D

O D D O D D
mod 2 0 1 1

1 1 0 1 0 1

=
−

− − −
−

− −
arctan

( )

( ) ( )
(6.5)

and for α =120°:

( )ϕ πO
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O D D O D D
mod 2

2
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1 1 0 1 0 1

=
− − − − −
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− −
arctan

( ) ( ) ( )

( ) ( )  . (6.6)

Of course, these formulae collapse to their standard versions (3.18) and (3.17) when
O–1 = O0 = O1.

A disadvantage of this method is the necessity to record speckle images before and, if
decorrelation occurs, also during the measurement. This will rule out highly dynamic
phenomena and reduce the temporal resolution in other measurements. Moreover, (6.4)
assumes R and O to be fully interferent, which is not the case when depolarising objects
are being tested. In this case, one must accept that the treatment overestimates MI (which
is related to the square roots), or re-polarise the waves appropriately.

A comparison of (3.19) and (6.6) with stable speckle patterns is given in Fig. 6.1, which

shows σd from phase calculations without (black squares) and with intensity correction

(black squares filled white) as a function of B. The data leading to the curves were the
very same set of interferograms in both cases. For the intensity correction, I used both
the initial and final speckle patterns for the respective object states. The figure shows

that (6.6) is indeed able to keep σd almost constant for 1� B �10. When we compare the

best σd of either evaluation series, the improvement by the intensity correction amounts

to � 3%. This is quite small a difference and it may seldom be worthwhile to record ex-
tra speckle images to make use of it. Moreover, it will not help against the most likely
problem in SPS, namely too low speckle intensity.

With increasing B, i.e. fading �O�, the performance of (6.6) quickly worsens. This is
because speckle intensity readings of zero are obviously not permissible in (6.4): the
phase calculation will not function for points of the speckle image that are digitised to
zero. But as B is increased, as desirable from a practical point of view, exactly this will
occur more and more frequently. Then (6.4) breaks down on a fraction of image pixels
that grows larger as the speckle pattern gets darker.

In practice, one can circumvent this by simply replacing the zeros under the square roots
by a non-zero value (for simplicity, a factor of one); this introduces some arbitrariness in
the calculation and is justified only by the observation that this ad hoc remedy is better
than none in this case, and that (6.5) and (6.6) then become their standard versions (3.18)
and (3.17) also for O–1 = O0 = O1 = 0. Therefore the advantage gained by the modified
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calculation must vanish as the On approach each other. This is also shown in Fig. 6.1: the
modified intensity-correcting formula overriding zero readouts for the On (black curve,
white squares) links smoothly to the curve without error correction; from B � 50 on,

both curves are very nearly the same. Therefore the σd from the intensity-correcting

formula are not plotted anymore for B �160, all the more as using (6.4) would only lead
to superfluous computational effort for higher B.

The data shown pertain to the depolarised speckle patterns which the test object gener-
ates directly; no substantial improvement was found when the intensity correction was
applied to speckle patterns exclusively co-polarised with the reference light. This shows
that the subtraction of the speckle background, taking place in the Dn , is more important
than the exact MI ; also, the background subtraction is justified for any polarisation state.

To check the preliminary results of Fig. 6.1, I carried out several tilt series with

αx = 90°/sample and B ∈{3, 10, 30, 100, 300}. As seen before, this quasi-geometric series

of B values is sufficient to find the best performance of either method. Fig. 6.6 presents
an overview of the best results for ds = 3 dp .
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Fig. 6.6: σd for ESPI displacement measurements by SPS with and without intensity correction as
a function of B. White, phase calculation according to (6.5); black, phase calculation by
(3.19). Selected Nx as indicated in the legend box.

We have seen before in Fig. 6.1 that the advantage of using the intensity correction will

vanish for B � 30; therefore we look at (6.5) for B ∈{3, 10, 30} only. On the other hand,

without intensity correction the lowest σd occur around B � 30, which is why we select

B ∈{10, 30, 100} to investigate the phase calculation with (3.19). Fig. 6.6 confirms that

the phase calculation by (3.19) (corresponding σd : black symbols) produces the lowest

σd at B � 30, while (6.5) (corresponding σd : white symbols) operates most advanta-
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geously at B = 3 and B =10 and slightly worse at B = 30. As familiar by now, the differ-
ences of the two calculation methods are most pronounced at low fringe densities: ini-

tially, a reduction of σd by some 5% can be attained by using the intensity correction;

but as Nx rises and decorrelation sets in, the difference vanishes almost completely.
Hence, in most situations it will suffice to set B � 30 and to record interferograms only.

6.2.2 Consideration of speckle phase gradients

When the speckles are as small as 3 dp , the phase structure of speckle patterns cannot be
measured with sufficient sampling resolution by the pixels – and less so with SPS –, so
that there is no possibility to go the same way as above with the intensities and use the
speckle phases for error compensation. Yet remembering the findings of Chapter 2.2.5,
the speckle phases seem to be less harmful for interferometry than the intensities any-

way. Therefore we will use the simple assumption that not the speckle phase ϕO , but its

gradient ϕx be constant over the short sequence of pixels that we use for phase retrieval.

This is quite rough an approximation but it may be seen from Fig. 2.14 that it holds rea-
sonably for the brighter parts of the image that we are mainly interested in. Treating the
phase gradients in this way is equivalent to assuming local linear miscalibrations of the
phase shift, as detailed in Chapter 3.2.2. We may then construct our two consecutive sets
of samples needed to apply the error compensation of (3.56) from a sequence of pixels
as shown in Fig. 6.7.

I0 I2I1I–1

Fig. 6.7: Arrangement of sampling points for a simple phase-shift error compensating formula
(3.56) with αx = 90°/column, indicated by the black bars. The intensity readings I–1 to I2

are taken from consecutive columns.

If ϕ'O0 (cf. (3.56)) is constructed from I–1 through I1 (indicated by the solid-line box) and

ϕ'O1 from I0 through I2 (broken-line box) and these two phase measurements are aver-

aged, the error in ϕ'O0 will be almost cancelled by that in ϕ'O1 thanks to their relative off-

set of � 90°. (If the phase offset of ϕ'O0 and ϕ'O1 were exactly 90°, there would be no

need for error correction.) It is true that this method of averaging requires four instead of
three pixels and seemingly requires still larger speckles; we will discuss this issue
shortly, in the context of the experimental findings. The improvement of phase calcula-
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tion by (3.56) is shown in Fig. 6.8 for B = 30 and ds = 3 dp ; both curves have been calcu-
lated from the same set of interferograms.
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Fig. 6.8: σd for ESPI displacement measurements for B = 30 and ds = 3 dp by SPS, with and
without phase-shift error compensation, as a function of Nx . Triangles, phase calculation
by (3.19); squares, phase calculation according to (3.56).

The modified phase calculation reduces σd very efficiently; and again the improvement

is most relevant at low fringe densities. The substantial decrease of σd comes somewhat
unexpected in this situation, since Fig. 6.7 tells us that the complete sampling window is
now definitely larger than the mean speckle size of ds = 3 dp . But in addition to the
phase-error compensation, (3.56) also constitutes stronger spatial averaging. Here, the
sine and cosine functions are averaged before phase retrieval, which has been shown to
be a better choice than averaging phase maps after the arctangent operation [Hun97].

Although the 3+3 averaging formula still calculates the phase separately for each pixel,
there is a loss of spatial resolution associated with the larger sampling window. But
since our "resolution cell" has already been 3 pixels wide before, the relative change is
not significant; and up to (at least) Nx =100, the phase gradient of the object displace-
ment is well resolved and shows less noise than with the standard phase calculation.

6.2.3 Combined intensity and phase gradient compensation

Each of the error-suppression strategies proposed suffers from the drawback that its

effectiveness to cope with Ix or ϕx could be reduced by the fluctuations not accounted

for, i.e. ϕx or Ix . Hence it is natural to combine both of the approaches to obtain a for-

mula that reduces the σd caused by the speckle structure of both object intensity and
phase. The simplest way to construct such a phase calculation is to establish an averag-

ing formula for terms as in (6.4). With α = 90°/sample, we rewrite (6.5) for the two
"boxes" of Fig. 6.7 [Bur98]:
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with pixel indices according to Fig. 6.7, and numbering of the Kn according to the order
of indices of the square roots at the beginning of each term. Now applying what we have
learnt in Chapter 3.2.2.4, we can easily compose these two intensity-corrected phase cal-
culations according to (3.55) and arrive at

ϕ πO
K K K

K K K
mod arctan=

+ −
− + +

2 4 6

1 3 5
 , (6.8)

which is an averaging formula correcting for both intensity and phase fluctuations. As
already indicated in Fig. 6.6, the intensity correction works best for B = 3; the contribu-

tion to σd coming from speckle phase gradients was assumed to be independent of B.
Fig. 6.9 gives an overview of the best results from all combinations of phase-calculation
methods and B values tested in this subsection. The black curves are repeated from Fig.
6.8 for comparison; for the intensity-correcting formulae, the underlying set of interfero-
grams is necessarily a different one, with B = 3, but also ds = 3 dp .
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Fig. 6.9: Overview of σd from ESPI displacement measurements as a function of Nx , obtained
with various phase calculation formulae from two series of interferograms: without
intensity correction, B = 30 (black symbols); with intensity correction, B = 3 (black
symbols filled white); 3-sample formulae, triangles; 3+3-averaging formulae, squares.

The summary presented in Fig. 6.9 allows some conclusions: (i) the use of a 3+3 aver-
aging scheme alone is definitely a better choice than an intensity-error compensating
formula alone. (ii) The combination of both error-reduction methods leads to the lowest
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overall error; at ds = 3 dp , σd remains below λ/20 up to Nx = 20. (iii) Introducing the

intensity-error correction effects indeed a slightly greater improvement in σd when a
phase-shift error elimination is already present, and vice versa. (In other words, the
lower two curves are farther apart than the upper two.) This confirms the initial
presumption that motivated this subsection: the two methods profit from each other if
used together. However, as mentioned before, in most practical cases it will suffice to set
B � 30 and to do without the small benefit of the intensity correction, all the more since
this speeds up the calculations considerably and even makes them accessible to the use
of look-up tables.

Finally, it may be worth noting that a 3+3 averaging formula according to [Bur98]

ϕ π' mod arctanO
K K

K K K K
= +

− + − +
2 5

1 3 4 6
(6.9)

is error-compensating only by averaging, but does not eliminate the cyclical errors

shown in Fig. 3.39, since it constitutes the average over ϕO and ϕO + 90°. Hence, (6.9)

will do little more for error reduction than the intensity correction without averaging,
which means that even the pure phase-shift error compensation of (3.56) would perform
better. This was in fact found in [Bur98], where (6.9) was used instead of (6.8), and
emphasises the relevance of an optimal composition of the averaging formula.

Finally, both (6.5) and (6.8) were checked for their spectral transfer properties by means

of bsc (νx). With the same input interferograms and averaging of the same portions of the

bsc (νx ,νy) maps as in 3.4.5, this gives the plots shown in Fig. 6.10.
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Fig. 6.10: Left: bsc (νx) for (6.5); right: bsc (νx) for (6.8).

By comparison with the graphs in Fig. 3.33 and Fig. 3.36, it can be seen that the noise
has got higher; but for (6.8), the region of low detuning errors is distinctly increased as

compared to (6.5). However it was found that the phase error δϕO(∆ϕ) (cf. Fig. 5.4) pro-

duced by (6.8) has small maxima at ∆ϕ = π/2 and 3π/2 (cf. Fig. 3.39), which indicates

that δϕO due to phase-shift errors is suppressed less efficiently when the intensity

correction is used.
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6.3 Modified phase shifting geometry

If we use a circular aperture with a phase shift αx only, and if the measuring points are
arranged as in Fig. 3.26, we discard the phase information that would be accessible via
the vertical coherence length of the speckles. But due to the general shortage of spatial
coherence in our small-speckle patterns, we should use it as exhaustively as possible.
During the comparison of different phase retrieval approaches that will be described in

this subsection, the σd refer to just two sets of interferograms, namely a tilt series with
B = 3 when intensity correction is involved, and another one with B = 30 when it is not.

In both cases, Nx ∈[0, 100] and ds = 3 dp .

Provided a frame-transfer or line-transfer camera with progressive scan readout is avail-
able, all image lines can be acquired simultaneously. Then it is possible to introduce an

additional vertical phase shift α y by simply shifting the origin of the reference wave to

(∆x, ∆y). This results in a slant of the carrier fringes and allows to choose any desired
direction for the set of pixels to use. Examples of composite phase shifting have been
given in [Küch91, Küch97] for classical and in [Wil91] for speckle interferometry.

When the speckle shape can be fully exploited for measurement, the measurement's
accuracy should improve, since the ideal situation of Fig. 3.26, where all the used pixels
are inside the same bright speckle, is unlikely to occur. More often, speckle "boundaries"
are crossed, which results in an unreliable phase measurement. To diminish the noise, it
should help to include the possibly better data of the orthogonal direction and to estab-
lish an averaged phase value.

A phase shift of (αx, α y) = (90°, 90°) yields carrier fringes slanted by 45° and permits
arranging the evaluated pixels in various ways. This is shown in Fig. 6.11: the target

pixel of the phase calculation is I3 , with some arbitrary phase of ϕO , and the surrounding

pixels have nominal phase shifts of ϕO � 90° as indicated. Note that the pixel numbering

can no longer indicate relative phase shifts (e.g., α1 = α2); besides, we will identify the
intensities In simply by pixel numbers n where appropriate for simplicity of notation.

I2

I1

I6

I4I3 4

ϕO − 90°ϕO

ϕO + 90°

I3I2

I1

I6

I4

I7

I5

I8

ϕO +180°

Fig. 6.11: Pixel clusters for phase calculation from oblique carrier fringes; orientation and spacing
indicated by black bars. For simplicity, pixels are numbered consecutively. Left-hand side:
pixels usable for 3-point formulae; right-hand side: pixels usable for 3+3-point formulae.
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The geometry in Fig. 6.11 on the left suffices to use (3.19) for phase retrieval in both x-
and y-direction; I3 will be assigned the average of the calculations. To the right, some

additional pixels with ϕO +180° give the possibility to use 3+3 averaging formulae; both

of the methods will be explained below.

At this point it should be noted that the reduction in MI now needs to be determined by
(3.67), since the carrier frequency has an x- and a y-component. Therefore, for

αx = αy = 90°, we get (sin(π/4)/(π/4))2
 = 0.81. Consequently, another 10% of modulation

are lost, which will lower the optimum value of B somewhat.

Now, using (3.19), a double phase determination is possible for pixel 3, according to

tan ϕO
I I

I I

I I

I I
=

−
−

=
−
−

4 3

2 3

6 3

1 3
 , (6.10)

which corresponds to the x- and y-direction, respectively. The phase is then determined
from

( ) ( )
( ) ( )tanϕO
I I I I

I I I I

I I I

I I I
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− + −
− + −

= − +
− +

4 3 6 3

2 3 1 3

4 3 6

1 3 2

2

2
 ; (6.11)

this is neither a new phase-shifting formula, nor an extended averaging scheme in the
sense of [Schmi95]. Instead we get an average that, despite being spatial, does not

reduce the resolution of the measurement. It serves to decrease σd , although the phase

measurements involved are not completely statistically independent, since the central
pixel 3 is used twice. Note also that the other two possibilities of calculating the phase,
with pixels {1, 3, 4} and {2, 3, 6}, would just double the numerator and denominator in
(6.11), which has no effect.

To use the intensity correction, we re-define our auxiliary quantities, the Kn :
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(6.12)

and obtain

ϕ πO
K K

K K K K
mod arctan=

+
− + − +

2 5

1 3 4 6
 , (6.13)

which method of averaging is correct for this purpose, since both expressions should
yield the same phase. (In this case, the inclusion of two more quotients from pixels
{1, 3, 4} and {2, 3, 6} is not equivalent to a doubling of the terms; but on doing so, the

reduction of σd is minimal.) The spectral transfer properties of (6.11) and (6.13) are now
genuinely two-dimensional, so that we can extend (3.73) to
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and examine the course of bsc (νx ,νy) experimentally by the now familiar 2-D represen-

tation. This is done in Fig. 6.12. Both maps of bsc (νx ,νy) are calculated from the same
input interferogram (with B =10), only (6.13) processes also the previously stored

speckle pattern O(x, y). Since αx = αy = 90°/sample, one can use ds = 2.5 dp (cf. 3.4.4),
whereby each signal band fills approximately one quadrant of the spatial frequency
plane. The left-hand image in Fig. 6.12 visualises this arrangement.
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1
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Fig. 6.12: Left: power spectrum of input interferogram (displayed in contrast-enhanced log scale);
centre: bsc (νx ,νy) for (6.11); right: bsc (νx ,νy) for (6.13). Black lines: frequency co-
ordinates leading to correct phase calculation, bsc (νx ,νy) = � 45°; white outlines: areas
of –10°�δϕ �10°.

In these images, the behaviour of bsc (νx ,νy) on the line given by νx = νy corresponds to
the one-dimensional cases we have considered before. The black lines indicate correct

phase calculation (bsc (νx ,νy) = � 45°), and of course, one point on these lines is

νx = νy = ν0 . But also for νx = ν0 and νy = 0, and vice versa, it is easy to see that the phase-
extraction formulae will operate correctly, although only one-dimensionally in either
case. By the addition of phasors from both directions however, the interesting fact

results that bsc (νx ,νy) has the correct value all along the black lines in Fig. 6.12; this
means that compositions of two "wrong" frequencies can still yield the correct phase.
These lines are almost circles for (6.11); and also (6.13) delivers a similar shape, but
only within the range of the signal frequency bands. We will not go into details as to the
theoretical interpretation of these "circles of quadrature"; but one could argue that the
signal bands should be re-positioned to obtain signal frequencies wherever there are
black lines, which would maximise the fraction of signal frequencies yielding correct
phases. Unfortunately, this is not true: one must bear in mind that phase-extraction for-
mulae have weak response for low spatial frequencies, and none for zero frequency (cf.



160                                                         Improvements on SPS                                                               

Chapter 3.2.2), so that signal energy would be wasted if the sidebands were shifted to

touch at νx = νy = 0. An experimental test confirmed that this strategy leads to slightly

worse measurements than with the nominally correct value of (νx ,νy).

The white outlines show those areas for which bsc (νx ,νy) stays within �10° deviation of

its nominal value; as discussed above in Chapter 3.2.2.3, this means that the p-v phase

errors δϕO are confined to 10° within these regions. They are broadest in the vicinity of

νx = νy = ν0 , which, in analogy to Fig. 2.13, shows that the phase calculation is more sta-

ble when the phasors ~( , )S x yν ν  and ~( , )C x yν ν are long, i.e. when both νx and νy

contribute to the phase determination.

The measured performance of (6.11) and (6.13) is summarised in Fig. 6.13, where the
averaging of horizontal and vertical phase calculations is abbreviated by "90°/90°". The
graphs for the usual 3-sample 90° formula are repeated from Fig. 6.9 to simplify the
comparison. The interferograms for the "90°/90°" error evaluations have ds = 3 dp as well.
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Fig. 6.13: Overview of σd from ESPI displacement measurements as a function of Nx , obtained
with merely horizontal (triangles) and averaged horizontal/vertical phase determination
(squares) from four series of interferograms (two of them already used for Fig. 6.9), all
with ds = 3 dp but various phase shifts and B values.

The improvement in σd by averaging phase measurements can be clearly seen; but a

comparison with the 3+3 averaging formulae of Fig. 6.9 reveals that their performance is
not being reached. Therefore our next step will be to apply these as well in the averaging
process, which can be done by extending the sampling pixel cluster as already shown on
the right side of Fig. 6.11.

To use 3+3 averaging formulae horizontally and vertically, we have the four different
possibilities to use pixels {2, 3, 4, 5}, {1, 3, 6, 8}, being the familiar horizontal and verti-
cal calculations, and {1, 3, 4, 7}, {2, 3, 6, 7}. The latter combinations will still work in the
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presence of a constant speckle phase gradient ϕx or ϕy ; but since the pixels involved are

not on a straight line, they would additionally impose ϕx = ϕy , which cannot reasonably

be inferred from Fig. 2.14. On the other hand, pixel 7 is spatially closer to pixel 3, which
is again our target point for all the calculations, and hence has greater spatial coherence
with respect to pixel 3 than pixels 5 or 8. Therefore we use

( ) ( ) ( ) ( )
tanϕ πO

I I

I I I I

I I

I I I I

I I

I I I I

I I

I I I I
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−
− − +

=
−
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to establish

ϕ πO
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I I I I I I I I
mod 2

8 4 4

2 2 4 2 2 2
3 4 6

1 2 3 4 5 6 7 8
= − + +

+ − − + − + +
arctan  . (6.16)

There is also the possibility to inscribe four more pixel sequences in the shape of an L
(with appropriate reflections and rotations) into the pixel cluster of Fig. 6.11; but again,
this would merely double the terms in (6.16) and we do not take them into account.

Since the definitions for the corresponding intensity-correction formulae are rather
lengthy, I do not go into detail here; the principle is already indicated in (6.12) and
(6.13) where only the pixel indices have to be inserted appropriately. It may suffice to
note that again only the pixel sets {2, 3, 4, 5}, {1, 3, 6, 8}, {1, 3, 4, 7}, and {2, 3, 6, 7}
need be used. Also in this case, it will be interesting to examine the two-dimensional

frequency characteristics of these approaches experimentally with the help of bsc (νx ,νy).

These are shown in Fig. 6.14, with the same input interferogram (and speckle pattern,
ds = 2.5 dp) as for Fig. 6.12 above.
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Fig. 6.14: bsc (νx ,νy) for (6.16) (left) and its intensity-correcting version (right). Black lines:
frequency co-ordinates leading to correct phase calculation, bsc (νx ,νy) = � 45°; white
outlines: areas of –10°�δϕ �10°.

In the plot for (6.16), the same circle structure of bsc (νx ,νy) = � 45° shows up as above

in Fig. 6.12; but thanks to the correction of improper νx and/or νy , another line of correct

phase determination appears at higher spatial frequencies. This enlarges the region

where 
δϕ
�10° to cover almost the complete sidebands, which is of course incidental
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for this particular speckle size. While the shape of bsc (νx ,νy) = � 45° looks qualitatively

different for the intensity-correcting formula, the stabilisation effect on the phase
extraction is almost the same.

A summary of the results from (6.16) and from its intensity-correcting version is given

in Fig. 6.15; note that the ordinate is scaled to a maximum of σd = 0.1 λ to make differ-

ences visible. The graphs for the horizontal 3+3-sample averaging 90° formula are
repeated from Fig. 6.9.
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Fig. 6.15: Overview of σd from ESPI displacement measurements as a function of Nx , obtained
with horizontal (triangles) and averaged horizontal/vertical phase determination (squares)
by a 3+3-sample averaging formula; without intensity correction, B = 30 (black symbols);
with intensity correction, B = 3 (black symbols filled white). Input interferograms were
the same four series as for Fig. 6.13.

In this case, the improvement obtained by switching from (αx ,0) to (αx ,αy), with perti-

nent phase-evaluation formulae, is rather small; but its remarkable property is that it lasts
up to (at least) Nx =100. This is in contrast to the other improvement strategies we have

discussed so far (where the σd tended to become more or less the same for higher Nx); it

indicates that the speckle correlation remaining after displacements that give high fringe
densities is indeed more efficiently utilised by the 2-D phase retrieval.

On the whole, it proves rewarding to use the full speckle extent for phase calculation,
provided there is sufficient object light to afford a circular aperture. For practical rea-
sons, one would wish to decrease ds as far as possible; but in SPS, this has effects that
we have encountered in Chapter 5 before: for ds � 3 dp , σd usually increases, regardless
of the respective fringe density.
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6.4 Reduction of speckle size

It seems worthwhile to see whether the methods to reduce σd developed so far can assist

in obtaining "good" measurements from smaller speckles as well. Therefore we test two
more speckle sizes, namely 2.5 and 2 pixels. The best phase calculation found in 6.3 was
the average over four 3+3-sample phase determinations for each pixel, where the inten-
sity correction contributed only a small improvement. Therefore we apply both (6.16)
and its intensity-correcting extension to carry out these additional measurements. The
results are shown in Fig. 6.16, where the last two curves for ds = 3 dp are repeated from
Fig. 6.15 for comparison.
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Fig. 6.16: σd from ESPI displacement measurements as a function of Nx , as calculated by (6.16)
(black symbols) and its intensity-correcting extension (white filled symbols), with
various ds as listed in the legend box.

The results from ds = 3 and 2.5 dp are very close together (except for ds = 2.5 dp , B = 30 and

low Nx); they even cross each other sometimes, which means that the corresponding σd

match within the determination uncertainty as explained in 5.2.2. This allows the
conclusion that we may reduce the speckle size to 2.5 dp at virtually no harm for the

measurement's accuracy. Considering the curves for ds = 2 dp , the beginning increase of σd

vs. ds is clearly noticeable, especially at lower Nx . Hence we can conclude that an optimal
adjustment of ds should be between 2.5 and 2 dp for SPS, which is anyhow sufficient to
collect between 1.5 and 2 times more light than with the "standard" choice of 3 dp .

One could think up even smaller evaluation clusters to deal with small speckles and pos-
sibly enhance the spatial resolution. Re-considering the arrangements of Fig. 6.11, it
would be possible to use pixels {1, 2, 3, 4, 6, 7} only, which still allows for two 3+3-
sample calculations, or even {3, 4, 6, 7}, where it is possible to average over two sets of
3 samples, {3, 4, 7} and {3, 6, 7}. But in both cases we have no straight lines of pixels
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anymore, which leads to drawbacks already mentioned; and in the latter case, the aver-
aging hardly makes sense due to very poor statistical independence of the pixel sets.
Accordingly, these approaches do not deliver any improvement in the whole range of Nx

values over the results already shown. Therefore it is also doubtful whether the formally
expected increase in spatial resolution would actually turn up: very fine fringes might
just disappear in higher noise.

To continue our quest for maximal accuracy in sawtooth images from spatially phase
shifted interferograms, we will now put aside the phase-shifting methods in favour of the
more general concept of the spatial frequency plane.

6.5 Fourier transform method of phase determination

From the discussion in 3.2.2, we saw that the spectral transfer functions of phase-
sampling formulae are designed to function correctly at their nominal frequency only.
While considerable improvements are possible by simple means, all phase-shifting
formulae tend the more to falsify the signal the broader the sidebands are. So, instead of
looking for a phase-evaluation window that delivers low noise while being as small as
possible, one could switch to the other end of the scale and use instead a very large
window: the whole image. Since the signal is encoded in a spectral sideband, it is quite
natural – and convenient – to retrieve its phase from frequency space by a Fourier
transform method (henceforth abbreviated by FT or FTM). It has been applied also to
interferograms without a signal carrier [Kre86]; but that approach requires a-priori
knowledge or one temporal phase shift to eliminate the sign ambiguity.

Although it would require sophisticated hard- and software even today to maintain the
real-time capability of an ESPI system with carrier frequency and FT phase calculation,
we do investigate the effect of it as a possible means of a posteriori data processing that
still can run entirely automatically. It is intuitively clear that this approach should offer a
distinct advantage over phase sampling: while phase sampling always works with local
information from a very short sequence of samples, the FTM, as a global method, has
access to all the image information simultaneously.

The way to retrieve phase information modulated on a carrier frequency, by means of
Fourier transforms, has been described in [Tak82, Rod87]. The FTM lends itself to, inter

alia, profilometry [Tak83], moiré [Mor94a], holographic [Qua96] and speckle interfer-
ometry [Sal96]. Here, we will of course consider the method with emphasis on speckle
interferometry and also generalise the original 1-D treatment to two frequency dimen-
sions, as first suggested in [Bon86].

There are numerous analyses as to the attainable accuracy [Mac83, Gre88, Kuj91c,
Jo�92], with the main results that the interferogram should be multiplied by an appropri-
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ate window function, or extrapolated, to minimise edge truncation effects; but as shown
in [Koz99], they can also be eliminated exactly. We will not deal with such refined
methods because (i) our digital resolution is rather large (1024�1024 pixels), so that the
edge effects play a relatively small role, and (ii) the benefit for speckle images would
hardly be significant.

In classical interferometry, it is necessary to determine and remove the carrier frequency
for wavefront reconstruction [Nug85, Li 98, dNic98, Fer98]; in ESPI, this is fortunately
done automatically by the image subtraction of the initial from the final speckle phase
map.

Let 
o(x, y)
exp(iϕO(x, y)) = o(x, y) be the complex amplitude of the speckle field; then

the speckle intensity is O(x, y) = o(x, y)�o*(x, y) = 
o(x, y)
2, which we assume to be
unity. Adding a reference wave r(x, y), the amplitude of the interferogram is

i(x, y) = o(x, y)+r(x, y). By r(x, y) = �B� �r �exp(i(2πν0x x+2πν0y y)), �r  being the complex

amplitude's unit, we adjust the beam intensity ratio to B, which is a real, positive and

spatially constant factor, and the spatial carrier frequencies to ν0x andν0y . The intensities

in the interferogram are then
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(6.17)

which terms represent the speckle intensity, the reference intensity, and the complex
representation of the cosinusoidal interference term, respectively. The spectrum of this
intensity distribution will be
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where ∗ denotes convolution. This spectrum is a superposition of the speckle halo ~
O ,

the central peak mostly due to the uniform reference illumination, proportional to B, and

two sidebands in which o(x, y), and therefore ϕO , is encoded. Remembering the so-

called sifting property of the δ function [Bra87, p. 74], we can account for the convolu-

tion by rewriting (6.18) as
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(6.19)

As already explained in Chapter 3.3.1, the shape of the sidebands in the frequency plane

is that of the aperture, only now they are shifted by (νx ,νy); see also [Vla94, p. 272]. The
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situation is depicted in Fig. 6.17 where the measured spectral power density
~( , )I x yν ν

2
of a speckle interferogram with ds = 3 dp , αx = 90°/column and αy = 90°/row

is shown in a logarithmic scale; nevertheless, the reference-wave peak has been clipped
to bring the details out more clearly.

( )~
,O x yν ν

( )B x yδ ν ν,
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~ ,*o ν ν ν ν− −0 0

log P/a.u.
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Fig. 6.17: Pseudo-3D plot of the spectral power density P Ix y x y( , )
~

( , )ν ν ν ν=
2

 in a speckle

interferogram with a spatial carrier frequency. Since the spectrum comes from the DFT
of a quadratic image with N�N pixels, the Nyqvist frequencies �νN correspond to N/2
carrier fringes on the sensor.

All contributions from (6.18) are clearly discernible in the plot. Now we enclose one of
the sidebands by a suitable frequency filter whose size follows directly from the speckle
size; its diameter in the frequency plane should be half of that of the speckle halo (cf.
3.3.1). The rest of the spectrum is discarded; the selected sideband is shifted to the centre
of the frequency plane by subtraction of the carrier frequencies, and then transformed
back to the spatial domain:*

( )FT –1 B B x y B x y i x yx y O�
~ ~( , ) � ( , ) � ( , ) exp( ( , ))r o r o r oν ν ϕ= =  ; (6.20)

finally, we obtain the speckle phases ϕO by
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Im � ( , )

Re � ( , )
mod2 = =











r o
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whereby the fluctuations of MI , here appearing as B x y� ( , )r o , are cancelled.

                                           
* The filtering operations destroy the point symmetry about νx = νy = 0 that ~

( , )I x yν ν  possesses as the

FT of a real signal [Bra87, p. 14]; therefore the inverse transform will be genuinely complex.
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By shifting back the sidebands, one obtains the true speckle phases ϕO . However, when

two speckle phase maps ϕO,i and ϕO, f , belonging to two object states, are subtracted from

each other, the carrier frequency will automatically be removed. Therefore, the signal
shift in the frequency plane is not generally necessary in speckle interferometry
(nevertheless, it may sometimes be useful to inspect the speckle phases per se).

In classical interferometry, the variations of the background intensity may reasonably be
assumed to be so low-frequent that the spectrum of the variations of Ib is easily separated
from the signal in frequency space. In speckle interferometry however, the high frequen-
cies in O(x, y) cause a significant deficiency of the FTM: as is clearly seen from Fig.

6.17, ~( , )O x yν ν  is not separated from the sidebands. The speckle halo overlaps the side-

bands at any practicable speckle size, so that a considerable noise background adds to
most of the signal's frequency content. This disturbs the phase reconstruction in a similar
way as in the phase-shifting investigations.

But as familiar as the problems are the ways to cope with them. From (6.19), it is clear
that increasing B will again help to suppress the speckle noise, provided r(x, y) has a nar-
row spectrum and can be eliminated in the frequency plane. This can be fulfilled in an
excellent way if a fibre is used to illuminate the sensor: then r(x, y) will be a very broad
Gaussian profile, and its spectrum a very narrow Gaussian that will not overlap with the
signal sidebands. It turns out that the performance of the FTM depends on B much in the
same way as for the phase-sampling methods. To quantify this, Fig. 6.1 also contains a

plot of σd as calculated by (6.19)-(6.21) (black, circle symbols) from the same interfero-

grams as used for the SPS tests.

Furthermore, we note that the quantity ~( , )O x yν ν in (6.19) is directly accessible because of

( ) ( )~( , ) ( , ) ( , ) ( , )*O O x y x y x yx yν ν = =FT FT o o  , (6.22)

so that we should be able to eliminate the speckle background from the phase calculation
if we first record the speckle pattern alone, calculate its spectrum and subtract it from
(6.18). This correction for speckle intensity is similar to that in 6.2.1, and the remaining
phase errors are then mainly from electronic noise and pixels with insufficient MI . The
same would be possible for the reference wave if its spectrum would overlap the signal
spectra. This approach resembles the background subtraction suggested in [Liu97] for
classical interferometry.

Using the linearity of the Fourier transform, we could even subtract the speckle pattern
in the space domain (6.17) before switching to the frequency domain; but the benefit is
easier to see in the frequency representation. Fig. 6.18 provides an example of how the
speckle noise is removed in the Fourier plane when ds = 2 dp . The aliased frequencies
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over νN remain usable for the FTM by pasting them back to where they got cut off
[Bon86]. The reference wave need not be accounted for, since its spectrum is indeed
easily separated from the sidebands.

    
Fig. 6.18: Interferogram power spectra for ds = 2 dp and B = 3 without (left) and with (right) speckle

subtraction. The speckle halo is larger than the frequency plane; the attenuation of high
horizontal frequencies is mostly due to the pixel clock (cf. 3.4.5). Spatial frequency
scales are as in, e.g., Fig. 6.12 on the left.

This approach eliminates the problem of growing overlap of speckle halo and signal
band with decreasing speckle size, so that a very large part of the frequency plane can
now conveniently be utilised. Also, the "crosstalk" of the sidebands addressed in 6.1.2

(cf. Fig. 6.3) is avoided. The setting of νx = νy = νN/2, chosen for convenience of phase
sampling (cf. 6.3), appears to be the optimum choice in frequency space: it has been
used in [Küch91] for a high-performance interferometer, and a computer simulation in
[Che91] showed it to yield the error minimum.

The vacant regions of the frequency spectrum can even be used to record further infor-
mation [McLa86, Hor90, Sim93, Pir95, Ped97a, Ped97b, Tak97a, Tak97b, Sched99], e.g.
about a second deformation direction; this approach has become popular under the name
of spatial frequency multiplexing. Including time as a parameter enables spatio-temporal
frequency multiplexing with one [Tak90a] or two [Tak92, Mor94b] spatial dimensions.

The improvement of speckle subtraction over the non-correcting FTM for varying B is
also shown in Fig. 6.1 for ds = 3 dp (black, white circle symbols). The behaviour of the
correction is the same as for the phase-shifting method: the effect vanishes for B � 30.

When the same interferograms as in Chapter 6.4 are processed by the FTM, again at
B = 30 without and B = 3 with the intensity correction, one comes to the results plotted in
Fig. 6.19. To use a 1024�1024 pixel FFT, the standard input images consisting of
1024�768 pixels were padded with zeros in the last 256 rows. In a comparison of

genuine 10242 pixel images processed entirely and partly, the difference in the σd values
remained within �1%.
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Fig. 6.19: σd from ESPI displacement measurements as a function of Nx , as calculated by (6.19)-
(6.21) (black) and its intensity-correcting extension according to (6.22) (white filled
symbols), with various ds and B as listed in the legend box.

By the intensity correction, a pronounced improvement is attained for ds = 2 dp . This could
be expected since the overlap of speckle halo and sidebands is largest at the smallest ds ,
and hence a subtraction of the speckle noise should have the largest effect. Again, there is
not much difference between the curves for ds = 2.5 or 3 dp , and the improvement by the
intensity correction is similar to that in Fig. 6.16. Generally, the curves shown here are
rather similar to those of Fig. 6.16, but a careful comparison reveals a qualitative

difference. The FTM yields lower σd for Nx < 20, while from Nx = 20 on, the multiple-

averaging formulae lead to better results. The curves for the FTM begin with a steeper
slope and then flatten out towards higher fringe densities; those from the phase-sampling
formulae are essentially straight. This shows that the FTM can be very accurate but is
more sensitive to speckle decorrelation than the SPS calculation: the spatial extent of the
sampling pixel cluster slightly tends to smooth the calculated phase maps. At very small
decorrelation however, the information in the interferograms is more efficiently used by

the FTM. Both sets of curves would of course approach the noise limit of σd,max � 0.146 λ
(see Chapter 5) asymptotically if we further increased the fringe density.

On the whole, the development of phase evaluation methods specially for interferograms
with spatial phase shift – or carrier frequency, whichever interpretation one prefers –
proves rewarding and contributes an important part to the applicability of the spatial
fringe analysis technique in ESPI. The expected noise due to intensity and phase gradi-
ents in the speckle pattern can be efficiently suppressed, and also the matter of spatial
resolution does not seem to constitute a serious drawback for SPS at practicable fringe
densities.
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6.6 Use of depolarisation to eliminate invalid pixels

A main error source in ESPI and, to a lesser extent, in holographic interferometry, are
pixels where MI (x, y) falls below the electronic noise or even vanishes due to low or zero
speckle intensity. This occurs quite frequently (cf. Chapter 2.2.5) and leads to a relevant

fraction of uncertain or invalid outputs of ∆ϕ (x, y) in displacement measurements. This

phenomenon, with the associated discontinuities of the speckle phase, is the origin of the
"salt and pepper" noise in ESPI phase maps, and its effect on phase unwrapping has been
investigated recently [Hun95].

On the other hand, it is known that the speckle intensity pdf described by (2.6) changes
significantly when an incoherent sum of two uncorrelated speckle patterns is considered
[Goo75, p. 21; Enn75, p. 211]. In that case, the maximum of the intensity pdf is shifted
away from O(x, y) = 0, so that the probability of finding "dark" pixels will decrease. Such
a case is encountered in the interferometric investigation of rough objects that give rise
to multiple scattering and thus introduce depolarisation, i.e. generate two mutually inco-
herent speckle fields. In this subsection it will be shown how these can be exploited to
improve ESPI measurements [Bro98].

In this context, we call an object depolarising if the state of polarisation (SOP) of the
light scattered back from it differs from the SOP of the incident light. In many samples,
for instance natural stone, this is a consequence of volume scattering due to the transpar-
ency of the material under investigation. Hence, we obtain a scattered wave field with
fluctuations of intensity, phase, and polarisation.

If the scattered light is split into two orthogonal linearly polarised states (vertical, v, and
horizontal, h), two speckle patterns Ov(x, y) and Oh(x, y) are generated with a normalised
correlation coefficient c. As described in [Fre90d], the value of c is chiefly governed by

a surface-specific constant, called the depolarisation coefficient ρ . This quantity is

defined by the ratio of cross- to co-polarised scattered speckle intensity:

0 � ρ =�Ov�/�Oh�� 1, where h is the SOP of the incident light and v the orthogonal one.

Then, we can use

( )
c =

−

+

1

1

2

2

ρ
ρ

(6.23)

as a very good approximation to determine the correlation of the orthogonally polarised
speckle patterns. This theoretical prediction was confirmed by measurements of depo-
larising natural stones [Ada97]. Such surfaces are for example involved in ESPI-based
measurements of deformations and surface changes of historical monuments, which
application was developed in the last few years [Gül96].



                                       6.6 Use of depolarisation to eliminate invalid pixels                                 171

Even moderate amounts of depolarisation cause a significant decay of c: for ρ > 0.5, we

find c < 0.2, so that in practice there is a good chance to obtain a pair of almost uncorre-
lated speckle patterns. When a depolarising object is investigated by speckle interfer-

ometry, the low correlation between Ov(x, y) and Oh(x, y) may be utilised to decrease σd

in displacement measurements: the points of phase singularities or low object wave

intensity in the speckle fields, where the phase ϕO,v(x, y) or ϕO,h(x, y) is undefined or

uncertain, frequently occur at locations that are different in the v and h fields. This gets
clear when we express the probability of finding a "bad" pixel (denoted by subscript b)
at (x, y) in either speckle pattern by Pvb(x, y) and Phb(x, y) and that of finding a bad pixel
in both speckle patterns by Pbb(x, y). Then we have

P x y P x y P x ybb vb hb( , ) ( , ) ( , )≅  , (6.24)

which is exact when c = 0. Provided both Pvb(x, y) and Phb(x, y) are distinctly smaller than
unity, this means that it is possible to replace most of the bad pixels from one speckle
pattern by valid pixels from the other one. There are of course always several points
(even for c = 0) where bad pixels in both speckle fields coincide. But in any case, the
number of bad points in the phase map can be minimised by suitable merging of

ϕO,v(x, y) and ϕO,h(x, y).

The merging process is carried out by analysing MI (x, y) in the interferograms between
the reference wave (ideally linearly polarised at 45°) and the vertically or horizontally
polarised object wave [Cre88],

M x y I I I I I

M x y I I I I I

I vi vi vi vi vi vi

I hi hi hi hi hi hi

,

,

( , ) ( ) ( )

( , ) ( ) ( )

= − + − −

= − + − −

3 2

3 2

1 3
2

2 1 3
2

1 3
2

2 1 3
2

 
,

(6.25)

where α =120°/sample and the subscript i refers to the initial object state, for reasons to

become clear shortly. It should be emphasised that these MI are derived from the "sine"
and "cosine" terms of (3.17), which must then be used for the subsequent phase determi-

nation; if other α, or phase-calculation formulae, are used, the respective "sine" and

"cosine" terms have to be inserted under the square root. Due to the low correlation
between the v and h speckle patterns, the two maps of MI,vi (x, y) and MI,hi (x, y) will also
be different, and the higher of the two values ought to indicate the prospect of a more
accurate phase measurement. Admittedly, (6.25) is not as reliable in SPS as in TPS
[Su 94] due to the underlying speckle structure that may yield bogus modulation when
the pixel triplet crosses speckle "boundaries"; but as far as a comparison of MI,vi (x, y)
and MI,hi (x, y) is concerned, this approach still works rather well, as we shall see.

The interferograms are recorded by a CCD camera behind a polariser in the vertical or
horizontal position; setting the plane of polarisation of the reference wave to ideally 45°
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assures Pvb(x, y) �Phb(x, y). For each point (x, y) in both interferograms we determine

MI,vi (x, y) and MI,hi (x, y) and the phase distributions ϕO,vi (x, y) and ϕO,hi (x, y). Then, start-

ing with ϕO,vi (x, y), we replace the phase values in this map by those from ϕO,hi (x, y) at

all the locations where MI,vi (x, y) < MI,hi (x, y). Thus, a pixel is considered "bad" in the
sense of (6.24) when a better measurement is available. The locations of replaced pixels
are stored in a binary mask Bi (x, y).

Repeating this modulation analysis for the final object state would lead to a slightly dif-
ferent map Bf (x, y) due to speckle decorrelation by the object deformation and statistical
temporal fluctuations like camera noise. Therefore, Bi (x, y) is used for the final object

state too. That is, the phase values in the map ϕO,vf (x, y) are replaced by those of the map

ϕO,hf (x, y) at the same locations where the replacement is done for the initial object state.

By this approach, two merged (subscript m) phase maps ϕO,mi (x, y) and ϕO,mf (x, y) are

generated, whose correlation is maintained with respect to the pixel replacement.

Since the phase offsets N0v and N0h (cf. Chapter 4.2) should be the same for both saw-
tooth images to merge, they should be kept constant during the recording of the two
interferogram pairs Ivi , Ihi and Ivf , Ihf . In principle, it is possible to correct a phase offset
a posteriori and make both fringe systems fit together by subtracting a constant phase
from one of the sawtooth images; but the error fringe profiles (cf. Fig. 3.39) are related
to the actual physical phase offset, so that such a "makeshift" will produce artefacts and
lead to unsatisfactory results. Therefore, a phase stabilisation system to compensate
phase fluctuations by, e.g., vibrations or temperature drifts is incorporated in the inter-
ferometer as shown in Fig. 6.20.

The light of a HeNe laser (25 mW @ 632.8 nm) is coupled with a microscope objective
L1 into a standard single mode fibre (Corning Flexcor 633). A fibre coupler FC (Gould)
splits the light into an object wave O and a reference wave R with a coupling ratio of
9:1. Both output fibres contain a polarisation controller POC [Lef80] to adjust the SOP
at the fibre ends; we use linear 45° polarisation for O and not 45° but 48° for R, which
difference will be justified below. Although a standard single mode fibre is used, both
SOPs remain almost constant under the given laboratory conditions for a long time. This
was verified by long-term measurements with a real-time Stokes polarimeter [Dir97]: for
a time period of about four hours, the azimuthal SOP angle changes by less than 2°, and
the angle of ellipticity by less than 4°.

To obtain performance data for our approach, we use the σd values from a simple out-of-

plane tilt. The test object is a white painted metal plate that scatters with strong depolari-

sation (ρ = 0.78 ± 0.01). The light scattered off the object is imaged with a lens L2 onto

the target of the CCD camera, with 1024�768 pixels. A polariser PF in front of the
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camera target selects either the vertical or horizontal SOP of the scattered light. The
measured correlation coefficient for the corresponding speckle fields Ovi (x, y) and

Ohi (x, y) is c = 0.02 ± 0.005 which is in acceptable agreement with the value of

c = 0.03 ± 0.003 expected for the measured depolarisation coefficient. Since

�Ov�/�Oh� � 0.78, the plane of polarisation of the reference wave is set to 48° instead of
45° by the POC to obtain Pvb (x, y)�Phb (x, y), this is, we intend to replace some 50% of

ϕO,vi (x, y) (ϕO,vf (x, y)) by entries from ϕO,hi (x, y) (ϕO,hf (x, y)), whereby the best utilisation

of both speckle patterns is assured.

FC

L1

R

O

POC

POC

PZ

L2

M1

M2
BS

PF

CCD

PID
HV

D1

D2

Object

A

S

Fig. 6.20: ESPI out-of-plane set-up with SPS and active phase stabilisation. Dashed lines: beams
for the stabilisation system. Abbreviations: see text.

The reference wave's fibre end is placed in the aperture plane A of the imaging system

and positioned to yield αx =120°/column on the CCD sensor.

The phase stabilisation works as follows: part of the object light is reflected by the small
mirror M1 mounted on the object. It passes through the lens L2 and is then reflected by
another small mirror M2, close beside the CCD chip, towards the plane S. On the oppo-
site side of the CCD sensor, a small beamsplitter BS reflects a part of the reference wave
towards S. By proper adjustment of M1, M2 and BS, both waves can interfere in S,



174                                                         Improvements on SPS                                                               

forming an interference pattern of concentric fringes as shown in Fig. 6.21. This is far
easier to achieve than broad fringes of stable shape.

D1D2

Fig. 6.21: Interference pattern in the plane S of the PID unit; the white squares indicate the
locations and areas of the photodiodes. The circular boundary of the pattern is due to the
imaging aperture.

A photodiode D1 is placed in the centre of this pattern where a broad fringe occurs.
Another one, D2, is placed outside the centre, integrating the intensity distribution over
some 12 fringes. Thus, the output of D2 is insensitive to phase variations and tracks the
intensity fluctuations of the laser instead. Whenever phase changes occur between the
object and the reference wave, the intensity in the centre of the fringe system changes.
This variation is detected by D1 only, while intensity fluctuations of the laser are de-
tected by D2 and D1. The difference signal of the detectors D1 and D2 is processed by a
PID controller and then fed into a high voltage amplifier HV. The amplifier drives a
piezo electric cylinder PZ (Ferroperm PZ 27), onto which some turns of the reference
fibre are wound and which works as a phase shifter [Dav74]. By this closed-loop control
system, the phase difference between O and R is stabilised with respect to that point of
the object surface where M1 is mounted. The achieved cut-off frequency of the phase
compensating unit of about 1.4 kHz is found to be adequate for the desired purpose.
Also, the long-term stability of this arrangement was found to be satisfactory [Sag98].

At the beginning of the measurement, �B� � 10 and ds � 3 dp were adjusted. Unfortu-
nately, we have to use an average for R, and hence for the beam ratio, here: as can be
seen in Fig. 6.20, the reference wave was directed so as to illuminate BS sufficiently.
The maximum of its intensity profile lay beside the CCD array, which caused the local
intensity of R to vary between 2�R� and �R�/3 from edge to edge of the sensor. Hence,
3 < B < 20 over the image, which leads to slight spatial variations of MI , and thereby, the
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fringe quality. Note, however, that rotating the polariser does not affect the profile of B,
so that the modulation criterion remains applicable.

For the initial object state, speckle interferograms were captured for the vertical and

horizontal position of the polariser, respectively. The phase map ϕO,mi (x, y) was calcu-

lated from these interferograms as described above. According to Bi (x, y), ϕO,mi (x, y)

contained 49.2% of the pixels from ϕO,vi (x, y) and 50.8% from ϕO,hi (x, y).

The object tilt was applied to generate Nx �10, which moved M1 forward (towards the

camera) by some λ; the associated phase change was tracked and compensated by the

stabilisation unit, whose bias output voltage was therefore shifted by some 10% of its
complete range. This means that the "I" part of the PID stabilisation would have to be
reset regularly if larger tilts were present. The consequences of the tilt for the shape of
the fringe pattern in Fig. 6.21 are however negligible. Nevertheless, some work has been
done subsequently to get rid of the necessity to attach a mirror on the object, and a
highly sensitive heterodyne system was built that uses the light of one or few object
speckles for stabilisation [Bro00].

After the object deformation, Ivf (x, y) and Ihf (x, y) were recorded and a phase map

ϕO,mf (x, y) for the final object state was calculated. Finally, the merged deformation

phase map ∆ϕm(x, y) = ϕO,mf (x, y) – ϕO,mi (x, y) was determined, with σd = 0.051 λ. For

comparison, we generated ∆ϕv(x, y) = ϕO,vf (x, y) – ϕO,vi (x, y) with only one SOP (here v),

and found σd = 0.067 λ. Hence, the noise reduction by using both SOPs is about 24%. A

visual impression of the resulting phase maps is provided by Fig. 6.22.

  
Fig. 6.22: Comparison of sawtooth images from an out-of-plane tilt; left, ∆ϕv(x, y) measured with

one SOP, σd = 0.067 λ; right, ∆ϕm(x, y) by merging of measurements from two SOPs,
σd = 0.051 λ.

The experiment demonstrates that even a simple phase-calculation formula is sufficient

to obtain an accuracy of λ/20 in SPS if it is allowed to process "good" interferogram

data. And as described above, there is still space left for improvements.
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An attempt to use the intensity-correcting formula (6.6) to derive a modulation criterion

that includes speckle intensities remained unsuccessful. While both ∆ϕv(x, y) and

∆ϕh(x, y) were better than their non-corrected counterparts, ∆ϕm(x, y) was slightly worse

in terms of σd . Apparently, the simple modulation analysis of (6.25) rejects unreliable

pixels well enough, and the inclusion of speckle intensities tends to complicate the
procedure.

In the version of the system described here, the polariser is rotated manually. Of course,
it could be replaced by an electro-optical device, so that the interferograms for both
SOPs can be captured in subsequent video frames. Furthermore, with a polarising
beamsplitter and two cameras, it would even be possible to record the two interfero-
grams simultaneously. In that case, the phase compensating unit can be given up,
provided SPS is used.

6.7 Extensions of SPS by temporal unwrapping

While the reduced spatial resolution in ESPI does not seem to constitute practical limi-
tations for SPS, the temporal resolution is increased in comparison with TPS by a factor
of at least 3. This has been used for high-precision classical interferometry to obtain and
average phase maps at a higher rate [Fre90b], and the single-frame measuring capability
has enabled successful measurements of high-speed events [Kuj88, Sho90, Ped93]. But
not only can the phase front be monitored at video real-time: it can additionally be
tracked and unwrapped pixelwise in time, which immediately yields displacement and
deformation data and possibly eliminates the need for a posteriori data processing. This
approach is known as temporal phase unwrapping [Hun93a] and abbreviated by TPU. It
has been used for profilometry [Tak94, Sal97, Joe98b] and shearography [vBru98] and
was applied to ESPI deformation measurements in combination with TPS [vBru98,
Hun99] and also with temporal FT evaluation [Joe98a]. A method utilising carrier
fringes with TPU for a shearography ESPI system has recently been described in
[Mar00]. The principles of spatial and temporal unwrapping are shown in Fig. 6.23.

In spatial unwrapping, a sawtooth image (top, left), representing a temporal phase his-

tory ∆ϕ (x, y) mod 2π = (ϕO(x, y, tf ) mod 2π – ϕO(x, y, ti) mod 2π) mod 2π, with subscripts i

and f referring to undeformed and deformed object state, is converted to a continuous

displacement phase Φ (x, y) (top, right) by appropriate additions of �2π, i.e. by finding

the correct step function 2πn(x, y), n∈�. This is done by a simple criterion: when the

data satisfy the sampling theorem spatially, there will be no phase changes > π from

pixel to pixel. If such a transition is detected nevertheless, it must then be a 0 � 2π jump

that is wrapped back onto [0,π) by in- or decrementing n. This procedure along the x

direction at an image row y is sketched in Fig. 6.23 in the centre of the upper row.
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Fig. 6.23: Principle sketch of spatial (top row) and temporal (bottom row) phase unwrapping; for
details, see text.

Temporal unwrapping starts from an empty displacement map (bottom, left) and tracks
the phase history of every pixel (x, y) in time by comparing it with an initial phase map

ϕO(x, y, ti). The unwrapping criterion is applied temporally, as shown in the centre of the

bottom row for some pixel (x, y); the temporal sampling rate must be high enough to keep

differences of ϕO(x, y, t) from frame to frame smaller than π on each pixel, this is, the

sampling theorem must be fulfilled temporally. The phase differences are unwrapped by

addition of 2πn(x, y, t) as required and used to continuously update Φ (x, y, t), which may

conveniently be represented by grey levels as well, as on the right in the bottom row. The
advantage of this method is that errors due to faulty – mostly badly modulated – pixels
will not spread across the image as this may be the case for spatial unwrapping.

In longer monitoring sequences however, this advantage of TPU can become a disad-
vantage: it accumulates data, including errors, and severely corrupted unwrapped phase

maps Φ (x, y) cannot be restored a posteriori. It is therefore favourable to store both the

temporally unwrapped data and several phase maps ϕO(x, y, t). If the former are doubtful,

the latter may yield conventional sawtooth images ∆ϕ (x, y) that can easily be unwrapped

spatially when they contain few fringes.

This procedure requires a storage interval ∆t for the phase maps ϕO(x, y, t) which is

matched to the possibly varying velocity of object deformation and displacement. The

implicit fringe counting capability of TPU lends itself for driving such a matched course

of ∆t automatically. As far as I know, this issue has only once been dealt with before on

the basis of speckle decorrelation analysis [Gül93]; here however, the quantity of inter-
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est that we now want to limit is the number of fringes in ∆ϕ (x, y) instead of the speckle

decorrelation [Bur00b].

In practice, ESPI often deals with objects consisting of several independent parts that

may undergo different displacements and deformations. However, sawtooth fringes do

not allow to determine rigid body movements or the sign of the deformation itself,

unless the fringe orders are tracked by additional devices like, for instance, a phase sta-

bilisation unit [Bro00]. We will see that temporal unwrapping delivers these data for

each object part automatically.

6.7.1 Temporal unwrapping of speckle phases

The use of temporal unwrapping is not entirely straightforward in speckle interferome-

try; we will therefore briefly consider the cumulative impact of speckle noise on

displacement data.

Not surprisingly, badly modulated pixels cause problems also in this application. The

statistical fluctuations of the calculated phase should yield a displacement of zero when

monitored over a sufficient number of frames. It was however observed that even for

longer observation sequences with hundreds of frames, some of these pixels seemed to

change their phase constantly in one direction; both signs of displacement were present.

In a fringe counting procedure, these pixels would trigger data storage even when no

actual displacement has occurred. Therefore such outliers have to be suppressed; and as

usual in speckle interferometry, a low-pass filter can serve to do so. This may be objec-

tionable in TPS, because it impairs the spatial resolution; but for larger speckle sizes, as

used in SPS, the resolution will not suffer greatly.

There are sophisticated and well-founded filtering schemes [Hun97] that give excellent

rejection of noise in the displacement map over long, albeit not infinite, times of obser-

vation [Cog99]. For reasons of processing speed, a simpler filtering scheme is used here.

The accumulated phase Φ (x, y, t) of a pixel at time t is considered faulty when it differs

by more than π from the accumulated phase of at least one out of its nearest neighbours.

In that case,

( ) ( ) ( ) ( ) ( )( )Φ Φ Φ Φ Φx y t x y t x y t x y t x y t, , , , , , , , , , /� − + − + + + +1 1 1 1 4  , (6.26)

and the outlier is eliminated.

By the selection criterion, filtering takes place only when necessary, and processing time

is saved. This helps to obtain a high frame rate, which is very important since also tem-

poral unwrapping relies on the sampling theorem, as detailed above; and due to the

cumulative nature of the process, errors due to missed fringes (violation of the sampling
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condition) will last in the map of Φ (x, y, t) until it is cleared. The phase maps were gen-

erated by a look-up table for αx =120°/sample (cf. 3.2 and Appendix B). The frame rate

of the image processing system (a Data Translation DT3852 frame grabber connected to

an Alacron FT200 processor board with two 50-MHz i860 processors) was � 0.5 Hz for

an image size of 800�600 pixels.

The method of filtering was tested by running the temporal unwrapping for some 30000

frames without disturbing the system. At the end, the fringe counting procedure reported

some 1.5 fringes; this error suppression is sufficient for our purpose. However, the fluc-

tuations in Φ (x, y) do not appear to be perfectly random, since they do not vanish even

in such a long averaging process. Their structure may be seen in Fig. 6.24, where the dis-

placement information corresponding to a range of 1.5 fringes has been converted to

grey values and expanded to the whole grey scale for better visibility of the effect.

Fig. 6.24: Errors in Φ (x, y) related to "random" noise, accumulated during � 30000 temporal
unwrapping runs without actual object displacement.

Another problem occurs in the observation of real displacements. While noisy pixels are

not necessarily detected as such in every frame, their calculated Φ (x, y, t) will not follow

the true course; instead, for most of the noisy pixels it will hover around zero. If such a

Φ (x, y, t) happens to be included in the averaging operation (6.26) before it is re-aligned

with its neighbours, its error will propagate into the surrounding pixels. In the long run,

this will lead to pixel clusters whose Φ (x, y, t) is dragged behind, i.e. will be somewhere

between zero – from where all observations start – and the true value. An example is

given in Fig. 6.25, where an out-of-plane tilt about the y axis has been tracked. The tilt

was controlled by applying a linear voltage ramp to a PZT which rotated the object

holder slowly enough to satisfy the temporal sampling requirement for all pixels in the

image.

y

Fig. 6.25: Errors in Φ (x, y) related to object motion; "slow" pixels due to imperfect error rejection.

The line of zero displacement is marked by the white line and the accumulated dis-

placement range Φ (x, y) is +5π at the left and –5π at the right edge. The bright/dark
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backgrounds tend to deceive the eye; indeed, the "slow" pixels on the left are brighter
than those on the right, which means that the sign of motion is correctly determined for
all of them, but the measured displacement is underestimated. When spatial averaging
takes place in every frame, this behaviour can be suppressed by pixel weighting
[Cog99]. In this subsection, the faulty pixel clusters are selectively removed a posteriori;
they must not be included in the displacement computation [Hun93a], for they will
generate a systematic error that is proportional to the absolute displacement.

6.7.2 Long-term observation of biological object

Many industrial ESPI experiments allow to predict the number and shape of fringes with
which a test object will respond to a certain load. On the other hand, being a non-
destructive examination technique, ESPI is particularly useful for unique objects about
whose properties little is known. Therefore it is in general difficult to foresee changes in
the fringe pattern, all the more when the objects are not subjected to test sequences or
cycles but left to fluctuations – or attempts of stabilisation – of ambient parameters. In
such cases, eventful periods may alternate with hours of little or no changes. A "good"
experiment requires that the object motion be adequately tracked in time, this is, neither
fringe density nor speckle decorrelation must grow too large between the capturing of
consecutive interferograms; and on the other hand, no redundant data should be pro-
duced. While there may be tasks where a human operator can make such decisions, this
is undesirable from an economical point of view. Also, some observations exclude the
presence of a person.

Temporal phase unwrapping is well suited to utilise the fringe order count n(x, y, t) to

generate matched data storage intervals ∆t: from the continuously updated values

Φ (x, y, t), the extreme values Φmax and Φmin can be extracted in every run of the temporal

phase unwrapping loop. When the difference exceeds a certain threshold ΦT , it is

assumed that the corresponding sawtooth phase map ∆ϕ (x, y) = ϕO(x, y, tf ) – ϕO(x, y, ti)

between the present phase distribution ϕO(x, y, tf ) and the stored initial one, ϕO(x, y, ti),

has acquired m fringes with m = ΦT /2π. In that case, ϕO(x, y, tf ) is stored and re-labelled

ϕO(x, y, ti), Φ (x, y, t) is cleared and the procedure begins anew. This technique yields a

sequence of few-fringe sawtooth images that constitute no problem for spatial unwrap-
ping. Note, however, that this method of fringe counting does not limit the fringe den-
sity: when small defects generate high local phase gradients, it may possibly come to
unresolvable sawtooth fringe patterns. The phase gradient is easily accessible with the

help of the co-ordinates of Φmax and Φmin ; but this procedure was omitted for the sake of

simplicity.
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Of course, the most convenient data evaluation would be to accumulate Φ (x, y, t)

throughout the whole observation, whereby it may even become obsolete to save phase

maps ϕ (x, y) regularly. But with the type of filter used here (6.26), it is safer to eliminate

accumulated noise or accidental errors (e.g. by abrupt stress relaxation in the interfer-

ometer) by clearing Φ (x, y, t) when a phase map is stored. Thereby the continuous

tracking of phases Φ (x, y, t) is given up, but the propagation of errors is being limited to

one measurement of Φ (x, y, t), corresponding to only one storage interval ∆t. Neverthe-

less, the whole series of k phase maps Φk(x, y, t) may be stored and, if usable, added up

later on to yield Φ (x, y, ttotal) = ΣΦk(x, y, t).

To test this approach of dynamic data storage, I examined a biological test object whose
likely deformation is not known in advance. The white spot on a fresh chestnut, as
shown in Fig. 6.26, was found to be quite co-operative for interferometry: its surface is
reasonably reflective and maintains speckle correlation over sufficient time intervals.
We can expect the displacements to proceed most rapidly at the beginning of the ex-
periment because the object will relax in its holder. Also, the loss of water from the sur-
face should result in a constant shrinking, relatively fast initially and then levelling off.

  
Fig. 6.26: White-light image (left) and deformation map (right) of fresh chestnut.

The changes of the chestnut's surface were monitored over some days from shortly after
its fastening in the interferometer (which was the set-up of Fig. 5.1) until the deforma-

tion had settled somewhat. Besides the matched storage of phase maps ϕ (x, y) whenever

the threshold of m = 5 fringes was reached, additional ones were stored at the steady rate
of 1 frame per 10 min to study possible performance differences between the methods.
Fig. 6.27 provides an overview of the deformation dynamics. The black curves

(left ordinate) show the courses of the matched and static storage intervals ∆t versus time

after the beginning of the observation. The white curves (right ordinate) show the corre-
sponding courses of the hard disk space required for storing the phase maps.
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Fig. 6.27: Course of the matched and static storage interval ∆t (black curves, left ordinate) during
several days; for static storage ∆t is fixed to 10 min. White curves: hard disk space
required in MBytes/day (right ordinate).

The matched data storage went through several phases: in the first 3 hours, the chestnut

appeared to settle in its spring-loaded holder and short storage intervals ∆t were neces-

sary. After �15 h, the deformation slowed down; the matched ∆t were incidentally

similar to the static ones in the time period between � 25 h and � 60 h. After � 60 h, a

distinct slowing down of the shrinkage took place, and the matched ∆t remained around

20 - 25 min for the rest of the observation. Hence, temporal unwrapping was able to
avoid undersampling (in the sense of appropriate data storage) initially and to save disk
space later on.

To illustrate the value of this approach, we shall consider images from the two situa-
tions. In Fig. 6.28, a comparison of a 10-minutes' deformation measurement at t � 7 ¾ h
is shown. Since the automatic routine determined the instant of saving by itself, the ini-
tial and final object states are only by chance very nearly, but not exactly, the same for
the two storage series.

The deformation is decomposed into five parts (upper row) by the matched phase map
acquisition, and the corresponding sawtooth images indeed show m � 5 fringes each.
The incremental sawtooth images can all be spatially unwrapped with no problems, and
the corresponding height data can be added to yield a flawless deformation map (lower
row, left). Depending on the individual phase gradients, the sum of these incremental
phase maps may contain well below 25 fringes, but not more. The single sawtooth image
(lower row, centre) from the static data storage indeed contains only �19 fringes. Their
strongly fluctuating density causes problems in spatial unwrapping, so that some height
assignments are faulty in the result (lower row, right). While one would not lose track of
the course of displacement in this example, there may be cases where only a higher
image rate can ensure getting safely through the process.
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Fig. 6.28: Comparison of matched vs. static data acquisition at t � 7 ¾ h. Upper row: sequence of

sawtooth images calculated from 5 automatically saved phase maps ϕ f (x, y) (matched
∆t), leading to the resulting grey-scale height map on the left in the lower row when
spatially unwrapped, converted to heights and added. Lower row, centre: sawtooth image
for almost the same displacement calculated from only one phase map ϕ f (x, y) (static ∆t);
right: resulting height map.

After t � 65 h, the situation is reversed: the deformation is oversampled by the static
acquisition, which generates a large amount of superfluous data. Fig. 6.29 gives an
example from t � 79 h.

                                                                                                          

                                                                                                          

Fig. 6.29: Sawtooth image for matched data storage (left) and corresponding sequence of sawtooth
images from static storage interval (right) at t � 79 h.

At that stage of the experiment, the automatic storage interval had expanded to

∆t � 32 min. Consequently, the fringe density in the images from the fixed-rate series is

unnecessarily low, disk space is wasted and the data evaluation gets more laborious.

In Fig. 6.29, we also find a hint that our cautious decision to regularly reset Φ (x, y, ti)

after each storage is justified. As the object deformation grows slower, ∆t becomes

larger, more noise is accumulated in the temporally unwrapped data, reduces the accu-
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racy and also triggers storage too early: in the automatically saved image, we find less
than 4 fringes instead of m � 5.

The shown experiment demonstrates that fringe counting by means of temporal unwrap-
ping is suitable to adapt the data storage rate to the actual displacements. This is helpful
not only for long-term observations: in any experiment where no assumptions about the
object's dynamics can be made, its motion can reliably be tracked by the approach pro-
posed here.

6.7.3 Relative displacements of discontinuous object

Especially in the investigation of historical material, one frequently encounters cracks in
the surface under inspection [Gül96] and it is important to know the relative motion of
neighbouring sub-areas of the object. As a realistic specimen of an aged material, a slice
of a historical brick (� 2 cm thick) was observed under temperature changes. The inter-
ferometer was again the out-of-plane assembly of Fig. 5.1, only the test object had been
replaced by the brick slice in upright position. The heat source was an infrared radiator
positioned some 30 cm behind the object. Fig. 6.30 shows a white-light image of the
measuring field.

Fig. 6.30: White-light image of historical brick.

When this sample is subjected to cycles of alternately 15 min of heating from the back-
side and 15 min of cooling, the resulting deformations reveal 9 separately moving por-
tions with rather different fringe densities and complicated boundaries, as Fig. 6.31
demonstrates. The dashed line does not mark a cleavage; but the fringes slightly change
their orientation, as may be verified by viewing them along the black-white edges at a
small angle to the paper. The shown displacements each have evolved in time intervals

of �10 min. For the heating period, ϕO(x, y, ti) was stored at an ambient temperature T1
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when the heater was switched on, while for the cooling period ϕO(x, y, ti) was stored at

an ambient temperature T2 when the heater was switched off.

  

3.4 µm

– 0.4 µm

  

– 2.3 µm

1.3 µm

Fig. 6.31: Displacement phases mod 2π (left) and corresponding grey-scale height maps as
delivered by temporal unwrapping (right), for heating (top) and cooling period (bottom).
Numerical values denote maximum and minimum displacements.

While it would be very laborious to define and spatially unwrap all the regions sepa-
rately, it is even impossible to determine their relative heights from the sawtooth images
on the left. When such displacements are monitored with temporal unwrapping, the
problems are overcome. Without the need to fit data from different sub-areas together, a
complete profile of the surface changes is obtained. One can, and should, test its reli-
ability by checking the obtained surface tilts for consistency with those following from

the number of sawtooth fringes. On removing the abovementioned "slow" pixels, Φ (x, y)

from temporal phase unwrapping did not deviate by more than 0.1 λ from Φ (x, y) as pro-

duced by spatial unwrapping of the corresponding sawtooth images, which also justifies
some confidence in the absolute heights that are given in Fig. 6.31.

According to the height maps from temporal unwrapping on the right, the deformations
that developed in the heating period are almost reversed during cooling, apart from some
remaining displacements and deformations that are clearly emphasised by an addition of
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the height data from the two states, as demonstrated in Fig. 6.32 on the right. Most of the
remaining displacement is presumably caused by an ambient temperature at the end of
the cooling period that differed from T1 .

  
Fig. 6.32: Overall displacement after heating and cooling. Residual tilts are visible in the sawtooth

image (left); rigid-body displacements are revealed in the grey-scale height map (right).
Arrows mark locations of possible misinterpretations of the sawtooth image.

On the other hand, the sum of the sawtooth images lacks important information. At the
black arrow, a substantial piston-type displacement is not discernible from the sawtooth
image, while at the white arrow, the nearly matching fringe positions almost conceal the
step of � 0.3 µm (1 fringe) that has actually remained. On the contrary, the results based
on the height maps from the temporally unwrapped data are unambiguous. They need no
interpretation and thus allow an easier assessment of object changes.
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7 Summary
This thesis work has presented a detailed investigation of various aspects that concern
the application of spatial phase shifting (SPS) in ESPI. The objective was to broaden the
previously somewhat sparse knowledge of what happens in spatial phase sampling on
speckle fields, and to utilise the findings to introduce some improvements of SPS.

The ground on which to base such an investigation is, first of all, an extensive study of
the nature of speckle fields. Fortunately, speckle statistics have been an important topic
in optical research for some 40 years, so that many useful results could be collected and
grouped. The theoretical studies were accompanied by experimental validations of some
results.

With respect to SPS, the one-dimensional intensity and phase gradients deserve particu-
lar interest, and it was found that the speckle intensity is correlated with the intensity
gradient and anticorrelated with the phase gradient. This simple rule of thumb provided
valuable guidance as to the assistance of speckle statistics in improving SPS. The
speckle intensity field, showing more spatial structure than the phase field, hardly allows
reasonable assumptions to be modelled in the phase calculation, but is directly accessible
in the experiment. This extra information can be used to counteract the disadvantageous
influence of speckle intensity fluctuations on the interferogram. The speckle phase field
was seen to be co-operative for interferometry: the phase gradients are low where the
speckle field is bright, and those regions of the field where the phase "leaps" or is even
undefined, were seen to be rather dark anyway. Since constant speckle phase gradients
can be envisaged as linear phase-shift miscalibrations, the use of phase-calculation
formulae that are tolerant of this type of error seemed to be the most sensible decision
for effectively reducing measurement errors.

After getting familiar with the properties of the speckled object wavefront, it was neces-
sary to turn towards optimisation of the way to process speckle interferograms. For this
purpose, digital speckle interferometry and the phase-sampling process have been
reviewed. It was found that it is always better, in SPS and TPS, to subtract speckle phase
maps than to work with correlation fringes; this has been confirmed by experimental
results.

The aspects of speckle interferometry that pertain especially to SPS have been discussed
in detail. The spatial phase shift was seen to be geometrically quasi-constant to a very
high degree of accuracy; however the spatial frequency content of speckle interfero-
grams supersedes this theoretical result, and the subjects of speckle size and phase-shift
setting have been addressed from the viewpoint of spatial frequencies.
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Since speckle phase gradients cause significant distortions in the carrier fringe pattern,
its spatial frequency spectrum will be considerably broadened. It is therefore worthwhile
to examine the effect in the spatial frequency domain. Consequently, the well-estab-
lished and powerful Fourier description of phase-shifting formulae has been used. It
interprets phase extraction as a digital signal filtering process in the spectral domain,
with characteristic spectral amplitude and phase transfer functions. When using this
method to search for a phase-shifting formula with high phase-shift error resistance, the
question arose whether it would be better to optimise the amplitude or the phase spec-
trum of the phase extraction formula for low phase-measurement errors. To settle the
question, a simple auxiliary function was introduced which is invariant under the various
optimisations and thus showed that nothing is to be gained by simply representing a
formula in different ways. This behaviour was confirmed in SPS experiments.

Another valuable means of characterising the spatial phase evaluation is the dependence
of the phase-measurement error on the phase to be measured. It was elucidated how the
phase reconstruction generates periodic errors in the sawtooth fringes and systematic
biases for the phase calculation, and what role the choice of the phase-calculation
formula plays for this effect.

The quest for a reliable performance figure of ESPI phase measurements, which is indis-
pensable to carry out comparisons and quantify improvements, has led to the creation of
a standardised noise quantification method that fits an ideal data set to a real one and
delivers the standard deviation of the remaining phase differences. The displacements to
use this method were standardised as well. The advantages of the fitting method have
been demonstrated by confrontation with various other methods of generating reference
data.

The noise quantification tool was then extensively used to compare the performance of
SPS with that of TPS in various measuring geometries, where a simple phase-shifting
scheme was used under stable laboratory conditions. A multi-purpose interferometer
allowed to carry out this comparison under the best possible constancy of experimental
parameters. By varying quantities like fringe densities, speckle size and shape, and
object illumination intensity, characteristic behaviours of SPS and TPS were explored. It
was found that TPS offers advantages for in-plane measurements and under severe
shortage of laser power; for out-of-plane configurations, the difference was found to
vanish with increasing fringe density.

As an extension of the performance study with standard experimental parameter settings
and data processing, several ways to improve the SPS technique have been implemented
and tested. A very important result is the finding that the role of the beam ratio is deci-
sive in SPS but has far less impact on TPS. Then, in agreement with the hints from theo-
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retical considerations on spatial phase sampling, a phase shift of 90° per sample was
found to yield better measurements than 120° per sample.

Based on the conclusion from the investigation of speckle statistics, a formula was
established that can make use of a separate recording of the speckle pattern alone to cor-
rect phase-calculation errors introduced by speckle intensity gradients. The performance
thus gained is however almost reached by uncorrected measurements when the beam
ratio is set to its optimum, which was around 30 for the experimental set-up used.

To compensate measurement errors by speckle phase gradients, a simple averaging for-
mula was used and seen to bring about a relevant improvement. This improvement can
only partly be ascribed to the cancellation of phase-shift errors; also the enlargement of
the spatial sampling window from 3 to 4 pixels plays a role.

The feasibility of combining intensity- and phase-gradient correction was demonstrated
and shown to yield the least measurement error; however the intensity-gradient correc-
tion does not recommend itself strongly, since almost the same fringe quality can be
achieved without it and at an optimised beam ratio instead.

An important step is the extension of the phase shift to two dimensions, which allows to
use the spatial frequency plane more efficiently; thus, multiple phase measurements can
be carried out and averaged for each image pixel to make up more reliable values. The
combination of this experimental modification with the computational solutions
decreases the rms of the phase-measurement error in unfiltered phase maps to below

λ/20 for moderate fringe densities, which remains valid when the speckle size is reduced

to 2.5 pixels.

This accuracy is about the best that one can obtain by phase-shifting; therefore the
Fourier-transform approach to phase extraction has been tested, for which a speckle-
intensity correction can also be carried out by simple subtraction of the speckle pattern
from the interferogram or, equivalently, the speckle halo in the spatial frequency plane.
It turned out that the Fourier method yields an improvement only at very low fringe den-
sities. For higher fringe densities, the intrinsic data smoothing property of SPS formulae
due to the spatial extent of the phase-calculation window gets apparent, and the noise
introduced by speckle decorrelation is somewhat smaller than in the Fourier transform
method.

Another method of error reduction is to use a "standard" phase-shifting method and to
enable it to process only reliable data, i.e. to eliminate invalid pixels from the measure-
ment. This has been realised by merging valid phase data obtained from orthogonally
polarised speckle patterns.
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Finally, SPS has been used to implement temporal phase unwrapping, and the combina-
tion of the two techniques has successfully been applied to deal with the practical
problems of automating data storage in long-term experiments and of measuring defor-
mations of discontinuous objects.

On the whole, the collection of aspects of and possibilities for SPS presented in this
work should prove useful for its successful application in various ESPI measurements. It
could be shown that the suspected disadvantages of SPS constitute no serious restrictions
in practice, all the less as some simple and effective performance enhancements are pos-
sible. With its ease of use not being the least, there are good arguments to consider SPS
as an alternative also for situations where TPS is applicable, and to use it just as
confidently.
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Appendix A: Counting events

Intensity level crossings per unit length

In Chapter 2 we have encountered two occasions where probabilistic events had to be
counted. The derivation is similar for both of them. The level-crossing problem of (2.14)
starts from the integral [Bar80]

N I I I I x dxd t t

d

( ) ( )= −∫δ ∂ ∂  ; (A.1)

here Nd (It) is the number of times that the intensity crosses the value It on a path d (the
probability for the point I = It being an extremum has measure zero on a straight line).

The δ function assures that the integral responds only when I = It . To make each such

contribution equal to one, i.e. to establish a counting function, the integration over x

must be undone by the derivative ∂I/∂x; the modulus signs ensure that +1 is being

counted for each event. However, since now Ix appears, which is not independent of I,
we need to know its expectation value at a given I, which requires the joint pdf p(I, Ix)
and changes the integral to

N I I I p I I I dI dx

p I I I dI dx

d t t x x x

Id

t x x x

Id

x

x

( ) ( ) ( , )

( , ) ;

= −

=

∫∫

∫∫

δ

(A.2)

on integrating over unit length, one obtains the density of the level-crossings,

( )ρ( ) ,I p I I I dIt t x x x

Ix

= ∫  , (A.3)

which is (2.14).

Intensity zero points per unit area

By the same line of argument as above, we can start from [Ber78, Bar81]

N A A A A x y dxdydisl r i r i

S

= ∫∫δ δ ∂ ∂( ) ( ) ( , ) ( , )  , (A.4)

where the dislocation is expressed by the vanishing of Ar and Ai , the integral is over an
area S and the quantity between the modulus signs is the Jacobian �J�=

Ar,x Ai,y – Ar,y Ai,x
. Obviously, we need p(Ar, Ai, Ar,x, Ai,x, Ar,y, Ai,y) to evaluate this inte-

gral, or, more specifically, p(0, 0, Ar,x, Ai,x, Ar,y, Ai,y) after the δ functions are accounted

for. In analogy to above, we write
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( )
N

p A A A A A A x y dA dA dA dA dxdy

disl

r x i x r y i y r i r x i x r y i y

AAAAS i xr yi xr x

= ∫∫∫∫∫∫ 0 0, , , , , ( , ) ( , ), , , , , , , ,

,,,,

∂ ∂ , (A.5)

and with S equal to the area unit we then have

( )ρ ∂ ∂disl r x i x r y i y r i r x i x r y i y

AAAA

p A A A A A A x y dA dA dA dA

i xr yi xr x

= ∫∫∫∫ 0 0, , , , , ( , ) ( , ), , , , , , , ,

,,,,

; (A.6)

with p(Ar, Ai, Ar,x, Ai,x, Ar,y, Ai,y) given by (2.1), the integration is not trivial. It has been
shown in [Ber78, Eq. 43] that the integral is best evaluated in polar co-ordinates, i.e.

after conversion to I and ϕ, similar to (2.4). Fortunately, this needed be done only once

and for all, since the "threshold" intensity is fixed to zero in this case.
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Appendix B: Real-time phase calculation

To utilise the real-time phase measuring capability that SPS offers, the generation of
phase maps must be accelerated by saving as many processor operations as possible.
Particularly the arctangent calls, usually one for each pixel, lead to a great computational
burden that is unnecessary when the input "sine" and "cosine" terms have a reasonably
narrow range of discrete values.

Given the expression

ϕ πO
I I

I I I
mod 2 3

2
1 1

0 1 1
= −

− −
−

−
arctan  , (B.1)

the atan2 call, which includes the division, can be circumvented by generating a 2-D

array from all possible values of numerator and denominator and assigning the

corresponding ϕO (converted to a discrete grey value) to each grid point, as shown in

Fig. B.1. Also, the construction of MI is indicated; it can be seen that it is simply the
length of the phasor composed by the sine and cosine terms.

  
        

                                      (2I0 – I–1 – I1)
– 510                                 0                                 510

∝ = − + − −− −M I I I I II 3 21 1
2

0 1 1
2( ) ( )

                  look-up table

    255

   (I–1 – I1)
   0

    – 255

ϕO

I I

I I I
=

−
− −
−

−
arctan 3

2
1 1

0 1 1

Fig. B.1: Calculation of ϕO and MI for 3-sample phase shifting formula with α =120°.

For 8-bit digitisation of the In , the size of the array thus defined (1021�511 points) is
still manageable with a formula involving terms from 2 or 3 intensity samples. It is well

known that for α = 90° and (3.16) or (3.19), only 511�511 points are necessary. How-

ever, Fig. B.1 shows that also (3.17) can be implemented by a LUT without exaggerated
expense. It is unnecessary to use the factor of �3 for the arrangement of grid points;
instead it can be integrated in the LUT. Fig. B.2 presents the central portion of the LUT,
where the anisotropy is visualised by reduction of the grey scale to 4 bits.
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Fig. B.2: Anisotropy of LUT for (3.17) due to horizontal stretching and inclusion of �3 from the
sine term.

The stretching in the horizontal direction is clearly discernible; it accounts for the
maximal "stroke" of the cosine term being twice that of the sine term.

Depending on the number of involved intensity samples and their coefficients, the byte
arrays needed for the LUT may nevertheless get larger; for instance, a LUT for (3.56)
would need 511�1021 entries. In that case, the coefficient of 2 for both intensity sam-
ples in the numerator thins out the grid of possible values and space can be saved.
However, the very same formula in the representation of (3.57) requires a 1531�1531-
point LUT, and for (3.58), 2041�1021 possible values must be accounted for. This
shows that a careful choice of the formula can be useful in practice.

Non-integer coefficients in the numerator and/or denominator can only be implemented
if a suitable factor can be found that converts all the coefficients for the respective
expression into integers, i.e. if the coefficients are rational numbers. As seen above, a
common factor of �3 constitutes no problem in (3.17) or (3.58); however, if we had,
say, �3 and 3 as coefficients in the sine or cosine term, we would have to use a rational
integer approximation of their values, for instance 7 and 12; this would allow to put up a
LUT, but remains a complicated procedure. Hence, while it is possible to accelerate
phase calculation by LUTs on more occasions than one might think, the appeal of
simplicity gets lost in some cases.
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Appendix C: Derivation of intensity-correcting formulae

To include the influence of the speckle intensity, we can rewrite (3.68) as

I x y t O x y R O x y R x y t x yn k n i k n i k n O k n n k n( , , ) ( , ) ( , ) ( ( , , ) ( , ))+ + + + += + + ⋅ +2 cos ϕ α , (C.1)

where R is assumed constant, Oi (xk+n , y)+R = Ib and 2 O x y Ri k n( , )+  = MI ; we drop the

spatial dependencies for convenience of notation. With Dn � In – On , we can write

�

D R O R

R
a

R

a

O R

a
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n n O n

O n n O n n

= + ⋅ ⋅ ⋅ +

+ −

2

2 2
0 1 2

cos( )

cos cos sin sin

ϕ α

ϕ α ϕ α
� � �

� �� �� � �� ��
 , (C.2)

where the quantities of interest are a1 and a2 , since they contain ϕO . Setting

n ∈{–1, 0, 1}, thus assuming phase steps of (–α, 0, α), the linear equation system is given

by
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1 0
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 , (C.3)

which we abbreviate by Pa = D. As long as O–1, O0, O1 ≠ 0 and 0 ≠ α ≠ 180°, P is regular

and rank(P) = rank(P, D) = 3 is valid; hence we can solve the equation system by in-
verting: a = P 

–1D. This can be carried out by Cramer's rule [Bro87, p. 159]. With the
abbreviations

1 1 1
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we have

P P

P P

P P

=














= − + −

=














= − + −

=














=

−

−

−

1 1 1

1 2 0

1 3 3

2 3 1 3 1 3 1 2

1 1

2 0

3 3

2 3 1 3 1 3 1 2

1 1

1 0

1 3

0

1

0

1

0 1 0 0 1

1

1

0

1

1

C S

C

C S

C S C S S C S C

D C S

D C

D C S

D C S C D S S D C S C D

D S

D

D S

D

, det ( )

, det ( )

, det ( ) 0 1 1 0

2

1

0

1

2 1 0 0 1 1 1

3 3 1 1

1 1

1 2

1 3

2 3 1 1 3 2

S D S S D S D

C D

C D

C D

C D D C C D C D D C D C

− + −

=














= − + − + −

−

−

− −P P, det ( )

 

,

(C.5)

from which we get a0 , a1 , a2 by
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For the quotient a2 /a1 = tan ϕO , we obtain
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(C.7)

which is (6.4).
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Appendix D: Alternative error-compensating formulae

In Chapter 3.2.2, we have restricted ourselves to a maximum of four intensity samples in
the phase reconstruction formulae. If we do allow the inclusion of a fifth sample, we
obtain one more degree of freedom to customise the compensation of errors. In the con-
text of spatial phase shifting, an interesting solution has been presented in [Küch91,
Küch97]. The derivation is based on the realisation that is it possible to find three phase-
shifting angles, or signal frequencies, for which the phase is determined without error

when five intensity samples are available. With one of them fixed at α = 90°/sample, the

other two can be arranged symmetrically with respect to the nominal phase shift. In

[Küch91], a formula is described which works correctly at α = 30, 90, and 150°/sample,

and with little error in between. This behaviour is obtained when the intensity samples
are weighted according to

( )ϕ πO
I I I I

I I I I I
 mod 2

3

4
0 1 3 4

0 1 2 3 4
=

− + − +
− − + − −

arctan  . (D.1)

The corresponding amplitude and phase spectra are as shown in Fig. D.1; note that the

frequency is now labelled νxy , since the formula works diagonally, as detailed below.
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( ))C xyν

νxy/ν0

Fig. D.1: Filter spectrum for 5-step-30/90/150° phase-sampling formula (D.1); left: amplitudes,
right: phases.

It can be seen that the phases are always in quadrature, which follows from the fact that
the formula has a Hermitian arrangement of sample weights. The amplitudes are equal

not at one, but at three points in the frequency spectrum between 0 < νxy< νN = 2ν0 . The

convolution, or more precisely, correlation kernels Sxy(n) and Cxy(n) – subscript xy

denoting the 2-D arrangement – for the spatial implementation of the sampling functions
are shown in Fig. D.2; to make Cxy(n) symmetrical while maintaining integer coeffi-
cients, it is necessary to expand (D.1) by a factor of two.
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–22
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Fig. D.2: Spatial weighting of the intensity samples for the application of formula (D.1) in spatial
phase shifting; the numbers on the pixels now indicate relative weights, and the phase
calculation refers to the central pixel. Although the method was developed for high-
precision classical interferometry, the outline of a speckle is still included in the drawing,
to compare with Fig. 6.11.

The sampling window thus defined offers excellent phase-shift error suppression while
sacrificing only little spatial resolution; it has been pointed out in [Küch91] that the slant
of the carrier fringes saves a factor of �2 in this respect.

It is also possible to make all three points of zero error coincide at α = 90°/sample, which

was already remarked in [Küch91] and later derived independently by [M�o95,

Schmi95a]; in this case the phase calculation is very stable around α = 90° but does not

reach zero error again when α ≠ 90°. The corresponding sampling formula reads

ϕ πO
I I I I

I I I I I
 mod 2

4

2 6 2
0 1 3 4

0 1 2 3 4
=

− + − +
− − + − −

arctan
( )

 , (D.2)

and the corresponding filter spectrum is shown in Fig. D.3.
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Fig. D.3: Filter spectrum for 5-step-90° phase-sampling formula (D.2); left: amplitudes, right:
phases.

As familiar from the discussion of symmetrical formulae in 3.2.2.4, the phase spectrum

is the same as above; the amplitudes are very similar over a broad range of νxy , which
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assures low errors even for large phase-shift miscalibration. A possible implementation
of (D.2) is presented in Fig. D.4.

ϕO – 180° ϕO – 90° ϕO

ϕO + 90°

ϕO + 180°

02

I1

–2

–2

2 0

0

–1
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–1 1

–11

–1

Sxy(n) Cxy(n)

1

Fig. D.4: Spatial weighting of the intensity samples for the application of formula (D.2) in spatial
phase shifting; the numbers on the pixels indicate relative weights, and the phase
calculation refers to the central pixel.

To address the interesting question how these formulae will perform in speckle interfer-

ometry, we consider again the experimentally obtained distributions of bsc (νx ,νy) in the

frequency plane. With the same input interferogram as was already used in 6.3, we
obtain the results shown in Fig. D.5.

2  3 4|0  1 2 νx /ν0

νy /ν0
2

3

0|4

1

2
 2  3 4|0  1 2 νx /ν0

νy /ν0
2

3

0|4

1

2

Fig. D.5: bsc (νx ,νy) for (D.1) (left) and (D.2) (right). Black lines: frequency co-ordinates leading
to correct phase calculation, bsc (νx ,νy) = � 45°; white outlines: areas of –10º�δϕ�10°.

As to be seen, both formulae are capable of calculating ϕO with 
δϕ
�10° in a very wide

range of (νx ,νy); (D.1) exhibits a slightly worse phase calculation at very high spatial

frequencies, so that we can expect to find small performance differences in phase meas-
urements. When the interferograms already used for subsections 6.3 - 6.5 were re-evaluated

with the formulae presented here, the resulting σd (Nx) were as graphed in Fig. D.6.
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Fig. D.6: σd from ESPI displacement measurements as a function of Nx , obtained with (D.1)
(white filled symbols) and (D.2) (black symbols). Input interferograms were from the
same tilt series as in 6.3.

The plots show that the performance of (D.1) and (D.2) is indeed very similar;* by com-

parison with the results in terms of σd in 6.3 - 6.5, it can be seen that they are also well

suited for phase evaluation in SPS and yield a performance similar to that obtained by
(6.16) and its intensity-correcting version, and by the FTM. However a correction for
speckle intensity cannot readily be incorporated in these formulae.

Moreover, a careful comparison of σd at higher Nx with that in previous results shows

that now the spatial extent of the phase-sampling window contributes significantly to the
smoothing of phase maps. In this respect, the schemes developed in 6.3 may be some-
what more suitable to preserve spatial resolution. The relative pixel weights for (6.11)
are visualised in Fig. D.7; it can be seen that the target pixel, in the centre of the cross
shape, contributes the largest part to phase calculation.

                                           
* The same applies to formulae with zero error for α = 45/90/135° and α = 60/90/120°, which were
tested as well.
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Fig. D.7: Relative pixel weights for spatial intensity sampling by (6.11).

When the sampling pixel cluster is enlarged to enable the application of (6.16), we get
the weighting windows depicted in Fig. D.8.
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Fig. D.8: Relative pixel weights for spatial intensity sampling by (6.16).

Also in this case, the intensity sample from the target pixel enters the phase calculation
with the greatest weight; however, for Cxy(n) some more remote pixels must be included,
fortunately with small contributions.

Comparing the sampling windows shown in Figs. D.7 and D.8 with those from Figs. D.2
and D.4, it gets apparent that the 5-sample formulae are associated with significant low-
pass filtering of the resulting phase maps. In particular, the central pixel has zero weight
in the implementations of the Sxy(n), this being a necessity in symmetrical 5-sample
formulae.

On the other hand, since spatial resolution is generally a small problem in practical
ESPI, the formulae that have been briefly investigated here should prove useful as well.
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