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Computational Complexity

Leonardo da Vinci (1452–1519)

No human investigation can be called real
science if it can not be demonstrated
mathematically.

Computational complexity analyses intrinsic limits on what mathematical problems
can be solved , pretty much like thermodynamics analyses intrinsic limits on what
heat engines can do .
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Grand Unified Theory of Computation

D. Hilbert (1862-1943)

Entscheidungsproblem (1928)
Is there an algorithmic procedure which can, in principle,
solve all mathematical problems?

What is an algorithmic procedure ?

A. Church (1903–1995)

A.Turing (1912–1954)

Different answers (1934–1937):

– recursive functions

– λ-calculus

– Turing-machine

all equivalent! © Roger Penrose, The Emperor’s new mind

Church-Turing Hypothesis
Any function that can be computed, can be computed
by a Turing machine.

Or (equivalently) by a program in C, FORTRAN, . . .
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Grand Unified Theory of Computation

Halting Problem
Can we decide whether a program P halts on input i

by inspection rather than running P (i)?

Is there a program halt ( P , i) such that

halt ( P , i) =

8

<

:

true if P (i) halts

false otherwise

Halting Problem = Entscheidungsproblem
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Grand Unified Theory of Computation

Halting Problem
Can we decide whether a program P halts on input i

by inspection rather than running P (i)?

Is there a program halt ( P , i) such that

halt ( P , i) =

8

<

:

true if P (i) halts

false otherwise

Halting Problem = Entscheidungsproblem

B. Riemann (1826–1866)

ζ(s) =

∞
X

n=1

1

ns

Riemann Hypothesis
All nontrivial zeros of ζ(s) are of the
form s = 1/2 + it, t real.
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Grand Unified Theory of Computation

Halting Problem
Can we decide whether a program P halts on input i

by inspection rather than running P (i)?

Is there a program halt ( P , i) such that

halt ( P , i) =

8

<

:

true if P (i) halts

false otherwise

Halting Problem = Entscheidungsproblem

B. Riemann (1826–1866)

ζ(s) =

∞
X

n=1

1

ns

Riemann Hypothesis
All nontrivial zeros of ζ(s) are of the
form s = 1/2 + it, t real.

Riemann( r)

do

z := NextZetaZero()

while (Re(z) 6= r)

return z

Riemann Hypothesis
halt (Riemann, 1/2)=false
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Grand Unified Theory of Computation

Halting Problem
Can we decide whether a program P halts on input i

by inspection rather than running P (i)?

Is there a program halt ( P , i) such that

halt ( P , i) =

8

<

:

true if P (i) halts

false otherwise

Halting Problem = Entscheidungsproblem

A.Turing (1912–1954) G. Cantor (1845–1918)

Suppose, halt exists. Define

function trouble(string s)

if halt(s, s)

loop forever

else

return true

trouble (trouble ) = ?
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Grand Unified Theory of Computation

Halting Problem
Can we decide whether a program P halts on input i

by inspection rather than running P (i)?

Is there a program halt ( P , i) such that

halt ( P , i) =

8

<

:

true if P (i) halts

false otherwise

Halting Problem = Entscheidungsproblem

A.Turing (1912–1954) G. Cantor (1845–1918)

Suppose, halt exists. Define

function trouble(string s)

if halt(s, s)

loop forever

else

return true

trouble (trouble ) = ?

halt does not exist.

6=
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Grand Unified Theory of Computation

Wang-Tilings: Given a finite set of colored, quadratic tiles. Can we tile the plane with
copies from this set so that abutting edges of adjacent tiles have the same color?

a b 
321

This problem is undecidable .
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Computing on Industrial Scale

“Computers” in the observatory of Hamburg (1920s) ENIAC (1946), 300 mult. per sec !

Computable ? Efficiently Computable ?

complexity (problem) = amount of resources consumed by solution

time
space
energy

best algorithm
# elementary operations
asymptotic scaling
worst case bound
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Multiplication vs. Factoring

267 − 1 = 147 573 952 589 676 412 927 = 193 707 721 · 761 838 257 287

n
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3 6 9

3 9 4 8 3

n
2

Multiplication:
grade school method: O(n2)

best known algorithm (FFT): O(n log n log log n)

276 BC–194 BC

Factorization:
naive (trial division): O(n2 · 2n/2)

best known algorithm (GNFS): O(exp
“

(
64

9
n)

1
3 (log n)

2
3

”

)
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Tractable and Intractable Scalings

20 40 60 80 100
n

10
0

10
3

10
6

10
9

10
12

10
15

10
18

10
21

10
24

µs

age of universe

1 year

1 day

1 minute

n!

2
n

n
3

n
2

n

Factorization

Complexity of Computation, ECCS ’07 – p.8/36



Königsberg Bridges
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Leonhard Euler (1703–1783)
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Königsberg Bridges

C

D

B
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d

Leonhard Euler (1703–1783)

“As far as the problem of the seven bridges of Kö-
nigsberg is concerned, it can be solved by making
an exhaustive list of possible routes, and then fin-
ding whether or not any route satisfies the con-
ditions of the problem. Because of the number of
possibilities, this method of solutions would be too
difficult and laborious, and in other problems with
more bridges, it would be impossible”.
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Königsberg Bridges
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d

Leonhard Euler (1703–1783)

A cycle that traverses each edge of a graph excatly
once is called an Eulerian cycle .

A connected graph G has an Eulerian cycle if and
only if the degree of all vertices is even.
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Intractable Itineraries

Sir William R. Hamilton (1805–1865)

A cycle that traverses each vertex of a graph ex-
catly once is called an Hamiltonian cycle .

No insight available. Exhaustive search seems to
be unavoidable.
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Needle Problems

Camille Pissaro, Haystack (1873)

NP: solution can be verified in polynomial time

P: solution can be found in polynomial time

Complexity of Computation, ECCS ’07 – p.11/36



Mathematical Haystacks

Eulerian Cycle?

∈ NP

Hamiltonian Cycle?

∈ NP
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Mathematical Haystacks

Eulerian Cycle?

∈ NP

Hamiltonian Cycle?

∈ NP

∈ P
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A problem not in NP

Lewis Stiller (1995)

80Z0Z0ZNZ
7Z0Z0ZKS0
60ZnZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20ZnZ0Z0Z
1ZkZ0Z0Z0

a b c d e f g h

Mate in 262
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P and NP

P
easy to solve

Multiplication Eulerian Path

PrimalityNP
easy to verify

Hamiltonian Path

FactoringGraph-Isomorphism

Is finding a solution fundamentally harder than verifying it? Is P 6= NP?

NP-complete
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NP-completeness

AND

OR

NOT

AND

x1 x2

z

Circuit SAT
Given a circuit C.
Is C satisfiable?

Any program that verifies a solution can be
“compiled” into a Boolean circuit.

The circuit outputs “true” if an input solution works.

Is there a set of values for the inputs that makes
the output true?

Circuit SAT is NP-complete because Boolean cir-
cuits are powerful enough to carry out any finite
computation.
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From Circuits to Formulas

AND

OR

NOT

AND

x1 x2

y1

y2

y3

z

AND-gate:

y1 = x1∧x2 ⇐⇒ (x1∨y1)∧(x2∨y1)∧(x1∨x2∨y1)

NOT-gate:

y3 = y1 ⇐⇒ (y1 ∨ y3) ∧ (y1 ∨ y3)

The circuit is equivalent to a Boolean formula:

Φ(x1, . . . , z) = (x1 ∨ y1) ∧ (x2 ∨ y1) ∧ . . . ∧ (z)

SAT (Satisfiability)
Given a Boolean formula Φ(x1, . . . , xn).
Are there truth assignments for the xi such that

Φ(x1, . . . , xn) = true ?
SAT is NP-complete .
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Simpler Formulas and Hamiltonian Paths

3-SAT:
Given a Boolean formula Φ with 3 variables in each clause.
Is Φ satisfiable?

(x1 ∨ x2) ⇐⇒ (x1 ∨ x2 ∨ z1) ∧ (z1 ∨ x1 ∨ x2)

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) ⇐⇒ (x1 ∨ x2 ∨ z1) ∧ (z1 ∨ x3 ∨ z2) ∧ (z2 ∨ x4 ∨ x5)

3-SAT is NP-complete

x

y

z

x ∨ y ∨ z

“gadget”

Hamiltonian Path is NP-complete .
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Map Coloring

Planar K-Coloring : Can one color a planar graph with at most K colors?

Is in P for K 6= 3. Is NP-complete for K = 3.
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Travelling Salesmen & Co

Matching 3−TSP

APTSP
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Diophantine Equations

Given natural numbers a, b, and c.
Do the following equations have a solution x, y

in natural numbers?

a x + b y = c

a x + b y2 = c

Quadratic Diophantine Equation is NP-complete .

Linear Diophantine Equation is in P.
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NP-complete Family Tree

Witness Existence

Circuit SAT

3-SAT

NAE-3-SAT

Graph 3-Coloring

Independent Set

Vertex Cover Max Clique

Max Cut

Planar SAT

Tiling

Subset Sum

Integer Partitioning MAX-2-SAT

3-Matching

Hamiltonian Path

More than 3000 NP-complete problems known
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P and NP

P
easy to solve

Multiplication Eulerian Path

Primality

NP
easy to verify

Hamiltonian Path

3-Coloring

3-SAT

Quadratic Diophantine
TSP

Sudoku

FactoringGraph-Isomorphism

P 6= NP ?

NP-complete
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Quantum Computation

R.P. Feynman (1918–1988)

Classical computers cannot efficiently simulate a
quantum mechanical system.

Hilbert space is too big!

qbit: |φ〉 = α |0〉 + β |1〉

n qbits = 2n probability amplitudes!

Information processing in quantum mechanics is enormous.

Can we get a ride?

Shor (1994): Factoring in polytime

Grover (1995): Searching a list of N

entries in time O(
√

N)

Problem: Measurement process
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Quantum Search ?

Eulerian Cycle?

∈ NP

Hamiltonian Cycle?

∈ NP

∈ P
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What if P=NP ?

Optimization
shorter tours
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What if P=NP ?

Optimization
shorter tours

Cryptography

Decrypt: Does encrypted message M correspond to clear text T?

Decrypt ∈ NP
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What if P=NP ?

Optimization
shorter tours

Cryptography
disappears
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What if P=NP ?

Optimization
shorter tours

Cryptography
disappears

Mathematics

Short-Proof-Existence: Does Theorem T have a proof with less than n lines?

Short-Proof-Existence ∈ NP

Complexity of Computation, ECCS ’07 – p.25/36



What if P=NP ?

Optimization
shorter tours

Cryptography
disappears mechanized

Mathematics

The evidence in favor of the P6=NP hypothesis is so overwhelming, and the
consequences of its failure are so grotesque, that its status may perhaps be
compared to that of physical laws rather than that of ordinary mathematical
conjectures.

V. Strassen
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A Letter from G ödel

Princeton, 20 March 1956

Dear Mr. von Neumann:

.

.

.

One can obviously easily construct a Turing machine, which f or every formula

F in first order predicate logic and every natural number n, allows one

to decide if there is a proof of F of length n. Let ϕ(n) be the number

of steps the machine requires for this. The question is, how f ast does

ϕ(n) grow for an optimal machine. One can show that ϕ(n) ≥ Kn. If there

actually were a machine with ϕ(n) ∼ Kn (or even only ϕ(n) ∼ Kn2 ), this

would have consequences of the greatest magnitude. That is t o say, it would

clearly indicate that, despite the unsolvability of the Entscheidungsproblem ,

the mental effort of the mathematician in the case of yes-or-no questions

could be completely replaced by machines. One would simply have to select an

n large enough that, if the machine yields no result, there wou ld then be no

reason to think further about the problem.

.

.

.

Sincerely yours,

Kurt G ödel

1906–1978 1903–1957

P=NP
−→
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Clay Millenium Problems

P versus NP

Riemann Hypothesis
Poincaré Conjecture

Hodge Conjecture
Navier-Stokes Existence

Yang-Mills Existence
Birch and Swinnerton-Dyer Conjecture

P versus NP—a gift to mathematics from computer science
Steve Smale

Complexity of Computation, ECCS ’07 – p.27/36



The Evil Adversary

Theory of computational complexity is
based on worst case analysis

Benefits:

guaranteed bounds

powerful tool: reduction

Drawbacks:

worst case can be rather exotic

Nature’s not evil!

Alternative: average case complexity

Phasetransitions

Clustering

REM-like scenarios

powerful tools: experiments, moment
bounds, . . .
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Experimental Mathematics

“If mathematics describes an objective
world just like physics, there is no reason
why inductive methods should not be
applied in mathematics just the same as
in physics.”

Kurt Gödel (1951)
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Random 3-SAT

3 4 5 6 7
α

0,0

0,2

0,4

0,6

0,8

1,0

P

n = 10
n = 15
n = 20
n = 30
n = 50
n = 100

3-SAT formula Φ with n variables and m clauses

Choose each clause randomly among 2−3
`n
3

´

.

Sparse case: m = αn for some density α .

P (α) = Probability that Φ is sat.]

Finite size scaling

α⋆ = σ(n)[α − αc(n)]

Sharp transition for n → ∞ at

αc ≃ 4.26-1 0 1
α ∗

0,0

0,2

0,4

0,6

0,8

1,0
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Easy-Hard Transition

1 2 3 4 5 6 7 8
α

10
2

10
3

10
4

10
5

10
6

D
PL

L
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al
ls

Complexity of Computation, ECCS ’07 – p.31/36



DPRM

Directed Polymer in Random Media

single-source shortest-path problem

solvable in polynomial time (Bellman-Ford)
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Constrained DPRM

g(E)

Minimum

E
α

Find shortest path among all paths with length ≥ α.

cannot be easier than unconstrained case (α = −∞)

is NP-complete

has local REM property
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Energetically Adjacent Paths

α = −∞

α = 0

random
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Mathematical Haystacks

Euclidean Cycle?
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Mathematical Haystacks

Euclidean Cycle?
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Mathematical Haystacks

31415926 ?

74636649
31389813
34562189
73552552
31456321
46372280
20349548
43289010
74093204
31415926
05647308
89745638
80103341
31443277
45632831
21467430
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Further Reading

Oxford Univ. Press (2008)
www.nature-of-computation.org

Trying to understand the nature of computati-
on has its own beauty just like trying to under-
stand the fundamental building blocks of the
universe.

Lance Fortnow

Brian Hayes, The Easiest Hard Problem, American
Scientist March-April 2002

S.M., Computational Complexity for Physicists,
Computing in Science and Engineering 4 (2002)
31–47

A.G. Percus, G. Istrate and C. Moore, eds., Computa-
tional Complexity and Statistical Physics, Oxford Uni-
versity Press, New York, 2006
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