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Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}
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Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Path of length L is a non self-intersecting walk passing through L
edges of a graph.

Cycle (loop) of length L is a closed path along L edges of a graph
which visits each vertex at most once.
Hamiltonian cycle = cycle covering all vertices of a graph
cycle cover = union of vertex disjoint cycles covering all

vertices of a graph
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Interest?

• Graph theory:
Hamiltonian cycles (= cycles of length N): NP-complete

(cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph

ensembles
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Interest?

• Graph theory:
Hamiltonian cycles (= cycles of length N): NP-complete

(cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph

ensembles

• Understanding Real World Networks (e.g. Internet, WWW,
biological networks, social networks):

- local properties: degree distribution, clustering
→ short cycles

- global properties: shortest paths, network motives
→ longer cycles

- dynamics: feedback mechanism
- vertex ranking
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Computational Difficulty

⇒ 3 fundamental questions: 1. Do they exist?

2. If yes, how many?

3. Can we locate them?

Computational Difficulty depends on length L of cycle:
• short cycles (L = 3, 4, 5): exhaustive enumeration has time upper

bound of O(N × #cycles), where #cycles ∝ expN

• intermediate cycles (limN→∞
L
N

= 0): in limit N → ∞ distribution
can be computed for most random graph ensembles

• long extensive cycles (L ∝ N ), e.g., Hamiltonian cycles:

- Regular graphs: Hamiltonian with high
probability (Wormald)

- Sparse graphs with minimum degree 3 and
bounded maximum degree: conjectured to
be Hamiltonian (Wormald)
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A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

Sj

Si
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j
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Si

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle
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A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

fj(Sj)

fi(Si)

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise
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A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

fj(Sj)

fi(Si)

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

u = 1 uniform sampling
u → ∞ cycles of longest length (e.g. Hamiltonian cycles)
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I.1 Decimation ⇒ Hamiltonian Cycles

for n = 1 to M

- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]
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- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 1: Prob[Sln |Sl1 , . . . , Sln−1
]

→ approximate by means of Belief Propagation ⇔ Prob[S] =
∏

g(Sx)
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Belief Propagation

Compute partition function Z =
∑

x w(x)

⇔ Minimizing the corresponding Gibbs free energy functional

FGibbs[pvar] =
∑

x

pvar(x) ln

(

pvar(x)

w(x)

)

since minpvar
FGibbs[pvar] = FGibbs[PGibbs] = − lnZ.

Mean Field approximation: factorizable trial distributions
pMF(x) =

∏

i pi(xi)

Bethe approximation: take first order correlations into account

e.g. pBethe(x) =
Q

{i,j} pij(xi,xj)
Q

i pi(xi)
demanding normalized

distributions pi, pij and consistency

⇒ Introduce Lagrange Multipliers
⇔ Finding fixed point of the corresponding distributed Belief

Propagation (BP) algorithm.
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Belief Propagation

fi
fj

yi→j

yj→i

• Initialize messages yi→j

randomly.
• Iterate BP until convergence,

where each update takes up a
time O(M):

yi→j = f1

(

u, {yk→i}k∈∂i\j

)

⇒ pl(Sl = 1) =
uyi→jyj→i

1+uyi→jyj→i

On a tree-like graph:

- BP converges fast!
- FBethe, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it
often does after a reasonable amount of iterations.
⇒ Allows to investigate larger graphs ∼ O(106).
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I.1 Decimation ⇒ Hamiltonian Cycles

• Performance on sparse graphs with N = 100, 200, . . . , 1600

- Regular graphs (c = 3, 4, 5): ∀ HC

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5): 94 − 99% HC (±99% CC)

q
0.5

3,4
q
0.5

3,5
q
0.5

4,5

CC HC CC HC CC HC

N DEC DEC DEC

100 99.9 96.0 98.9 69.9 98.7 56.9

200 99.6 96.2 99.7 71.1 98.9 50.0

400 99.7 96.4 99.9 67.7 98.9 50.7

800 99.8 96.7 99.6 68.9 99.6 46.8

1600 99.7 97.8 99.9 68.6 99.9 52.3
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I.1 Decimation ⇒ Hamiltonian Cycles

• Performance on sparse graphs with N = 100, 200, . . . , 1600

- Regular graphs (c = 3, 4, 5): ∀ HC

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5): 94 − 99% HC (±99% CC)

q
0.5

3,4
q
0.5

3,5
q
0.5

4,5

CC HC CC HC CC HC

N DEC LR DEC LR DEC LR

100 99.9 96.0 99.6 98.9 69.9 92.9 98.7 56.9 96.0

200 99.6 96.2 99.3 99.7 71.1 95.2 98.9 50.0 96.0

400 99.7 96.4 99.2 99.9 67.7 95.4 98.9 50.7 94.2

800 99.8 96.7 98.7 99.6 68.9 95.7 99.6 46.8 94.5

1600 99.7 97.8 98.7 99.9 68.6 92.0 99.9 52.3 94.0
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I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)
e.g. qc(k) = δk,c: c = 3(+), 4(×), 5(∗)

 1
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I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)

e.g. q0.5
3,4(+), q0.5

3,5(×), q0.5
4,5(∗)
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slope ≃ 0.23
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I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)

- number of trials
e.g. q0.5

3,4 (dotted curve), q0.5
3,5 (dashed curve), q0.5

4,5 (full line)
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Optimization: Local rewiring ⇒ CC → HC
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I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 11/16



I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Prob[S] =
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0 if S is not a cycle
f(u) if S is a cycle

= 1
Z

u
P

l Sl
∏

i fi(Si)
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I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Prob[S] =

{

0 if S is not a path
f(u) if S is a path

= 1
Z

(

u
P

l Sl
)

(

∏

i f̃i(Si)
)

(ηnS )

nS = number of disjoint paths of configuration S

η ∈ [0, 1)

f̃i(Si) =











1 if
∑

l∈∂i Sl ∈ {0, 2}

ǫ ∈ [0, 1] if
∑

l∈∂i Sl = 1

0 otherwise

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 11/16



I.2 Monte Carlo ⇒ Hamiltonian Cycles

• Succes rate:
- Regular graphs of size N = 100, 200, 400, 800 : 100%

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5) of size

N = 100, 200, 400, 800 : 100% → Comfirmation of Wormald’s
conjecture on non-regular graphs
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- Regular graphs of size N = 100, 200, 400, 800 : 100%

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5) of size

N = 100, 200, 400, 800 : 100% → Comfirmation of Wormald’s
conjecture on non-regular graphs

• Time requirements → optimized by means of N-fold MC (up to M
times faster):

- Distribution depends on u, ǫ and η

-
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800400200100
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Comparison

We find Hamiltonian Cycles for all sparse graphs with kmin = 3.

BP MC

+ versatile - very parameter sensitive
+ polynomial in N - exponential in N

- no garantee + more reliable
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Comparison

We find Hamiltonian Cycles for all sparse graphs with kmin = 3.

BP MC

+ versatile - very parameter sensitive
+ polynomial in N - exponential in N

- no garantee + more reliable

→ CPU time: e.g. bimodal graph with q0.5
3,4 , N = 1600

BP 30’, i.e. 72 trials (70 cycle covers) (with local moves: 5’)

MC 40’ (with optmized parameter values)
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II. Vertex (and Edge) Ranking

Ranking is an objective (topology
based) measure of importance of
the vertices of a graph
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Degree D(i) = |∂i|
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II. Vertex (and Edge) Ranking

i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16
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i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality B(i) =
∑

k,l( 6=i)∈V

σk,l(i)
σk,l

(+) based on shortest paths, (-) time requirements ∼ O(NM)
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i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality B(i) =
∑

k,l( 6=i)∈V

σk,l(i)
σk,l

(+) based on shortest paths, (-) time requirements ∼ O(NM)

Loop Ranking L(i) =
∑

i∈Cycle w(Cycle) ∝ Prob(i ∈ Cycle)

for Prob[S] = 1
Z

∏

l(rl)
Sl

∏

i fi(Si)
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Directed Small World Network

0
1
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3

4
5

6

7

8

9
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Directed Small World Network

0
1

2

3

4
5

6

7

8

9

R i P(i)
P(5) i L(i)

L(0) i B(i)
B(0)

1 5 1.00 0 1.00 0 1.00
2 4 0.94 8 0.92 5 0.68
3 3 0.91 3 0.90 3 0.58
4 6 0.90 5 0.89 8 0.55
5 7 0.84 2 0.87 1 0.50
6 8 0.78 6 0.84 4 0.45
7 2 0.71 7 0.83 6 0.45
8 0 0.53 1 0.82 9 0.43
9 9 0.53 9 0.82 7 0.42

10 1 0.49 4 0.81 2 0.39
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Directed Small World Network

Loop Ranking Betweenness Centrality
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Path-based Ranking:

- capture importance of vertices on small-world networks

- allow for edge ranking

- lead to similar results for the most important vertices and edges
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Conclusions and Future Perspectives

• We find Hamiltonian cycles on regular and non-regular sparse
graphs,

- b.m.o. BP: faster
- b.m.o. MC: more reliable

• New path-based vertex and edge ranking captures their
importance in traffic flow (on directed small world networks).
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Conclusions and Future Perspectives

• We find Hamiltonian cycles on regular and non-regular sparse
graphs,

- b.m.o. BP: faster
- b.m.o. MC: more reliable

• New path-based vertex and edge ranking captures their
importance in traffic flow (on directed small world networks).

→ Deeper investigation of the level of approximation of BP.

→ Improve MC by finding optimal parameters in automated way.

→ Find loops or paths of intermediate length.

→ Investigate real-world networks (scale free, weighted).

→ Consider a Potts-like configuration space.
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