
Cycles in Random Graphs

Valery Van Kerrebroeck

Enzo Marinari, Guilhem Semerjian

[Phys. Rev. E 75, 066708 (2007)]

[J. Phys. Conf. Series 95, 012014 (2008)]



Outline

• Introduction

• Statistical Mechanics Approach

• Application 1: Finding Long Cycles

• Application 2: Vertex and Edge Ranking

• Conclusions and Future Perspectives

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 1/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Path of length L is a non self-intersecting walk passing through L
edges of a graph.

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Path of length L is a non self-intersecting walk passing through L
edges of a graph.

Cycle (loop) of length L is a closed path along L edges of a graph
which visits each vertex at most once.

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Path of length L is a non self-intersecting walk passing through L
edges of a graph.

Cycle (loop) of length L is a closed path along L edges of a graph
which visits each vertex at most once.
Hamiltonian cycle = cycle covering all vertices of a graph

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Definitions

Simple, Undirected Graph G(N,M)
has N vertices i and M edges {i, j}

Walk of length L is a sequence (i0, i1, . . . , iL) where each one of
the vertices ik is adjacent to ik+1 for all k = 0, 1, . . . , L − 1

Path of length L is a non self-intersecting walk passing through L
edges of a graph.

Cycle (loop) of length L is a closed path along L edges of a graph
which visits each vertex at most once.
Hamiltonian cycle = cycle covering all vertices of a graph
cycle cover = union of vertex disjoint cycles covering all

vertices of a graph

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 2/16



Interest?

• Graph theory:
Hamiltonian cycles (= cycles of length N): NP-complete

(cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph

ensembles

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 3/16



Interest?

• Graph theory:
Hamiltonian cycles (= cycles of length N): NP-complete

(cfr. Traveling Salesman Problem)
Statistical properties of # cycles on random graph

ensembles

• Understanding Real World Networks (e.g. Internet, WWW,
biological networks, social networks):

- local properties: degree distribution, clustering
→ short cycles

- global properties: shortest paths, network motives
→ longer cycles

- dynamics: feedback mechanism
- vertex ranking

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 3/16



Computational Difficulty

⇒ 3 fundamental questions: 1. Do they exist?

2. If yes, how many?

3. Can we locate them?

Computational Difficulty depends on length L of cycle:
• short cycles (L = 3, 4, 5): exhaustive enumeration has time upper

bound of O(N × #cycles), where #cycles ∝ expN

• intermediate cycles (limN→∞
L
N

= 0): in limit N → ∞ distribution
can be computed for most random graph ensembles

• long extensive cycles (L ∝ N ), e.g., Hamiltonian cycles:

- Regular graphs: Hamiltonian with high
probability (Wormald)

- Sparse graphs with minimum degree 3 and
bounded maximum degree: conjectured to
be Hamiltonian (Wormald)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 4/16



A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

Sj

Si

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 5/16



A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

Sj

Si

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 5/16



A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

fj(Sj)

fi(Si)

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 5/16



A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

fj(Sj)

fi(Si)

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 5/16



A Constraint Satisfaction Problem for Cycles

• ∀ edges l: Sl = 0/1 if edge l is absent / present

∀ vertices i: Si = {Sl|l is a neighboring edge of vertex i}

j

i

l = {i, j} Sl = Sij

fj(Sj)

fi(Si)

• Define Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

u = 1 uniform sampling
u → ∞ cycles of longest length (e.g. Hamiltonian cycles)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 5/16



I.1 Decimation ⇒ Hamiltonian Cycles

for n = 1 to M

- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 6/16



I.1 Decimation ⇒ Hamiltonian Cycles

for n = 1 to M

- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 1: Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 2: probability law selecting set of cycles of total length L

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 6/16



I.1 Decimation ⇒ Hamiltonian Cycles

for n = 1 to M

- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 1: Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 2: probability law selecting set of cycles of total length L

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

for u → ∞ ⇒

{

cycle cover if S consists of more than one cycle
hamiltonian cycle if S consists of just one cycle

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 6/16



I.1 Decimation ⇒ Hamiltonian Cycles

for n = 1 to M

- choose ln: Sln is undefined

- draw Sln according to Prob[Sln |Sl1 , . . . , Sln−1
]

Problem 1: Prob[Sln |Sl1 , . . . , Sln−1
]

→ approximate by means of Belief Propagation ⇔ Prob[S] =
∏

g(Sx)

Problem 2: probability law selecting set of cycles of total length L

Prob[S] =
1

Z
u

P

l Sl

∏

i

fi(Si) where fi(Si)

{

1 if
∑

l∈∂i Sl ∈ {0, 2}

0 otherwise

for u → ∞ ⇒

{

cycle cover if S consists of more than one cycle
hamiltonian cycle if S consists of just one cycle

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 6/16



Belief Propagation

Compute partition function Z =
∑

x w(x)

⇔ Minimizing the corresponding Gibbs free energy functional

FGibbs[pvar] =
∑

x

pvar(x) ln

(

pvar(x)

w(x)

)

since minpvar
FGibbs[pvar] = FGibbs[PGibbs] = − lnZ.

Mean Field approximation: factorizable trial distributions
pMF(x) =

∏

i pi(xi)

Bethe approximation: take first order correlations into account

e.g. pBethe(x) =
Q

{i,j} pij(xi,xj)
Q

i pi(xi)
demanding normalized

distributions pi, pij and consistency

⇒ Introduce Lagrange Multipliers
⇔ Finding fixed point of the corresponding distributed Belief

Propagation (BP) algorithm.

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 7/16



Belief Propagation

fi
fj

yi→j

yj→i

• Initialize messages yi→j

randomly.
• Iterate BP until convergence,

where each update takes up a
time O(M):

yi→j = f1

(

u, {yk→i}k∈∂i\j

)

⇒ pl(Sl = 1) =
uyi→jyj→i

1+uyi→jyj→i

On a tree-like graph:

- BP converges fast!
- FBethe, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it
often does after a reasonable amount of iterations.
⇒ Allows to investigate larger graphs ∼ O(106).

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 8/16



Belief Propagation

fi
fj

yi→j

yj→i

• Initialize messages yi→j

randomly.
• Iterate BP until convergence,

where each update takes up a
time O(M):

yi→j = f1

(

u, {yk→i}k∈∂i\j

)

⇒ pl(Sl = 1) =
uyi→jyj→i

1+uyi→jyj→i

On a tree-like graph:

- BP converges fast!
- FBethe, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it
often does after a reasonable amount of iterations.
⇒ Allows to investigate larger graphs ∼ O(106).

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 8/16



Belief Propagation

fi
fj

yi→j

yj→i

• Initialize messages yi→j

randomly.
• Iterate BP until convergence,

where each update takes up a
time O(M):

yi→j = f1

(

u, {yk→i}k∈∂i\j

)

⇒ pl(Sl = 1) =
uyi→jyj→i

1+uyi→jyj→i

On a tree-like graph:

- BP converges fast!
- FBethe, and thus BP, is exact!

On a general graph with cycles:

- In theory, BP does not necessarily converge, but in practice it
often does after a reasonable amount of iterations.
⇒ Allows to investigate larger graphs ∼ O(106).

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 8/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Performance on sparse graphs with N = 100, 200, . . . , 1600

- Regular graphs (c = 3, 4, 5): ∀ HC

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5): 94 − 99% HC (±99% CC)

q
0.5

3,4
q
0.5

3,5
q
0.5

4,5

CC HC CC HC CC HC

N DEC DEC DEC

100 99.9 96.0 98.9 69.9 98.7 56.9

200 99.6 96.2 99.7 71.1 98.9 50.0

400 99.7 96.4 99.9 67.7 98.9 50.7

800 99.8 96.7 99.6 68.9 99.6 46.8

1600 99.7 97.8 99.9 68.6 99.9 52.3

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 9/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Performance on sparse graphs with N = 100, 200, . . . , 1600

- Regular graphs (c = 3, 4, 5): ∀ HC

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5): 94 − 99% HC (±99% CC)

q
0.5

3,4
q
0.5

3,5
q
0.5

4,5

CC HC CC HC CC HC

N DEC LR DEC LR DEC LR

100 99.9 96.0 99.6 98.9 69.9 92.9 98.7 56.9 96.0

200 99.6 96.2 99.3 99.7 71.1 95.2 98.9 50.0 96.0

400 99.7 96.4 99.2 99.9 67.7 95.4 98.9 50.7 94.2

800 99.8 96.7 98.7 99.6 68.9 95.7 99.6 46.8 94.5

1600 99.7 97.8 98.7 99.9 68.6 92.0 99.9 52.3 94.0

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 9/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)
e.g. qc(k) = δk,c: c = 3(+), 4(×), 5(∗)

 1

 10

 100

 1000

 100  1000  10000

no
.ite

ra
tio

ns

N

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 10/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)

e.g. q0.5
3,4(+), q0.5

3,5(×), q0.5
4,5(∗)

 10

 100

 1000

 10000

 100  1000  10000

no
. B

P
-s

te
ps

M

slope ≃ 0.23

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 10/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)

- number of trials
e.g. q0.5

3,4 (dotted curve), q0.5
3,5 (dashed curve), q0.5

4,5 (full line)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

fr
ac

tio
n 

of
 g

ra
ph

s

# decimation procedures

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 10/16



I.1 Decimation ⇒ Hamiltonian Cycles

• Time complexity

- decimation procedure ∼ O(M2)

- number of trials
e.g. q0.5

3,4 (dotted curve), q0.5
3,5 (dashed curve), q0.5

4,5 (full line)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

fr
ac

tio
n 

of
 g

ra
ph

s

# decimation procedures

Optimization: Local rewiring ⇒ CC → HC

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 10/16



I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 11/16



I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Prob[S] =

{

0 if S is not a cycle
f(u) if S is a cycle

= 1
Z

u
P

l Sl
∏

i fi(Si)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 11/16



I.2 Markov Chain Monte Carlo Sampling

Ergodic, fast mixing Markov Chain S, S′, S′′, . . ., which admits Prob[S]
as unique stationary distribution.

→ Ergodic? Convergence time?

→ Determine appropriate transitions S → S′, and transition rates
W (S → S′): e.g. by means of detailed balance:
W (S → S′)Prob[S] = W (S′ → S)Prob[S′]

Prob[S] =

{

0 if S is not a path
f(u) if S is a path

= 1
Z

(

u
P

l Sl
)

(

∏

i f̃i(Si)
)

(ηnS )

nS = number of disjoint paths of configuration S

η ∈ [0, 1)

f̃i(Si) =











1 if
∑

l∈∂i Sl ∈ {0, 2}

ǫ ∈ [0, 1] if
∑

l∈∂i Sl = 1

0 otherwise

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 11/16



I.2 Monte Carlo ⇒ Hamiltonian Cycles

• Succes rate:
- Regular graphs of size N = 100, 200, 400, 800 : 100%

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5) of size

N = 100, 200, 400, 800 : 100% → Comfirmation of Wormald’s
conjecture on non-regular graphs

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 12/16



I.2 Monte Carlo ⇒ Hamiltonian Cycles

• Succes rate:
- Regular graphs of size N = 100, 200, 400, 800 : 100%

- Bimodal graphs (q0.5
3,4 ,q0.5

3,5 ,q0.5
4,5) of size

N = 100, 200, 400, 800 : 100% → Comfirmation of Wormald’s
conjecture on non-regular graphs

• Time requirements → optimized by means of N-fold MC (up to M
times faster):

- Distribution depends on u, ǫ and η

-

103

104

105

106

107

800400200100

no
. m

ov
es

N

+ q0.5
3,4

× q0.5
3,5

¤ q0.5
4,5

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 12/16



Comparison

We find Hamiltonian Cycles for all sparse graphs with kmin = 3.

BP MC

+ versatile - very parameter sensitive
+ polynomial in N - exponential in N

- no garantee + more reliable

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 13/16



Comparison

We find Hamiltonian Cycles for all sparse graphs with kmin = 3.

BP MC

+ versatile - very parameter sensitive
+ polynomial in N - exponential in N

- no garantee + more reliable

→ CPU time: e.g. bimodal graph with q0.5
3,4 , N = 1600

BP 30’, i.e. 72 trials (70 cycle covers) (with local moves: 5’)

MC 40’ (with optmized parameter values)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 13/16



II. Vertex (and Edge) Ranking

Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



II. Vertex (and Edge) Ranking

Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



II. Vertex (and Edge) Ranking

Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



II. Vertex (and Edge) Ranking

i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



II. Vertex (and Edge) Ranking

i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality B(i) =
∑

k,l( 6=i)∈V

σk,l(i)
σk,l

(+) based on shortest paths, (-) time requirements ∼ O(NM)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



II. Vertex (and Edge) Ranking

i Ranking is an objective (topology
based) measure of importance of
the vertices of a graph

Degree D(i) = |∂i|
(+) easy to compute (-) very rough measure

PageRank P(i) ∝ d
∑

j∈∂
+

i

P(j)

d
−
j

(+) iterative algorithm, emulates behavior of a Random Walk

Betweenness Centrality B(i) =
∑

k,l( 6=i)∈V

σk,l(i)
σk,l

(+) based on shortest paths, (-) time requirements ∼ O(NM)

Loop Ranking L(i) =
∑

i∈Cycle w(Cycle) ∝ Prob(i ∈ Cycle)

for Prob[S] = 1
Z

∏

l(rl)
Sl

∏

i fi(Si)

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 14/16



Directed Small World Network

0
1

2

3

4
5

6

7

8

9

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 15/16



Directed Small World Network

0
1

2

3

4
5

6

7

8

9

R i P(i)
P(5) i L(i)

L(0) i B(i)
B(0)

1 5 1.00 0 1.00 0 1.00
2 4 0.94 8 0.92 5 0.68
3 3 0.91 3 0.90 3 0.58
4 6 0.90 5 0.89 8 0.55
5 7 0.84 2 0.87 1 0.50
6 8 0.78 6 0.84 4 0.45
7 2 0.71 7 0.83 6 0.45
8 0 0.53 1 0.82 9 0.43
9 9 0.53 9 0.82 7 0.42

10 1 0.49 4 0.81 2 0.39

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 15/16



Directed Small World Network

Loop Ranking Betweenness Centrality

0
1

2

3

4
5

6

7

8

9 ]0.8,0.9]
]0.7,0.8]

]0.5,0.6]
]0.4,0.5]
]0.3,0.4]

]0.1,0.2]

3
2

4
5
6
7
8
9

1

10

]0.9,1.0]

]0.6,0.7]

]0.2,0.3]

]0.0,1.1]

0
1

2

3

4
5

6

7

8

9

Path-based Ranking:

- capture importance of vertices on small-world networks

- allow for edge ranking

- lead to similar results for the most important vertices and edges

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 15/16



Conclusions and Future Perspectives

• We find Hamiltonian cycles on regular and non-regular sparse
graphs,

- b.m.o. BP: faster
- b.m.o. MC: more reliable

• New path-based vertex and edge ranking captures their
importance in traffic flow (on directed small world networks).

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 16/16



Conclusions and Future Perspectives

• We find Hamiltonian cycles on regular and non-regular sparse
graphs,

- b.m.o. BP: faster
- b.m.o. MC: more reliable

• New path-based vertex and edge ranking captures their
importance in traffic flow (on directed small world networks).

→ Deeper investigation of the level of approximation of BP.

→ Improve MC by finding optimal parameters in automated way.

→ Find loops or paths of intermediate length.

→ Investigate real-world networks (scale free, weighted).

→ Consider a Potts-like configuration space.

Oldenburg – 06/03/2008 Valery Van Kerrebroeck – Cycles in Random Graphs – p. 16/16


	Outline
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions
	Definitions

	Interest?
	Interest?

	Computational Difficulty
	A Constraint Satisfaction Problem for Cycles
	A Constraint Satisfaction Problem for Cycles
	A Constraint Satisfaction Problem for Cycles
	A Constraint Satisfaction Problem for Cycles
	A Constraint Satisfaction Problem for Cycles

	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles

	Belief Propagation
	Belief Propagation
	Belief Propagation
	Belief Propagation

	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles

	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles
	I.1 Decimation $Rightarrow $ Hamiltonian Cycles

	I.2 Markov Chain Monte Carlo Sampling
	I.2 Markov Chain Monte Carlo Sampling
	I.2 Markov Chain Monte Carlo Sampling

	I.2 Monte Carlo $Rightarrow $ Hamiltonian Cycles
	I.2 Monte Carlo $Rightarrow $ Hamiltonian Cycles

	Comparison
	Comparison

	II. Vertex (and Edge) Ranking
	II. Vertex (and Edge) Ranking
	II. Vertex (and Edge) Ranking
	II. Vertex (and Edge) Ranking
	II. Vertex (and Edge) Ranking
	II. Vertex (and Edge) Ranking

	Directed Small World Network
	Directed Small World Network
	Directed Small World Network

	Conclusions and Future Perspectives
	Conclusions and Future Perspectives


