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Abstract

While in QCD many high-energy questions can be answered by perturba-
tion theory, low energy features are non-perturbative and leave simulation

as the only systematic computational method



Scalar Quantum Field Theory

e degrees of freedom: ¢(Z) € R

e for numerical (even classical) FT calculations this is truncated to a
(dense, large) grid

T =na, n;=0,1,....L/aeN
e UV and IR cutoffs in place, scales a, L

e two special choices have been made: cubic lattice 4+ torus

e only a < phys. scale < L usually of interest ‘(a — 0, L — o0)’ (unless
solid state physics or finite size scaling...)
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with momenta 7 (7a) conjugate to ¢(@a). Typical case (¢* theory)

32{ 8:) —|—m2¢2}—|— 32 ¢* (discrete ;)

e for A\=0, H is quadratic < harmonic oscillators

o modes w(k)=\m2+k> k= —81n(§) ki if ak; <1

e relativistic free particles associated with long wavelength modes
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e )\ > 0: interactions between particles; this is a perturbative picture,
in principle for large A\ the free particles may not appear as asymp-
totic states and physics maybe completely different, ‘other quasipar-

ticle dgft’.

Path integral formulation

The partition function may be written as a path integral:
Z(B)=tr [e_ﬁﬁ} = /que‘sM

e (/7 x (L/a)® fold integration over discretized field paths (‘histories’)
P(t=kr,Z =1a); Do=1]__do(t,T)

e nonperturbative definition; small A expansion — Feynman diagrams
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correlation functions:
<¢(581)¢($2)“'¢(37n)> — % /Dﬁb e~ 519] ¢($1)¢($2)"'¢($n)

e allow to extract lots of information on H, states, matrix elements
e ground state (‘vacuum’) expectation value as f— oo (zero temp.)
e can be Monte Carlo estimated

e the lattice is artificial: only universal properties at critical points are
related to particle physics ( <> renormalization, continuum limit)



phase diagram of ¢* theory
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QCD has gauge fields (gluons) and Dirac fermions (quarks), not scalars.....




Discretizing gauge theories
continuum:
D=0, +iA,0

is a gauge covariant derivative.
Lattice covariant difference =

Uz, p)¢(x+ap) — (x)

a

D,ﬂb(w) —

lattice field U(z, p): group valued parallel transporter (€ SU(3) for QCD)
gauge invariant action for the field U(z, u)?
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Uz, )U(x+afi,v) —U(x,v)U(x+av, p) =ia’F,,(x) + O(a?)
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links

e continuum limit at gi,. — 04> asymptotic freedom
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o U(zx,u)~exp(iaAd,(x))
e confinement of static quarks <> area decay of Wilson loop observable
e possible to show analytically for large lattice spacing

e very precise numerical ‘proof’ close to the continuum (Yang Mills)

Fermions on the lattice
free ‘first quantized’ Dirac Hamiltonian:
h=iaV + bom

continuum eigenfunctions e”?'%, eigenvalues + /24 m? (two-fold each),

negative <> antiparticles
‘Second quantization’ leads to QFT (many-particle theory)

H=a®Y wihe, {9(@),6(@)} =50e.q, {0.0}=0={v/, 0}
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and partition function
Z(B)=tre FPH
e interaction with a gauge field: Or— Dy in h

e Path integral representation via Grassmann integrals
Z(B) = /D@bDQ;e—S(@b,@b,U)
S, ) =a*> " P (vuDp+m)y
e careful discretization required to obtain the desired dgf. (spectral

doubling, Nilson Ninomija no-go-theorem)

e Gaussian Grassmann integral — fermion determinant:

/Dwa_ e—a42m¢(7u5u+m)¢ — det(’yuﬁﬂ + m)
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Monte Carlo Simulation
Z:/DUe—SeffW), <O>:%/DUe‘SeH(U)O(U)

Set(U) = Switson(U) — log |det (P +m)|?
e two (light) quark flavors, det() 4+ m) real positive

most simulation algorithms employ stochastic pseudofermion repesentation

[det(P +m)|? = /DSODSO* e~ | (PAm) o]

e the sampling of a nonlocal action is very costly

e¢ main stumbling block for QCD simulation at phenomenologically
realistic parameters (e.g. light quarks)

e precision results sofar in the (unsystematic) quenched approximation:
det(/) 4+ m) — constant

e many experimental results like the hadron spectrum ~ 10% accurate

e intense algorithm development to go beyond this
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