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The Vertex Cover Problem

M Undirected graph G = (V, E') with nodes V' and edges E
M N=|V|and M = |E|

Definition [GareyTheoCompSc76]:

A Vertex Cover (VC) is a subset V- C V of vertices, such that
each edge {i,j} € E is at least incident to one node of V¢
—i€eVoorjgeVe.

Minimum VC: minimum cardinality X¢ = |V¢|

(a) VC (b) minimum VC

VC Problem — NP-hard optimization problem



VC as Linear Programming Problem (LP)

M VC studied in physics with B&B algorithm or stochastic
methods — here: Linear Programming

M Each node i of graph is represented by variable z; € [0, 1]:
r; = 1 + covered
xz; = 0 «+> uncovered
x; € ]0,1[ <> undecided

M Each of the M edges {j, k} — constraint z; + z;, > 1
M Objective function: z — min
VC as LP:
Minimize ==,
Subjectto 0<ux;, <1 VieV
zj+ap>1 V{jk}eFE

Use Simplex algorithm to solve LP [DantzigBullAmerMathSoc48],
[http://Ipsolve.sourceforge.net/5.5/].
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Figure: Example graph with
N=M=5

Corresponding LP:

Minimize =21+ x4+ 23+ 24+ 25

Subjectto 0<x; <1

r1+x22>1
rp+x3>1
To+x4 >1
r3+a4 >1
T4 +x5 > 1

VieV
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Corresponding LP:
Minimize =21+ x4+ 23+ 24+ 25

Subjectto 0<x2;, <1 VieV
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z2+1x3 21

To+x4 > 1

Figure: Example graph with r3+x4>1

N=M=5 T4+ x5 > 1
9 Solution: x1 =0,
Ty = 1,

4

o P =0
2 x4 = 1,
s — 0.

Figure: Minimum VC

— Minimum VC with cardinality: X, =x =2



Cutting Plane (CP) approach

Aim: Reduce number of undecided variables z; € |0, 1]

Idea: Limit solution space by adding extra constraints (CPs)

Two algorithms:

Loops: [arXiv:1201.1814v1]

M Search random loop of
length

M Add constraint (CP) to LP:

> x|y @

i€loop

if loop has odd length and
(*) is not fulfilled yet.

Subgraphs:
M Search random subgraph
Gs = (U, Eg) with |U| < 10
M Calculate minimum VC of
size X¢ = |Ve(Gs)|
M Add constraint (CP) to LP:
Z Ty Z XCa (*)
iU
if () is not fulfilled yet.






Node Heuristic (NH)

Aim: Get complete solution — all z; € {0,1}

Algorithm:

B Set the smallest undecided variable z; € |0, 1[ to zero
M Addz; = 0to LP and solve it again

— Sets variables of adjacent nodes k to z; = 1

— Repeated execution yields VC, but not necessarily of
minimum size



General remarks

Used graph ensemble:

M Erdbs-Reényi (ER) random graph ensemble: G(N, M)
[Erd6sMagTudAkMatKuIntKé60]
M All graphs with same N and M equiprobable

Important variables for graphs/VC:

M Connectivity (average number of neighbors): ¢ =2 M/N
M Minimum relative cover size z. = X¢/N

Details of simulations:

B Bland’s first-index pivoting [BlandMathOperRes77]
M 103 realisations of random graphs

M Graph sizes up to N = 570



Phase transition in CP approach
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Figure: Fraction p; of complete solutions for CP approach with

subgraphs as a function of connectivity ¢ and for CP approach with
loops (inset). Vertical line denotes ¢ = e =~ 2.718.
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Phase diagram
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Figure: Phase diagram for the fraction of covered vertices .
Minimum VC found with exact branch-and-bound algorithm/analytics
[HartmannPRLOO]. Vertical line denotes ¢ = e ~ 2.718, where RSB
occurs. Inset: Finite-size scaling for CPs with subgraphs and ¢ = 3
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Summary/Conclusion

M Mapping of VC on ER random graphs on LP
M CP approach shows “easy-hard” transition close to c = ¢

— Phase transition (PT) not only for configuration-space-
based algorithms (e.g. branch-and-bound), but also for
LP/CP approach (outside of feasible solutions)

— Hardness of VC Problem is intrinsic property of problem
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Thank you for your
attention!



Announcements

i Open access summary database:

OORQ/ WWw.papercore.org

Modern Computational Science Summerschool
August 20 — 31, 2012:

Www.mcs.uni-oldenburg.de

DPG Physics School: Efficient Algorithms in Computational
Physics, September 9 — 14, 2012:
www.pbh.de
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www.papercore.org
www.mcs.uni-oldenburg.de
www.pbh.de
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