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Peptide Mass Fingerprinting

Protein ldentification
@ Isolate all copies of one protein from a cell

@ Digest these proteins deterministically into fragments (peptides)
@ Measure fragment masses by mass spectrometry

e Compare peptide mass fingerprint (PMF) to predicted PMF of
database proteins

@ Return database protein that “fits best”

e Compute significance of “best fit"
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Peptide Mass Fingerprinting
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A protein is a word of some length ¢ > 1 over amino acid alphabet ¥.




Protein Space — just strings

Definition (Protein sequence)

A protein is a word of some length ¢ > 1 over amino acid alphabet .

Definition (Random protein model)

For a given length ¢ > 1 and amino acid frequencies f = (f(a))a.ex,
assign a probability to every protein sequence s = (sq,...,5):

Py(S =s) =[] f(s)-

i=1
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Protein Space — just strings

Definition (Protein sequence)

A protein is a word of some length ¢ > 1 over amino acid alphabet .

Definition (Random protein model)

For a given length ¢ > 1 and amino acid frequencies f = (f(a))a.ex,
assign a probability to every protein sequence s = (sq,...,5):

Py(S =s) =[] f(s)-

i=1

No masses so far
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Every amino acid a has a mass distribution £, derived from

@ isotopic distributions of its component atoms,
@ modification probabilities,

@ mass distributions of modifying groups.
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Protein masses — weighted strings

Definition (Amino acid mass)

Every amino acid a has a mass distribution £,, derived from
@ isotopic distributions of its component atoms,
@ modification probabilities,

@ mass distributions of modifying groups.

Definition (Protein mass)

Every amino acid s; of protein s € £‘ has a random mass i, drawn
from its distribution Ls,.

Ms = sy + s, + -+ s, and Lo =Ly x Lo %% Ly,

Gl
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A standard cleavage scheme (I, ) is specified by

@ a set [ of cleavage characters
@ a set [1 of prohibition characters
Semantics: cut after aa from I unless followed by aa from 1.
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Protein Cleavage — getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (I, ) is specified by
@ a set [ of cleavage characters
@ a set [1 of prohibition characters

Semantics: cut after aa from I unless followed by aa from 1.

I ={K,R}, N = {P}; cuts after lys or arg unless followed by pro.
SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.
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Protein Cleavage — getting the PMF

Definition (Standard cleavage scheme)
A standard cleavage scheme (I, ) is specified by
@ a set [ of cleavage characters

@ a set [1 of prohibition characters

Semantics: cut after aa from I unless followed by aa from 1.

F F, Fy F,
s | 1o i i |
|
|

| |
L, T L, |
T, T, T, T, T,

I ={K,R}, N = {P}; cuts after lys or arg unless followed by pro.
SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.
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For given

@ random protein model and sequence length,

@ amino acid mass distribution, and

@ cleavage rules,
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,
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@ the distribution of the number of fragments,

@ the distribution of the fragment lengths,
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,
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@ the distribution of the number of fragments,
@ the distribution of the fragment lengths,

@ the joint length-mass distribution, and
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,

determine efficiently
@ the distribution of the number of fragments,
@ the distribution of the fragment lengths,
@ the joint length-mass distribution, and

@ mass occurrence probabilities: probability that there exists at
least one fragment with mass in a given range
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@ Enumeration of all 20 protein sequences
» Exact, but infeasible for £ > 10
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Some possible approaches

@ Enumeration of all 20 protein sequences
Exact, but infeasible for ¢ > 10

@ Sampling of random proteins
Not exact due to rare events

@ Estimation from database

Needs HUGE number of entries
Also not exact due to rare events
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Some possible approaches

@ Enumeration of all 20 protein sequences
Exact, but infeasible for ¢ > 10

@ Sampling of random proteins
Not exact due to rare events

@ Estimation from database

Needs HUGE number of entries
Also not exact due to rare events

Is there an exact and efficient method?
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“Weighted HMMs" (wHMMs), or
“Mass-accumulating Markov Chains”

(a) Cleavage point (b) Cleavage point

wHMM: generative probabilistic cleavage model
Left: Initial fragment. Right: Following fragments.
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“Weighted HMMs" (wHMMs), or
“Mass-accumulating Markov Chains”

(a) Cleavage point (b) Cleavage point
wHMM: generative probabilistic cleavage model
Left: Initial fragment. Right: Following fragments.

A wHMM can be derived from a standard cleavage scheme (T, ﬂ)
from more complicated cleavage rules.
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e h![m] := P(in state i after / steps, accumulated mass m),
@ g;[m] := P(mass = m | State = i),




Using wHMMs for Probability Computations

@ h![m] := P(in state / after / steps, accumulated mass m),
@ g;[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the wHMM.
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Using wHMMs for Probability Computations

@ h![m] := P(in state / after / steps, accumulated mass m),
@ g;[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the wHMM.

Ten el = 3 (oA ) sl

m’ k
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Using wHMMs for Probability Computations

@ h![m] := P(in state / after / steps, accumulated mass m),
@ g;[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the wHMM.

Ten el = 3 (oA ) sl

m’ k

P(fragment has length / and mass m) = h'tl..[m]
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@ Matrix H(I) = (h,l[m])memasses, iE€states
(contains the joint mass-state distribution after / steps),




Using wHMMs for Probability Computations

e Matrix H) := (h,/'[m])mEmasseS, i€Estates

(contains the joint mass-state distribution after / steps),
o Matrix G := (gi[rn])mEmasses7 iEstates
@ Matrix P := Transition matrix of the wHMM.
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Using wHMMs for Probability Computations

e Matrix H(I) = (h,/'[m])mEmasses, iEstates
(contains the joint mass-state distribution after / steps),

@ Matrix G := (gi[rn])mEmasses7 iEstates
@ Matrix P := Transition matrix of the wHMM.

Then  HO = (HU-V.P)xG.
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Using wHMMs for Probability Computations

e Matrix H(I) = (h,/'[m])mEmasses, iEstates
(contains the joint mass-state distribution after / steps),

@ Matrix G := (gi[rn])mEmasses7 iEstates
@ Matrix P := Transition matrix of the wHMM.

Then  HO = (HU-V.P)xG.

This is an update formula for the mass-state distribution.
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Results: Number of Fragments

Fragment number distribution of proteins of length 207 + 7.
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Distribution of fragment lengths of SwissProt proteins
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Joint Length-Mass Distribution

Fragment mass distribution; length = 15, High precision = 0.1 Da.
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Fragment mass occurrence probabilities for proteins of length 300
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Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300
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Mass Occurrence Probabilities
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@ New computational framework “wHMM"
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@ New computational framework “wHMM"
@ Only aa frequencies needed

@ Elegant formulation and update equation:
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Summary

@ New computational framework “wHMM"

@ Only aa frequencies needed

@ Elegant formulation and update equation:
HO = (HID . P) % G.

@ Applicable to probability computations in mass spectrometry,
to significance computations for peptide mass fingerprinting,
e.g., what's the probability that a random protein contains a
fragment with mass in a given range?
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