Random Weighted Strings and Weighted HMMs: Computation of Cleavage Fragment Statistics in Mass Spectrometry

Sven Rahmann

Algorithms and Statistics for Systems Biology Group Genome Informatics, Department of Technology, Bielefeld University, Germany

Göttingen, 26.04.2006

1 / 19

Göttingen 04/2006

Image: A matrix and a matrix

Protein Identification

- Isolate all copies of one protein from a cell
- Digest these proteins deterministically into fragments (peptides)
- Measure fragment masses by mass spectrometry
- Compare peptide mass fingerprint (PMF) to predicted PMF of database proteins
- Return database protein that "fits best"
- Compute significance of "best fit"

2 / 19

Göttingen 04/2006

Peptide Mass Fingerprinting

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet Σ .

Image: A matrix of the second seco

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet Σ .

Definition (Random protein model)

For a given length $\ell \ge 1$ and amino acid frequencies $f = (f(a))_{a \in \Sigma}$, assign a probability to every protein sequence $s = (s_1, \ldots, s_\ell)$:

$$\mathbb{P}_{\ell}(S=s)=\prod_{i=1}^{\ell}f(s_i).$$

GG Constitution イロト・アン・マン・マン・マン・マン・

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet Σ .

Definition (Random protein model)

For a given length $\ell \ge 1$ and amino acid frequencies $f = (f(a))_{a \in \Sigma}$, assign a probability to every protein sequence $s = (s_1, \ldots, s_\ell)$:

$$\mathbb{P}_{\ell}(S=s) = \prod_{i=1}^{\ell} f(s_i).$$

No masses so far

Sac

Protein masses - weighted strings

Definition (Amino acid mass)

Every amino acid a has a mass distribution \mathcal{L}_a , derived from

- isotopic distributions of its component atoms,
- modification probabilities,
- mass distributions of modifying groups.

Definition (Amino acid mass)

Every amino acid a has a mass distribution \mathcal{L}_a , derived from

- isotopic distributions of its component atoms,
- modification probabilities,
- mass distributions of modifying groups.

Definition (Protein mass)

Every amino acid s_i of protein $s \in \Sigma^{\ell}$ has a random mass μ_{s_i} drawn from its distribution \mathcal{L}_{s_i} .

$$\mu_{s} = \mu_{s_{1}} + \mu_{s_{2}} + \dots + \mu_{s_{\ell}} \quad \text{and} \quad \mathcal{L}_{s} = \mathcal{L}_{s_{1}} \star \mathcal{L}_{s_{2}} \star \dots \star \mathcal{L}_{s_{\ell}}.$$

ŘČ

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from Π .

Image: A matrix and a matrix

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from Π .

Example (Trypsin)

 $\Gamma = \{K, R\}, \Pi = \{P\}$; cuts after lys or arg unless followed by pro. SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from $\Pi.$

Example (Trypsin)

 $\Gamma = \{K, R\}, \Pi = \{P\}$; cuts after lys or arg unless followed by pro. SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

• the distribution of the number of fragments,

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,
- the joint length-mass distribution, and

Sac

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,
- the joint length-mass distribution, and
- mass occurrence probabilities: probability that there exists at least one fragment with mass in a given range

Sac

\bullet Enumeration of all 20^ℓ protein sequences

 $\blacktriangleright\,$ Exact, but infeasible for $\ell \geq 10$

- Enumeration of all 20^{ℓ} protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact due to rare events

- Enumeration of all 20^{ℓ} protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact due to rare events
- Estimation from database
 - Needs HUGE number of entries
 - Also not exact due to rare events

Image: Image:

- Enumeration of all 20^{ℓ} protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact due to rare events
- Estimation from database
 - Needs HUGE number of entries
 - Also not exact due to rare events

Is there an exact and efficient method?

"Weighted HMMs" (wHMMs), or "Mass-accumulating Markov Chains"

wHMM: generative probabilistic cleavage model Left: Initial fragment. Right: Following fragments.

Sven Rahmann (Bielefeld)

Göttingen 04/2006 9 / 19

versität Bielefel

Sac

"Weighted HMMs" (wHMMs), or "Mass-accumulating Markov Chains"

wHMM: generative probabilistic cleavage model Left: Initial fragment. Right: Following fragments.

A wHMM can be derived from a standard cleavage scheme (Γ, Π) , or from more complicated cleavage rules.

Sac

h'_i[m] := ℙ(in state i after l steps, accumulated mass m),
g_i[m] := ℙ(mass = m | State = i),

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m),$
- $g_i[m] := \mathbb{P}(\text{mass} = m \mid \text{State} = i)$,
- Matrix P := Transition matrix of the wHMM.

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m)$,
- $g_i[m] := \mathbb{P}(\text{mass} = m \mid \text{State} = i),$
- Matrix *P* := Transition matrix of the wHMM.

Then
$$h_i'[m] = \sum_{m'} \left(\sum_k h_k'^{-1}[m-m'] \cdot P_{ki} \right) \cdot g_i[m']$$

Sven Rahmann (Bielefeld)

Göttingen 04/2006 10 / 19

Iniversität Bielefelo

Sac

GS

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m),$
- $g_i[m] := \mathbb{P}(\text{mass} = m \mid \text{State} = i),$
- Matrix P := Transition matrix of the wHMM.

Then
$$h'_i[m] = \sum_{m'} \left(\sum_k h'^{-1}[m-m'] \cdot P_{ki} \right) \cdot g_i[m']$$

 $\mathbb{P}(\text{fragment has length } l \text{ and mass } m) = h'^{l+1}_{\text{``End''}}[m]$

 Matrix H^(I) := (h^I_i[m])_{m∈masses}, i∈states (contains the joint mass-state distribution after I steps),

- Matrix H^(I) := (h^I_i[m])_{m∈masses, i∈states} (contains the joint mass-state distribution after I steps),
- Matrix $G := (g_i[m])_{m \in \text{masses}, i \in \text{states}}$,
- Matrix P := Transition matrix of the wHMM.

 Matrix H^(I) := (h^I_i[m])_{m∈masses}, i∈states (contains the joint mass-state distribution after I steps),

• Matrix
$$G := (g_i[m])_{m \in \text{masses}, i \in \text{states}}$$
,

• Matrix P := Transition matrix of the wHMM.

Then
$$H^{(l)} = (H^{(l-1)} \cdot P) \star G.$$

Iniversität Bielefelo

Sac

 Matrix H^(I) := (h^I_i[m])_{m∈masses, i∈states} (contains the joint mass-state distribution after I steps),

• Matrix
$$G := (g_i[m])_{m \in \text{masses}, i \in \text{states}}$$
,

• Matrix *P* := Transition matrix of the wHMM.

Then
$$H^{(l)} = (H^{(l-1)} \cdot P) \star G.$$

This is an update formula for the mass-state distribution.

niversität Bielefelo

Results: Number of Fragments

Fragment number distribution of proteins of length 207 \pm 7.

590

12 / 19

Fragment Lengths

Distribution of fragment lengths of SwissProt proteins

Joint Length-Mass Distribution

Fragment mass distribution; length = 15, High precision = 0.1 Da.

Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300

iversität Bielefelo

Sac

Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300

Göttingen 04/2006 16 / 19

versität Bielefelo

590

Mass Occurrence Probabilities

э Göttingen 04/2006 17 / 19

BĞ

< □ > < □ > < □

Iniversität Bielefeld

DQC

• New computational framework "wHMM"

- New computational framework "wHMM"
- Only aa frequencies needed

- New computational framework "wHMM"
- Only aa frequencies needed
- Elegant formulation and update equation: $H^{(l)} = (H^{(l-1)} \cdot P) \star G.$

- New computational framework "wHMM"
- Only aa frequencies needed
- Elegant formulation and update equation: $H^{(l)} = (H^{(l-1)} \cdot P) \star G.$
- Applicable to probability computations in mass spectrometry, to significance computations for peptide mass fingerprinting, e.g., what's the probability that a random protein contains a fragment with mass in a given range?

Image: A math a math

Sac

18 / 19

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Thanks to

- International NRW Graduate School in Bioinformatics and Genome Research, Bielefeld
- Henner Sudek, Marcel Martin and Tobias Marschall

Image: Image:

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Thanks to

- International NRW Graduate School in Bioinformatics and Genome Research, Bielefeld
- Henner Sudek, Marcel Martin and Tobias Marschall

Thank you for listening

Questions?

RC

Image: Image: