### Critical Binder cumulant in two-dimensional Ising models

#### 1. Background

Ising model and Binder cumulant

#### 2. Some Previous Results

Universal and non-universal features of the critical Binder cumulant

#### 3. Present Results

- Isotropic nn Ising model with various boundary conditions and on different lattice types
- Square lattice with anisotropic nn and nnn couplings
- Critical Binder cumulant and Wulf shape

W.S. and L.N. Shchur, J. Phys. A 38, L739 (2005)

W.S., Eur. Phys. J. B 51, 223 (2006)

### Ising model

$$\mathcal{H} = -\sum J_{ij}S_iS_j$$

 $S_i, S_j = \pm 1$ 





**Triangular lattice** 



### Magnetization histograms

Distribution function of the magnetization  $p(m) = \frac{1}{\pi} \sum_{m=1}^{\infty} p(m)$ 

$$= \frac{1}{\mathcal{Z}} \sum_{K} e^{-\mathcal{H}(K)/k_B T}$$

 $K\!\!:\!\mathsf{configurations}$  with magnetization m



isotropic nn model,  $L \times L$  sites, periodic boundary conditions, near critical temperature

 $\begin{array}{ll} k_BT_c/J=2.269...\\ \mbox{Observations:} & T < T_c \text{:} & \mbox{two-peak structure}\\ & T > T_c \text{:} & p(m) \mbox{ approaching Gaussian function for larger L} \end{array}$ 

Characterization of distributions by moments and/or cumulants:

### **Binder cumulant**

Fourth-order cumulant of the distribution function of the magnetization



(Binder, 1981)



From crossing points of  $U(L_1) = U(L_2)$ , one may estimate conveniently  $T_c$ ;  $U^*$ : critical Binder cumulant (universal?)  $U^* = 0.61069...$  (Kamieniarz+Blöte, 1993) isotropic nn Ising model, square shape, periodic boundary conditions

## PREVIOUS results: Isotropic nn square lattice Ising model with square shape

 U\* has been found to be, employing periodic bc, INDEPENDENT of: + spin value

S=1/2, S=1 (Nicolaides and Bruce, 1988)

+ discrete or continuous nature of (lsing-type) spin variable Nicolaides and Bruce, 1988; Kamieniarz and Blöte, 1993

 On the other hand, for the isotropic nn square Ising model, U\* has been observed to DEPEND on
+ boundary conditions

periodic, free, fixed,...boundaries K.Binder, D.W. Heermann, W.Janke, D.P.Landau, A. Milchev,...(scattered results)

### Varying shape, lattice type, and anisotropy

With periodic bc,  $U^*$  has been found/argued to DEPEND on

Shape of the lattice



Lattice type(?)

L

 $U^*(r)$ : isotropic, square nn Ising model with rectangular shape, aspect ratio r; exact calculations augmented by finite-size extrapolations

Kamieniarz and Blöte (K+B), 1993

Slightly different values of  $U^*$  for isotropic nn Ising models on square lattice with square shape and on triangular lattice with rhombus shape (K+B, 1993)



• Anisotropy of nn couplings, 
$$J_v/J_h$$
  
 $U^* = U^*(J_v/J_h)$ 

for square shapes, r = 1; with a mapping onto the isotropic nn Ising model with rectangular shape so that  $U^*(r = 1, J_v/J_h) = U^*(r, J_v/J_h = 1)$  where  $\sinh (2J_h/k_BT_c(J_v/J_h)) = r$ ,

(which follows from setting  $r = \xi_v / \xi_h$ ;  $\xi$  correlation length) (K+B, 1993)

► Anisotropy of nnn couplings, J<sub>d</sub>: U<sup>\*</sup> = U<sup>\*</sup>(J<sub>d</sub>/J),



but there is no mapping

 $U^*(J_d/J,r=1)=U^*(0,r),$  which would keep rectangular symmetry (Chen+Dohm, 2004)

Our aim: Monte Carlo study on those (non)universal aspects of  $U^*$ 

## PRESENT results: isotropic nn lsing model on square lattice – various boundary conditions



Subblocks (Binder, 1981): squares of size bL \* bL, embedded in square of L \* Lsites; 'heat bath bc' when  $b \longrightarrow 0$ , with  $U^* = 0.560 \pm 0.002$ Mixed bc: pbc for two opposite sides, fbc for the other two opposite sites of squares of size  $L^2$ 



Cumulant at  $T_c$  for square lattice, L = 60, with periodic and free boundary conditions

Note: less pronounced two-peak-distribution for free boundary conditions, and  $U^*$  is smaller than in the case of periodic boundary conditions

# Isotropic nn Ising model on triangular and square lattices



W.S., E. P.J.B, 2006; Lübeck, W.S.+Hucht (in preparation)

Suggestion: For given shape, isotropic models lead to the same  $U^*$  (checked, in addition, for other rectangular shapes)

# Square lattice with different nn (horizontal and vertical) couplings



To be checked by MC simulations:

### Checking the prediction



Cumulant  $U(T_c, L)$  for anisotropic nn Ising model,  $L^2$  spins (r = 1), and various  $J_v/J_h$ , as compared to previous findings on  $U^*(J_v/J_h = 1, r)$  in the isotropic case, presuming the mapping

Our findings confirm the predicted mapping

 $U^*(J_v/J_h, r = 1) = U^*(J_v/J_h = 1, r)$  with  $\sinh(2J_h/k_BT_c) = r$ 

### Square lattice with anisotropic nnn interactions



Statements of Chen and Dohm (2004):

- $U^*(J_d/J, r=1)$  varies continuosly with  $J_d/J$
- ▶ Keeping rectangular symmetry, there is no mapping of U\* onto the isotropic case such that U\*(r = 1, J<sub>d</sub>/J) = U\*(r, J<sub>d</sub>/J = 0)
- In general: Violation of 'two-scale-factor universality' due to anisotropy

### Checking by simulations



Simulated  $U^*$  for nnn Ising model on square lattice with r=1, including nn isotropic case,  $J_d = 0$ 

Overshooting: No mapping with  $U^*(J_d/J, r = 1) = U^*(J_d/J = 0, r)$ 

Note:  $U^*$  of square lattice nnn Ising model,  $J_d = J$ , with square shape is identical to that of the triangular lattice nn Ising model with rhombus shape (similarly for other ratios of  $J_d/J$  (Dohm, 2006)).

Question: Can dependence of  $U^*$  on anisotropy be transcribed, in general, into dependence on shape?

## Critical Binder cumulant in (an)isotropic systems and Wulf shape



Wulf shapes at  $T_C$  with free  $bc: U^*$  for nn isotropic square Ising model with circle shape and nnn anisotropic,  $J_d = J$ , case with rotated ellipse shape, having  $L^2$  sites. For comparison: nn and nnn cases, free bc, with square shapes,  $L^2$  sites.

Recall: The equilibrium Wulf shape, at  $T_c$ , of an Ising droplet results from the orientational dependence of the surface free energy at criticality, reflecting the interactions. Note:



There are the same spins in the rotated ellipse for the anisotropic nnn,  $J_d = J$ , lsing model on the square lattice and in the circle for the nn lsing model on the triangular lattice;

```
thence U^*(nnn,sq,ellipse) = U^*(iso nn,tria,circle) = U^*(iso nn,sq,circle)
```

Question(suggestion):

Does  $U^*$  take a generic/unique value when one considers systems (free bc) with their Wulf shape at criticality ?

### Summary

- The critical Binder cumulant U\* in 2d Ising models depends on boundary conditions, system shapes, anisotropy of interactions.
- For isotropic models, U\* depends on shape and boundary conditions, but not on details of interactions and lattice type.
- For given boundary condition, the dependence of U\* on ANISOTROPY may be mapped onto a dependence on the SHAPE: verification for the nn anisotropic case, keeping rectangular symmetry; evidence for the nnn anisotropic lsing model, considering rhombus (parallelogram) shapes.
- Question: Can a generic/unique value of U\* be obtained for Ising models with a shape following from the Wulf construction at criticality, using, e.g., free boundary conditions?