#### Interaction of energetic particles with surfaces: insight from molecular-dynamics simulations

#### H. M Urbassek

Physics Dept., University of Kaiserslautern, Germany

#### Thanks to:

Chr. Anders, S. Zimmermann, A. Friedrich, Y. Rosandi, C. Engin E. Bringa (LLNL), R. E. Johnson (U Virginia)



5 keV Cu  $\rightarrow$  Cu after 1 ps color: temperature (kinetic energy in the center-of-mass frame)

# Particle-solid interaction: applications:

- materials production:
  - implantation
  - ion-beam mixing
- surface technology:
  - thin-film growth
  - etching
  - surface modification
- micro- and nano-fabrication
- surface analysis:
  - depth profiling
  - SIMS, RBS, ...
- biotechnology:
  - desorption of biomolecules
- plasma-wall interaction:
  - thermonuclear fusion
- astrophysics:
  - erosion of planets, comets, dust grains

## **Characteristics of molecular dynamics**

Solve Newton's equations.

Think of:

| Potentials:                                         | empirical many-body potentials              |  |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Electrons:                                          | no excitation or: friction-like energy loss |  |  |  |  |  |
| Boundary conditions: sufficiently large crystallite |                                             |  |  |  |  |  |
| Detectors:                                          | atomistic                                   |  |  |  |  |  |
| Statistics:                                         | sufficiently many atoms                     |  |  |  |  |  |

# <u>Advantages</u>

- as realistic as possible in comparison to analytical theory or Monte Carlo simulations
  - for many-body simulations
  - for thermal nonequilibrium situations
- easy visualization / animation: appeals to imagination

# <u>Disadvantages</u>

- slow
- cannot handle time scales  $\gtrsim 1$  ns
- cannot handle space scales  $\gtrsim 100~\text{nm}$

# Metallic many-body potentials

(EAM potentials, tight-binding potentials, ...) Describe for fcc metals reasonably:

- lattice constant, cohesive energy
- elastic constants
- defect energies
- extended defects, impurities
- surface structure

# Outline:

- 'spikes' in metals induced by keV atom impact
- change in surface topography by ion bombardment
- cluster-induced cratering: linking nano- and microscales

High-density cascades: Spikes

Herbert M Urbassek

Physics Department University of Kaiserslautern Germany A spike is a limited volume with the majority of atoms temporarily in motion.

Spike effects may be important when the spike lifetime is larger than the duration of the initiating cascade. Spikes have been considered as the origin of a variety of experimental results over the years. The more compelling evidence seems to come from sputtering experiments.

Peter Sigmund, Appl. Phys. Lett. 1974 Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids Spikes used to explain:

**Sputtering:** enhancement, esp. under cluster bombardment reduction of point defect production Damage: defect structure (cascade collapse) amorphization surface topography (craters) chemical disorder (ordered alloys) Mixing: enhancement in molten cascade core **Conceptual:** use of macroscopic concepts n, T, p

#### <u>n, T, p:</u>

## System:

- 1 keV Cu  $\rightarrow$  Cu
- many-body potential
- no electronic stopping
- $\cong 10^4$  atoms
- 5 ps simulated

# Data analysis:

- macroscopic quantities as *gliding averages* over sphere with radius  $r_c = 4.7$  Å containing  $\approx 43$  atoms
- temperature from









#### Time = 1.080 ps







#### movie: <u>1 keV Cu -> Cu</u>

Th. J. Colla and H. M. Urbassek [cf. Radiat. Eff. <u>142</u>, 439-447 (1997)]: Cross section through a Cu(100) crystal after bombardment with a 1keV Cu ion. Kinetic energy ("temperature") in units of  $\frac{3}{2}$ kT<sub>mat</sub> shown as gliding average around each atom.



E<sub>pot</sub>, E<sub>kin</sub> in molten region

 $E_{pot} - E_{kin}$  :  $L_{melt} = 0.14 \text{ eV}$  /atom

latent heat of melting

# Cascade melting

#### **Check:**

- latent heat
- temperature
- diffusion
- pair correlation





mean square diplacement Averback et al 1988



Radial distribution functions for copper at (a) 600 K, (b) superheated to 2200 K and (c) liquid at 2200 K. Compare with (d) the core of a 2 keV cascade after 0.6 ps

#### Foreman

# Cascade melting: Conclusions:

- liquid at low density
- low lattice heat capacity  $\rightarrow$  long spike lifetime
- importance of latent heat of melting  $\rightarrow$  long spike lifetime
- Pressure relaxation at free surface

# Changes in surface topography due to single ion impact

# H. Gades, C. Engin, A. Friderich, Y. Rosandi, H. M Urbassek

Physics Dept., University of Kaiserslautern, Germany

Thanks to: Th. Michely, H. Hansen, C. Busse (RWTH Aachen)

# Outline:

- Erosion of Pt (111)
- Growth of Al (111)
- grazing incidence bombardment: step-edge sputter yield
- Case study:

Fluence dependent sputtering of Pt (111) by 5 keV Ar  $\vartheta$  = 83°

## Erosion of Pt (111)



ion fluence: 0.09 ML erosion: 0.26 ML 0.7 ML 2.1 ML

1 keV Xe -> Pt (111) @ 650 K Busse et al. Surf Sci 488 (2001) 346

# 700 Å

#### Formation of

Y<sub>ad</sub> adatoms Y<sub>sp</sub> sputtered atoms Y<sub>sv</sub> surface vacancies Y<sub>bv</sub> bulk vacancies Y<sub>i</sub> interstitials

#### Conservation of mass:

 $Y_{sp} + Y_{ad} + Y_i = Y_{sv} + Y_{bv}$ 

If diffusion possible: bulk vacancies, interstitials, (part of) surface vacancies anneal:  $Y_{sv,eff} = Y_{sp}$ (measurement of  $Y_{sp}$ )



100 eV Cu → Cu
defects formed:
2 surface vacancies
2 interstitials
Karetta & Urbassek (1992)

#### Prediction from collision-cascade theory:

$$\frac{Y_{\rm ad}}{Y_{\rm sp}} = 2\frac{U_{\rm sp}}{U_{\rm ad}} - 1$$

where  $U_{sp}$ : energy dispensed to sputter an atom  $U_{ad}$ : energy dispensed to lift an atom to adatom position

bond-counting argument: Z=9 bonds of atom in fcc(111) surface plane Z=3 bonds adlayer

pair potentials: 
$$U_{sp}/U_{ad} = 9/6$$
  $Y_{ad}/Y_{sp} = 2$   
many-body:  $\frac{Y_{sp}}{Y_{ad}} = \frac{\sqrt{9}}{\sqrt{9} - \sqrt{3}}$   $Y_{ad}/Y_{sp} = 4$ 

#### Conclusions: PR B 50 (1994) 11167

- rough quantitative agreeement of expt and simul
- $Y_{ad}/Y_{sp} \cong 4$

2

Υ<sub>a</sub>/Υ<sub>s</sub>

 $10^{0}$ 

5

 $10^{2}$ 

 at low energy: deviations due to steeper energy spectrum

 $10^{3}$ 

E(eV)



Growth of Al (111):

2400 Å



ion fluence: 0.03 ML 0.20 ML net growth

0.50 ML 1.5 ML net erosion

1 keV Xe -> Al (111) @ 300 K (+) marks height of original surface Busse et al. Surf Sci 488 (2001) 346

#### Experiment and MD simulation:

- preponderance of adatom over surface vacancy formation
- spike-induced local melting
- outflow of liquid (swelling)
- rapid resolidification -> amorphous zones hinder diffusion
- formation of vacancy clusters: hinders diffusion

#### Preponderance of adatom over surface vacancy formation



Surface vacancies separated from bulk vacancies

#### Formation of vacancy clusters: hinders diffusion



Probability that a vacancy is part of a vacancy cluster of n vacancies

#### Outflow of liquid (swelling):





(a) 
$$t = 0.5 \, ps$$

(c) 
$$t = 2.3 \, pc$$



(b) 
$$t = 1.7 \, ps$$

(d)  $t = 2.9 \, ps$ 



0.0

# outflow of liquid (swelling) rapid resolidification $\rightarrow$ amorphous zones

#### <u>movie</u>

(a) + = 4.1 mc

(f) + = 150 pc



(a) 
$$t = 0.15 \, ps$$

(c) 
$$t = 1.0 \, ps$$



(b)  $t = 0.6 \, ps$ 

(d) 
$$t = 1.45 \, ps$$



1.0 0.75 0.5 0.25 0.0



#### no swelling no amorphization

Top views:

(a) 1 keV Xe<sup>+</sup>

Preponderance of adatom over surface vacancy formation

| • | surface atom | • | adatom | • | ion (impact point) |
|---|--------------|---|--------|---|--------------------|
|   |              |   |        |   |                    |

#### Experiment and MD simulation:

- preponderance of adatom over surface vacancy formation
- spike-induced local melting
- outflow of liquid (swelling)
- rapid resolidification -> amorphous zones hinder diffusion
- formation of vacancy clusters: hinders diffusion

#### Grazing incidence bombardment: step-edge sputter yield Surf Sci 547 (2003) 315

5 keV Xe  $\rightarrow$  Pt (111) B-step = {111} micro-facetted step = along [1-1 0] direction inpact along [-1 -1 2]





Flat terrace:  $Y_{sp}$ ,  $Y_{ad} = 0$  for  $\vartheta \ge 80^{\circ}$ Near Step ( $\xi$ =-1): substantial sputtering and damage



Dependence of damage and sputter yield on distance  $\xi$  to step roughly a rectangular function  $Y_{ad} = const.$  for  $-x_c < \xi < 0$  $x_c = 2 \Delta h \tan 9$ : distance where ion reflects clear from the step







Top views, 
$$\vartheta = 80^{\circ}(\xi=-1)$$
:

average event: 
$$Y_{ad} = 126$$

poor: 
$$Y_{ad} = 34$$



# productive: $Y_{ad} = 169$


Beschuss der flachen Terrasse in einem Polarwinkel von 80° Beschuss der B-Stufe in einem Polarwinkel von 80° in Zelle  $\xi = -1$ Beschuss der B-Stufe in einem Polarwinkel von 80° in Zelle  $\xi = -9$ Beschuss der B-Stufe in einem Polarwinkel von 80° in Zelle  $\xi = -11$ 

## Conclusions: 5 keV Xe -> Pt (111)

- Flat terrace:  $Y_{sp}$ ,  $Y_{ad} = 0$  for  $\vartheta \ge 80^{\circ}$
- Near Step: substantial sputtering and damage
- Dependence of damage and sputter yield on distance  $\xi$  to step roughly a rectangular function
- influence of step reaches a distance  $x_c$  = 2  $\Delta$  h tan  $\vartheta$  before the step
- damage preferentially produced on upper terrace (behind step)
- step edge smears out

#### Case study:

#### prl 92 (2004) 246106

Fluence dependent sputtering of Pt (111) by 5 keV Ar at  $\vartheta = 83^{\circ}$ 



2450 Å

STM topographs at ion fluences of F= 0.25, 0.5, 1.0, 1.75 ML @ 720 K

Removed material vs fluence. Line: model Hatched: sputter yield of terraces

## Interpretation:

$$Y{=}Y_{step}{\cdot}$$
 A  $_{step}$  +  $Y_{terrace}$   ${\cdot}$  ( 1-  $A_{step}$  )

 $Y_{step}$  $Y_{terrace}$  $A_{step}$ 

average yield in front of steps average yield of terraces area fraction of island impact areas

## Fit of Y(F) yields:

| Y <sub>sten</sub>    | $= 8.4 \pm 1.5$   | MD: 8.3 |
|----------------------|-------------------|---------|
| Y <sub>terrace</sub> | $= 0.08 \pm 0.03$ | MD: 0   |

## Note:

At large fluence F, island coalescence decreases sputter yield



Cluster-induced cratering: linking nano- and microscales

Chr. Anders, St. Zimmermann, H. M Urbassek

Physics Dept., University of Kaiserslautern, Germany

<u>E. Bringa</u> Lawrence Livermore Natl Labs, CA

Thanks to: R. E. Johnson (Univ Virginia)

## Cluster-surface interaction:

- materials production:
  - cluster deposition of materials
  - thin-film growth

crystalline nuclei, increased adatom mobility

- surface technology:
  - surface modification
  - surface cleaning
  - soft landings: preparation of supported clusters
  - surface smoothing (by lateral cluster spreading)
- planetary sciences
  - solar wind, dust, ... impact -> surfaces of icy moons, comets etc
  - collisions within planetay ring systems
  - dust analysis by spacecraft: CASSINI, STARDUST



# cluster deposition of materials

Moseler 1993







nucleus of comet Halley Giotto (1986)





# dust grain (20 µm) collected by airplane



Abb. 1: Die Raumsonde CASSINI/ HUYGENS während der Endmontage in Cape Canaveral. Oben ist die in Italien gebaute Hauptantenne zu sehen, links die HUY-GENS-Sonde, direkt darüber der in Heidelberg entwickelte Staubdetektor »Cosmic Dust Analyzer« (CDA), unten die beiden Haupttriebwerke, rechts die Fernerkundungsinstrumente einschließlich der beiden Kameras, die vom Betrachter wegblicken.



Abb. 2: Der Cosmic-Dust-Analyzer eingepackt in Thermalisolationsfolie. Das runde Detektorgehäuse hat einen Durchmesser von 40 cm. Im Gehäuse sieht man die Eintrittsgitter und die Streben des Multipliergehäuses. Die beiden runden Folienflächen gehören zum High-rate-Detektor. Zur Ausrichtung in die Staubrichtung besitzt das Experiment einen Drehtisch (unten).

#### dust analysis on the CASSINI mission



 $\Sigma$ υ $\Omega$  09/04

## <u>Outline:</u>

- I. Craters at the nano-, micro-, macroscale
- II. Crater simulations by molecular dynamics
  - A) Cratering: systematic results for Ar system
  - B) Cratering: pictorial results for Cu system
- III. Comparison to experiment

## I. Craters at the nano-, micro-, macroscale

- nano: cluster impacts
- micro: dust particles
- macro: (micro-) meteorites, ...

## Cratering experiments at the nanoscale:





Yamada, Insepov et al

Xe -> Au: Donnely & Birtcher

#### Craters at the microscale:

#### metal projectiles (d = $0.1 - 5 \mu m$ )



Abb. 9. Das eigentliche Kratervolumen V(T') in Al als Funktion der Projektilenergie  $E_{\rm kin}$ . Die Meßpunkte entsprechen verschiedenen Projektilmassen und verschiedenen Projektilgeschwindigkeiten (für v > 1 km/sec).

K. Eichhorn and E. Grün: High-velocity impacts of dust particles



Fig. 6. Crater volume vs kinetic energy from different experiments. The current experiment is the data point at  $10^{12}$  eV, at  $10^{16}$  eV the data from Frisch (1992) and at  $10^{22}$  eV the data from Lange and Ahrens (1987). Each data point is the average value of all data points from the author. The error bars represent the standard deviation

$$V(E_{\rm kin}) = 2.34 \times 10^{-20} E_{\rm kin}^{0.98}$$
.

Planet Space Sci 41 (1993) 429

#### Rudolph, Z Naturforsch 24a (1969) 326



Craters at the microscale

Graham et al, Int J Impact Eng 26 (2001) 263

Crater in solar cell of Hubble space telescope



Outropped 9 Muur Dhue Chat Cal A 166 (1000) 763

Cratering experiments at the macroscale:

Barringer-Krater, Arizona: 1200 m Durchmesser, 200 m tief entstanden vor 50 ka durch 50m-Meteorit





Gaspra Galileo-Beiflug in 1200 km Entfernung 19 x 12 x 11 km





Figure 3. Voyager 1 images of crater-pocked Mimas reveal two different hemispheres of this inner, 400-km-diameter satellite of Saturn. Craters are spaced closely and overlap each other, indicating that the surfaces seen are ancient. The relatively large, 130-km-diameter crater Herschel is named after Mimas's discoverer. Several fissures or grooves (best seen in the right image) may be a consequence of Herschel's formation, heat-driven expansion of the crust, or tidal forces from Saturn.

#### Βεαττψ



## Crater morphologies diameters are for Moon (approximate)



## Copernicus

#### Jones

## II Crater simulations by molecular dynamics

## Notation:

- E total cluster energy
- E/n impact energy / projectile atom
- Y total sputter yield
- Y/n sputter yield / projectile atom
- U cohesive energy
- $\epsilon = E/U$  scaled cohesive energy



100 keV Xe<sub>1</sub> -> Au Bringa & Nordlund



5.5 keV Cu55 -> Cu Muramoto & Yamamura

#### Cratering simulations by MD:



10 keV  $Cu_{13} \rightarrow Cu$ Aderjan & Urbassek



20 keV Ar<sub>2000</sub> -> Si

#### **Interest**

#### Here:

- sputter yield Y
- crater size V

#### Further:

- surface modification: post-impact hardness
- ejecta: energy, angle, mass distribution
- etc

## Anders (Univ. Kaiserslautern):

- amorphous Ar target
- Lennard-Jones potential
- 19 000 1 280 000 atoms
- up to 100 ps simulation time
- $Ar_n$  cluster size  $n = 1 \dots 10 000$
- cluster energy E = 1 eV ... 50 keV

## Bringa (LLNL):

- Cu<sub>n</sub> -> Cu
- cluster size n = 50 250 000
- target size: 0.25 25 x 10<sup>6</sup>
- cluster energy: 10 eV / atom
- 0.5 keV 2.6 MeV
- cluster velocity: 5.3 km / sec



#### Molecular dynamics simulations: how to measure crater shape and volume



#### circular damage area



## II.A. Cratering: systematic results for Ar system

## Notation:

- V crater volume (below reference plane), expressed as number of missing atoms
- z crater depth
- r crater radius
- r/z aspect ratio



#### crater volume linear in energy



## threshold energy to linear behavior





## aspect ratio: nearly hemispherical craters

#### threshold energy to hemispherical crater



E<sub>hemi</sub>

#### dependence of thresholds on cluster size n



## Cratering: pictorial results for Cu system

## Crater formation mechanism:



#### <u>movie</u>

 $R_{cl} = 9 \text{ nm}$ n = 250 000 E = 2.5 MeV

# (stress coloring)



# splashing:







## **III Comparison to experiment**

- Previous experiments on crater volumes:
- Rudolph 1969:
- µm-sized projectiles
- Eichhorn and Grün, 1993:
- ice targets
- Quinones and Murr, 1998; Murr et al 1998:
- mm-sized projectiles
- Previous simulations on crater volumes:
- Bringa et al, 2001
- Colla et al, 2000
- Aderjan et al, 2000

#### Crater volumes: Synopsis (selection) of experiments and simulations



#### data scaled to cluster size n



## <u>Conclusions</u>

crater volume V

- linear in total energy E
- threshold energy to linearity 
  <u>=</u> hemispherical shape only minor dependence on cluster size
- results are "approximately" independent of projectile size and only scale with total cluster energy
- BUT: experiment for µm- and mm-sized projectiles give larger craters than simulations for nm-sized projectiles
- simulations for larger clusters show similar behavior
- probable reason: different dynamics for larger clusters
  - instead of "microexplosion" for small projectiles
  - stress effects (rebound pressure) within projectile important