

Cycles in Random Graphs

Valery Van Kerrebroeck

Enzo Marinari, Guilhem Semerjian

[Phys. Rev. E 75, 066708 (2007)][J. Phys. Conf. Series 95, 012014 (2008)]

Outline

- Introduction
- Statistical Mechanics Approach
- Application 1: Finding Long Cycles
- Application 2: Vertex and Edge Ranking
- Conclusions and Future Perspectives

Simple, Undirected Graph G(N,M)

has N vertices i and M edges $\{i, j\}$

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length *L* is a sequence (i_0, i_1, \dots, i_L) where each one of the vertices i_k is adjacent to i_{k+1} for all $k = 0, 1, \dots, L-1$

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length *L* is a sequence (i_0, i_1, \dots, i_L) where each one of the vertices i_k is adjacent to i_{k+1} for all $k = 0, 1, \dots, L-1$

Path of length L is a non self-intersecting walk passing through L edges of a graph.

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

Walk of length *L* is a sequence (i_0, i_1, \ldots, i_L) where each one of the vertices i_k is adjacent to i_{k+1} for all $k = 0, 1, \ldots, L-1$

Path of length L is a non self-intersecting walk passing through L edges of a graph.

Cycle (loop) of length L is a *closed path* along L edges of a graph which visits each vertex at most once.

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

- Walk of length *L* is a sequence (i_0, i_1, \dots, i_L) where each one of the vertices i_k is adjacent to i_{k+1} for all $k = 0, 1, \dots, L-1$
- Path of length L is a non self-intersecting walk passing through L edges of a graph.
- Cycle (loop) of length L is a *closed path* along L edges of a graph which visits each vertex at most once.

Hamiltonian cycle = cycle covering all vertices of a graph

Simple, Undirected Graph G(N,M) has N vertices i and M edges $\{i, j\}$

- Walk of length *L* is a sequence (i_0, i_1, \dots, i_L) where each one of the vertices i_k is adjacent to i_{k+1} for all $k = 0, 1, \dots, L-1$
- Path of length L is a non self-intersecting walk passing through L edges of a graph.
- Cycle (loop) of length L is a *closed path* along L edges of a graph which visits each vertex at most once. Hamiltonian cycle = cycle covering all vertices of a graph cycle cover = union of vertex disjoint cycles covering all vertices of a graph

Interest?

• Graph theory:

Hamiltonian cycles (= cycles of length N): NP-complete (cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph ensembles

Interest?

• Graph theory:

Hamiltonian cycles (= cycles of length N): NP-complete (cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph ensembles

- Understanding Real World Networks (e.g. Internet, WWW, biological networks, social networks):
 - local properties: degree distribution, clustering \rightarrow short cycles
 - global properties: shortest paths, network motives \longrightarrow longer cycles
 - dynamics: feedback mechanism
 - vertex ranking

Computational Difficulty

- \Rightarrow 3 fundamental questions: 1. Do they exist?
 - 2. If yes, how many?
 - 3. Can we locate them?

Computational Difficulty depends on length L of cycle:

- short cycles (L = 3, 4, 5): exhaustive enumeration has time upper bound of $\mathcal{O}(N \times \# \text{cycles})$, where $\# \text{cycles} \propto \exp N$
- intermediate cycles ($\lim_{N\to\infty} \frac{L}{N} = 0$): in limit $N \to \infty$ distribution can be computed for most random graph ensembles
- long extensive cycles ($L \propto N$), e.g., Hamiltonian cycles:
- Regular graphs: Hamiltonian with high probability (Wormald)
- Sparse graphs with minimum degree 3 and bounded maximum degree: conjectured to be Hamiltonian (Wormald)

A DOWN VY

- \forall edges *l*: $S_l = 0/1$ if edge *l* is absent / present
 - \forall vertices $i: \underline{S}_i = \{S_l | l \text{ is a neighboring edge of vertex } i\}$

- \forall edges *l*: $S_l = 0/1$ if edge *l* is absent / present
 - \forall vertices $i: \underline{S}_i = \{S_l | l \text{ is a neighboring edge of vertex } i\}$

• Define $\operatorname{Prob}[\underline{S}] = \begin{cases} 0 & \text{if } \underline{S} \text{ is not a cycle} \\ f(u) & \text{if } \underline{S} \text{ is a cycle} \end{cases}$

- \forall edges *l*: $S_l = 0/1$ if edge *l* is absent / present
 - \forall vertices $i: \underline{S}_i = \{S_l | l \text{ is a neighboring edge of vertex } i\}$

- \forall edges *l*: $S_l = 0/1$ if edge *l* is absent / present
 - \forall vertices $i: \underline{S}_i = \{S_l | l \text{ is a neighboring edge of vertex } i\}$

- \forall edges *l*: $S_l = 0/1$ if edge *l* is absent / present
 - \forall vertices $i: \underline{S}_i = \{S_l | l \text{ is a neighboring edge of vertex } i\}$

- Define $\operatorname{Prob}[\underline{S}] = \begin{cases} 0 & \text{if } \underline{S} \text{ is not a cycle} \\ f(u) & \text{if } \underline{S} \text{ is a cycle} \end{cases}$ $\operatorname{Prob}[\underline{S}] = \frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}(\underline{S}_{i}) \text{ where } f_{i}(\underline{S}_{i}) \begin{cases} 1 & \text{if } \sum_{l \in \partial i} S_{l} \in \{0, 2\} \\ 0 & \text{otherwise} \end{cases}$
 - u = 1 uniform sampling
 - $u \rightarrow \infty$ cycles of longest length (e.g. Hamiltonian cycles)

for n = 1 to M

- choose l_n : S_{l_n} is undefined
- draw S_{l_n} according to $\operatorname{Prob}[S_{l_n}|S_{l_1},\ldots,S_{l_{n-1}}]$

for n = 1 to M

- choose l_n : S_{l_n} is undefined
- draw S_{l_n} according to $\operatorname{Prob}[S_{l_n}|S_{l_1},\ldots,S_{l_{n-1}}]$

Problem 1: $\operatorname{Prob}[S_{l_n}|S_{l_1}, \ldots, S_{l_{n-1}}]$

Problem 2: probability law selecting set of cycles of total length L

for n = 1 to M

- choose l_n : S_{l_n} is undefined
- draw S_{l_n} according to $\operatorname{Prob}[S_{l_n}|S_{l_1},\ldots,S_{l_{n-1}}]$

Problem 1: $\operatorname{Prob}[S_{l_n}|S_{l_1}, \ldots, S_{l_{n-1}}]$

Problem 2: probability law selecting set of cycles of total length *L*

$$\operatorname{Prob}[\underline{S}] = \frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}(\underline{S}_{i}) \text{ where } f_{i}(\underline{S}_{i}) \begin{cases} 1 & \text{if } \sum_{l \in \partial i} S_{l} \in \{0, 2\} \\ 0 & \text{otherwise} \end{cases}$$

for $u \to \infty \Rightarrow \begin{cases} cycle cover & \text{if } \underline{S} \text{ consists of more than one cycle} \\ hamiltonian cycle & \text{if } \underline{S} \text{ consists of just one cycle} \end{cases}$

for n = 1 to M

- choose l_n : S_{l_n} is undefined
- draw S_{l_n} according to $\operatorname{Prob}[S_{l_n}|S_{l_1},\ldots,S_{l_{n-1}}]$

Problem 1: $\operatorname{Prob}[S_{l_n}|S_{l_1}, \ldots, S_{l_{n-1}}]$

 \rightarrow approximate by means of Belief Propagation $\Leftrightarrow \operatorname{Prob}[\underline{S}] = \prod g(\underline{S}_x)$

Problem 2: probability law selecting set of cycles of total length L

$$\operatorname{Prob}[\underline{S}] = \frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}(\underline{S}_{i}) \text{ where } f_{i}(\underline{S}_{i}) \begin{cases} 1 & \text{if } \sum_{l \in \partial i} S_{l} \in \{0, 2\} \\ 0 & \text{otherwise} \end{cases}$$

for $u \to \infty \Rightarrow \begin{cases} cycle cover & \text{if } \underline{S} \text{ consists of more than one cycle} \\ hamiltonian cycle & \text{if } \underline{S} \text{ consists of just one cycle} \end{cases}$

Compute partition function $Z = \sum_{\underline{x}} w(\underline{x})$

A Minimizing the corresponding Gibbs free energy functional

$$F_{\mathsf{Gibbs}}[p_{\mathrm{var}}] = \sum_{\underline{x}} p_{\mathrm{var}}(\underline{x}) \ln\left(\frac{p_{\mathrm{var}}(\underline{x})}{w(\underline{x})}\right)$$

since $\min_{p_{\text{var}}} F_{\text{Gibbs}}[p_{\text{var}}] = F_{\text{Gibbs}}[P_{\text{Gibbs}}] = -\ln Z.$

Mean Field approximation: factorizable trial distributions $p_{\rm MF}(\underline{x}) = \prod_i p_i(x_i)$

Bethe approximation: take first order correlations into account e.g. $p_{\text{Bethe}}(\underline{x}) = \frac{\prod_{\{i,j\}} p_{ij}(x_i, x_j)}{\prod_i p_i(x_i)}$ demanding normalized distributions p_i, p_{ij} and consistency

- \Rightarrow Introduce Lagrange Multipliers
- ⇔ Finding fixed point of the corresponding distributed Belief Propagation (BP) algorithm.

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:

$$y_{i \to j} = f_1\left(u, \{y_{k \to i}\}_{k \in \partial i \setminus j}\right)$$

$$\Rightarrow p_l(S_l = 1) = \frac{uy_{i \to j}y_{j \to i}}{1 + uy_{i \to j}y_{j \to i}}$$

On a tree-like graph:

- BP converges fast!
- F_{Bethe} , and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations.
 - \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}(10^6)$.

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:

$$y_{i \to j} = f_1\left(u, \{y_{k \to i}\}_{k \in \partial i \setminus j}\right)$$

$$\Rightarrow p_l(S_l = 1) = \frac{uy_{i \to j}y_{j \to i}}{1 + uy_{i \to j}y_{j \to i}}$$

On a tree-like graph:

- BP converges fast!
- F_{Bethe} , and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations.
 - \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}(10^6)$.

- Initialize messages $y_{i \rightarrow j}$ randomly.
- Iterate BP until convergence, where each update takes up a time $\mathcal{O}(M)$:

$$y_{i \to j} = f_1\left(u, \{y_{k \to i}\}_{k \in \partial i \setminus j}\right)$$

$$\Rightarrow p_l(S_l = 1) = \frac{uy_{i \to j}y_{j \to i}}{1 + uy_{i \to j}y_{j \to i}}$$

On a tree-like graph:

- BP converges fast!
- F_{Bethe} , and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it often does after a reasonable amount of iterations.
 - \Rightarrow Allows to investigate larger graphs $\sim \mathcal{O}(10^6)$.

- Performance on sparse graphs with $N = 100, 200, \dots, 1600$
 - Regular graphs (c = 3, 4, 5): \forall HC
 - Bimodal graphs ($q_{3,4}^{0.5}$, $q_{3,5}^{0.5}$, $q_{4,5}^{0.5}$): 94 99% HC (±99% CC)

	$q_{3,4}^{0.5}$		$q^{0.5}_{3,5}$		$q_{4,5}^{0.5}$		
	CC	HC	CC	HC	CC	HC	
Ν		DEC		DEC	DEC		
100	99.9	96.0	98.9	69.9	98.7	56.9	
200	99.6	96.2	99.7	71.1	98.9	50.0	
400	99.7	96.4	99.9	67.7	98.9	50.7	
800	99.8	96.7	99.6	68.9	99.6	46.8	
1600	99.7	97.8	99.9	68.6	99.9	52.3	

- Performance on sparse graphs with $N = 100, 200, \dots, 1600$
 - Regular graphs (c = 3, 4, 5): \forall HC
 - Bimodal graphs ($q_{3,4}^{0.5}$, $q_{3,5}^{0.5}$, $q_{4,5}^{0.5}$): 94 99% HC (±99% CC)

		$q_{3,4}^{0.5}$		$q^{0.5}_{3,5}$			$q_{4,5}^{0.5}$		
	CC	HC		CC	HC		CC	HC	
N		DEC	LR		DEC	LR		DEC	LR
100	99.9	96.0	99.6	98.9	69.9	92.9	98.7	56.9	96.0
200	99.6	96.2	99.3	99.7	71.1	95.2	98.9	50.0	96.0
400	99.7	96.4	99.2	99.9	67.7	95.4	98.9	50.7	94.2
800	99.8	96.7	98.7	99.6	68.9	95.7	99.6	46.8	94.5
1600	99.7	97.8	98.7	99.9	68.6	92.0	99.9	52.3	94.0

- Time complexity
 - decimation procedure $\sim O(M^2)$ e.g. $q_c(k) = \delta_{k,c}$: $c = 3(+), 4(\times), 5(*)$

STOPIM V

- Time complexity
 - decimation procedure $\sim \mathcal{O}(M^2)$ e.g. $q_{3,4}^{0.5}(+), q_{3,5}^{0.5}(\times), q_{4,5}^{0.5}(*)$

slope $\simeq 0.23$

- Time complexity
 - decimation procedure $\sim \mathcal{O}(M^2)$
 - number of trials e.g. $q_{3,4}^{0.5}$ (dotted curve), $q_{3,5}^{0.5}$ (dashed curve), $q_{4,5}^{0.5}$ (full line)

- Time complexity
 - decimation procedure $\sim \mathcal{O}(M^2)$
 - number of trials e.g. $q_{3.4}^{0.5}$ (dotted curve), $q_{3.5}^{0.5}$ (dashed curve), $q_{4.5}^{0.5}$ (full line)

I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}', \underline{S}'', \ldots$, which admits $Prob[\underline{S}]$ as unique stationary distribution.

- \rightarrow Ergodic? Convergence time?
- → Determine appropriate transitions $\underline{S} \to \underline{S}'$, and transition rates $W(\underline{S} \to \underline{S}')$: e.g. by means of detailed balance: $W(\underline{S} \to \underline{S}')$ Prob $[\underline{S}] = W(\underline{S}' \to \underline{S})$ Prob $[\underline{S}']$

I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}', \underline{S}'', \ldots$, which admits $Prob[\underline{S}]$ as unique stationary distribution.

- → Ergodic? Convergence time?
- → Determine appropriate transitions $\underline{S} \to \underline{S}'$, and transition rates $W(\underline{S} \to \underline{S}')$: e.g. by means of detailed balance: $W(\underline{S} \to \underline{S}')$ Prob $[\underline{S}] = W(\underline{S}' \to \underline{S})$ Prob $[\underline{S}']$

$$\operatorname{Prob}[\underline{S}] = \begin{cases} 0 & \text{if } \underline{S} \text{ is not a cycle} \\ f(u) & \text{if } \underline{S} \text{ is a cycle} \end{cases} = \frac{1}{Z} u^{\sum_{l} S_{l}} \prod_{i} f_{i}(\underline{S}_{i})$$

I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain $\underline{S}, \underline{S}', \underline{S}'', \ldots$, which admits $Prob[\underline{S}]$ as unique stationary distribution.

- \rightarrow Ergodic? Convergence time?
- → Determine appropriate transitions $\underline{S} \to \underline{S}'$, and transition rates $W(\underline{S} \to \underline{S}')$: e.g. by means of detailed balance: $W(\underline{S} \to \underline{S}')$ Prob $[\underline{S}] = W(\underline{S}' \to \underline{S})$ Prob $[\underline{S}']$

 $\operatorname{Prob}[\underline{S}] = \begin{cases} 0 & \text{if } \underline{S} \text{ is not a path} \\ f(u) & \text{if } \underline{S} \text{ is a path} \end{cases} = \frac{1}{Z} \left(u^{\sum_{l} S_{l}} \right) \left(\prod_{i} \tilde{f}_{i}(\underline{S}_{i}) \right) (\eta^{n} \underline{S})$

$$\begin{split} n_{\underline{S}} &= \text{number of disjoint paths of configuration } \underline{S} \\ \eta \in [0,1) \\ \tilde{f}_i(\underline{S}_i) &= \begin{cases} 1 & \text{if } \sum_{l \in \partial i} S_l \in \{0,2\} \\ \epsilon \in [0,1] & \text{if } \sum_{l \in \partial i} S_l = 1 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

I.2 Monte Carlo \Rightarrow Hamiltonian Cycles

- Succes rate:
 - Regular graphs of size N = 100, 200, 400, 800 : 100%
 - Bimodal graphs $(q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5})$ of size $N = 100, 200, 400, 800 : 100\% \rightarrow \text{Comfirmation of Wormald's}$ conjecture on non-regular graphs

I.2 Monte Carlo \Rightarrow Hamiltonian Cycles

- Succes rate:
 - Regular graphs of size N = 100, 200, 400, 800 : 100%
 - Bimodal graphs $(q_{3,4}^{0.5}, q_{3,5}^{0.5}, q_{4,5}^{0.5})$ of size $N = 100, 200, 400, 800 : 100\% \rightarrow \text{Comfirmation of Wormald's}$ conjecture on non-regular graphs
- Time requirements \rightarrow optimized by means of N-fold MC (up to M times faster):
 - Distribution depends on u, ϵ and η

Comparison

We find *Hamiltonian Cycles* for all sparse graphs with $k_{\min} = 3$.

\mathbf{BP}

\mathbf{MC}

- + versatile
- + polynomial in N -
- no garantee
- very parameter sensitive
 - exponential in N
- + more reliable
Comparison

We find *Hamiltonian Cycles* for all sparse graphs with $k_{\min} = 3$.

BP MC

- versatile +
- very parameter sensitive
- +
- polynomial in N exponential in N
- no garantee + more reliable

 \rightarrow CPU time: e.g. bimodal graph with $q_{3.4}^{0.5}$, N = 1600

BP 30', i.e. 72 trials (70 cycle covers) (with local moves: 5') MC 40' (with optmized parameter values)

Ranking is an *objective* (topology based) measure of importance of the vertices of a graph

Ranking is an *objective* (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i) = |\partial i|$ (+) easy to compute (-) very rough measure

Ranking is an *objective (topology based) measure of importance* of the vertices of a graph

Degree $\mathcal{D}(i) = |\partial i|$ (+) easy to compute (-) very rough measure

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i) = |\partial i|$ (+) easy to compute (-) very rough measure

PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_i^+} \frac{\mathcal{P}(j)}{d_j^-}$

(+) iterative algorithm, emulates behavior of a Random Walk

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i) = |\partial i|$ (+) easy to compute (-) very rough measure

PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_i^+} \frac{\mathcal{P}(j)}{d_j^-}$

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality $\mathcal{B}(i) = \sum_{k,l(\neq i) \in V} \frac{\sigma_{k,l}(i)}{\sigma_{k,l}}$

(+) based on shortest paths, (-) time requirements $\sim O(NM)$

Ranking is an objective (topology based) measure of importance of the vertices of a graph

Degree $\mathcal{D}(i) = |\partial i|$ (+) easy to compute (-) very rough measure

PageRank $\mathcal{P}(i) \propto d \sum_{j \in \partial_i^+} \frac{\mathcal{P}(j)}{d_j^-}$

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality $\mathcal{B}(i) = \sum_{k,l(\neq i) \in V} \frac{\sigma_{k,l}(i)}{\sigma_{k,l}}$

(+) based on shortest paths, (-) time requirements $\sim O(NM)$

Loop Ranking
$$\mathcal{L}(i) = \sum_{i \in \text{Cycle}} w(\text{Cycle}) \propto \text{Prob}(i \in \text{Cycle})$$

for $\text{Prob}[\underline{S}] = \frac{1}{Z} \prod_{l} (r_l)^{S_l} \prod_{i} f_i(\underline{S}_i)$

Directed Small World Network

Directed Small World Network

R	i	$rac{\mathcal{P}(i)}{\mathcal{P}(5)}$	i	$rac{\mathcal{L}(i)}{\mathcal{L}(0)}$	i	$rac{\mathcal{B}(i)}{\mathcal{B}(0)}$
1	5	1.00	0	1.00	0	1.00
2	4	0.94	8	0.92	5	0.68
3	3	0.91	3	0.90	3	0.58
4	6	0.90	5	0.89	8	0.55
5	7	0.84	2	0.87	1	0.50
6	8	0.78	6	0.84	4	0.45
7	2	0.71	7	0.83	6	0.45
8	0	0.53	1	0.82	9	0.43
9	9	0.53	9	0.82	7	0.42
10	1	0.49	4	0.81	2	0.39

Directed Small World Network

Path-based Ranking:

- capture importance of vertices on small-world networks
- allow for edge ranking
- lead to similar results for the most important vertices and edges

Conclusions and Future Perspectives

- We find Hamiltonian cycles on regular and non-regular sparse graphs,
 - b.m.o. BP: faster
 - b.m.o. MC: more reliable
- New path-based vertex and edge ranking captures their importance in traffic flow (on directed small world networks).

Conclusions and Future Perspectives

- We find Hamiltonian cycles on regular and non-regular sparse graphs,
 - b.m.o. BP: faster
 - b.m.o. MC: more reliable
- New path-based vertex and edge ranking captures their importance in traffic flow (on directed small world networks).
- \rightarrow Deeper investigation of the level of approximation of BP.
- \rightarrow Improve MC by finding optimal parameters in automated way.
- \rightarrow Find loops or paths of intermediate length.
- \rightarrow Investigate real-world networks (scale free, weighted).
- \rightarrow Consider a Potts-like configuration space.