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The Vertex Cover Problem

Undirected graph G = (V,E) with nodes V and edges E

N = |V | and M = |E|

Definition [GareyTheoCompSc76]:
A Vertex Cover (VC) is a subset VC ⊂ V of vertices, such that
each edge {i, j} ∈ E is at least incident to one node of VC

→ i ∈ VC or j ∈ VC .

Minimum VC: minimum cardinality XC = |VC |
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(b) minimum VC

VC Problem → NP-hard optimization problem
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VC as Linear Programming Problem (LP)
VC studied in physics with B&B algorithm or stochastic
methods → here: Linear Programming
Each node i of graph is represented by variable xi ∈ [0, 1]:
xi = 1 ↔ covered
xi = 0 ↔ uncovered
xi ∈ ]0, 1[ ↔ undecided

Each of the M edges {j, k} → constraint xj + xk ≥ 1

Objective function: x → min

VC as LP:
Minimize x =

∑N
i=1 xi

Subject to 0 ≤ xi ≤ 1 ∀ i ∈ V

xj + xk ≥ 1 ∀ {j, k} ∈ E

Use Simplex algorithm to solve LP [DantzigBullAmerMathSoc48],
[http://lpsolve.sourceforge.net/5.5/].
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Example
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Figure: Example graph with
N = M = 5

Corresponding LP:
Minimize x = x1 + x2 + x3 + x4 + x5

Subject to 0 ≤ xi ≤ 1 ∀ i ∈ V

x1 + x2 ≥ 1
x2 + x3 ≥ 1
x2 + x4 ≥ 1
x3 + x4 ≥ 1
x4 + x5 ≥ 1
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Figure: Minimum VC

Solution: x1 = 0,
x2 = 1,
x3 = 0,
x4 = 1,
x5 = 0.

→ Minimum VC with cardinality: Xc = x = 2
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Cutting Plane (CP) approach

Aim: Reduce number of undecided variables xi ∈ ]0, 1[

Idea: Limit solution space by adding extra constraints (CPs)

Two algorithms:

Loops: [arXiv:1201.1814v1]

Search random loop of
length l

Add constraint (CP) to LP:∑
i∈loop

xi ≥
⌈

l

2

⌉
, (∗)

if loop has odd length and
(∗) is not fulfilled yet.

Subgraphs:
Search random subgraph
GS = (U,ES) with |U | ≤ 10

Calculate minimum VC of
size XC = |VC(GS)|
Add constraint (CP) to LP:∑

i∈U

xi ≥ XC , (?)

if (?) is not fulfilled yet.
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Example for CP approach

Loops:
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Node Heuristic (NH)

Aim: Get complete solution → all xi ∈ {0, 1}

Algorithm:
Set the smallest undecided variable xj ∈ ]0, 1[ to zero
Add xj = 0 to LP and solve it again

→ Sets variables of adjacent nodes k to xk = 1

→ Repeated execution yields VC, but not necessarily of
minimum size
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General remarks
Used graph ensemble:

Erdős-Rényi (ER) random graph ensemble: G(N,M)
[ErdösMagTudAkMatKuIntKö60]

All graphs with same N and M equiprobable

Important variables for graphs/VC:

Connectivity (average number of neighbors): c = 2 M/N

Minimum relative cover size xc = XC/N

Details of simulations:

Bland’s first-index pivoting [BlandMathOperRes77]

103 realisations of random graphs
Graph sizes up to N = 570
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Phase transition in CP approach
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Figure: Fraction pf of complete solutions for CP approach with
subgraphs as a function of connectivity c and for CP approach with
loops (inset). Vertical line denotes c = e ≈ 2.718.
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Phase diagram
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Figure: Phase diagram for the fraction of covered vertices x.
Minimum VC found with exact branch-and-bound algorithm/analytics
[HartmannPRL00]. Vertical line denotes c = e ≈ 2.718, where RSB
occurs. Inset: Finite-size scaling for CPs with subgraphs and c = 3
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Summary/Conclusion

Mapping of VC on ER random graphs on LP
CP approach shows “easy-hard” transition close to c = e

→ Phase transition (PT) not only for configuration-space-
based algorithms (e.g. branch-and-bound), but also for
LP/CP approach (outside of feasible solutions)
→ Hardness of VC Problem is intrinsic property of problem
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Thank you for your
attention!
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Announcements
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Open access summary database:
www.papercore.org

Modern Computational Science Summerschool
August 20 – 31, 2012:

www.mcs.uni-oldenburg.de

DPG Physics School: Efficient Algorithms in Computational
Physics, September 9 – 14, 2012:

www.pbh.de
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