The Isotropic-Nematic Interface in Anisotropic Colloidal Dispersions

A Monte-Carlo Study

Stefan Wolfsheimer

Richard Vink

Tanja Schilling

- Introduction
- Simulation Methods
 - The Grand Canonical Monte-Carlo Method
 - The Umbrella Sampling Technique
- Simulation Details and Results
 - Transition Curves
 - Density- and Order-Parameter Profiles
 - The IN-Interfacial Tension
- Conclusion and Outlook

Liquid Crystal Phases

nematic

solid

Tobacco Mosaic Virus

 $L \approx 300 nm, D \approx 20 nm$

b

- a [Carl Wetter, Biologie in unserer Zeit 3, 81-89 (1985)]
- b [http://www.elsie.brandeis.edu]

Hard Spherocylinders - a Modell for Anisotropic Colloids

- Description of rod like particles as hard spherocylinders
- Pair potential:

$$V(\vec{r_1}, \vec{v_1}, \vec{r_2}, \vec{v_2}) = \begin{cases} \infty & \text{particles overlap} \\ 0 & \text{else} \end{cases}$$

• Purely entropic interaction

The Phase Diagram of Hard Spherocylinders

*[Peter Bolhuis, PHD-thesis, chapter 5 (1996)]

The Orientational Order-Parameter and Biaxiality

•
$$Q_{\alpha\beta} = \left\langle v^i_{\alpha} v^i_{\beta} - \frac{1}{3} \delta_{\alpha\beta} \right\rangle$$

- Properties: traceless and symmetric
- Diagonalisation leads to

$$\underline{Q} = \begin{pmatrix} \frac{2}{3}S & 0 & 0\\ 0 & -\frac{1}{3}S + \eta & 0\\ 0 & 0 & -\frac{1}{3}S - \eta \end{pmatrix}$$

- Scalar order-parameter: $S_2 = \frac{3}{2}S$ (maximum eigenvalue)
- Biaxiality order-parameter: η
- Eigenvector to the maximum eigenvalue is called **director**

Methods to Obtain the IN-Interfacial Tension

Theory

- Onsager theory
- Beyond Onsager theory (Somoza-Tarazona)

Experimental Methods

• Experiments are complicated due to complex interactions, e.g. polydispersity and long range interactions

Computer Simulation Methods

- Pressure tensor methods $\gamma = \int (P_N P_T) dz^*$
 - \rightarrow prone to large statistical errors
 - \rightarrow complicated when interactions are hard sphere like
- Capillary wave spectrum methods $\langle h(\vec{q}) \rangle \sim \frac{1}{\gamma}^{\dagger}$
 - \rightarrow requires large system sizes
 - \rightarrow it is an approximation only
- Grand canoncial Monte Carlo method
 - \rightarrow coexistence properties and interfacial properties can be probed.
 - \rightarrow finite size scaling algorithms are available

*[Michael Allen, Chem.Phys.Lett. **331** (2000) 513-518]

[†][Nobuhiko Akino, Friederike Schmid and Michael Allen, Phys.Rev. E **63**:041706, 2001]

The Grand Canonical Monte Carlo Method

- Monte Carlo simulation with fixed μ, V, T \rightarrow the number of particles N fluctuates \rightarrow crucial quantity $P(\rho)$
- Relevant Monte-Carlo moves are particle insertion and removal
- Each step is accepted with a Metropolis criterion, depending on
 - Energy change ΔU (particle overlap)
 - Chemical potential μ
 - Volume V
 - Temperature T (in our case a trivial factor)

Simulation Methods

- At coexistence Ω exhibts a doublepeak structure
- Peak locations give coexistence densities
- Flat region corresponds to interfacial state
- $\Delta \Omega$ is the free energy cost of the interface
- IN-interfacial-tension $\gamma = \frac{\Delta \Omega}{(2L^2)}$

The Equal Area Rule

• γ and $\mu_{coex} = \mu_{sim} + \Delta \mu$ can be probed

Naive Grand Canonical Sampling

Configurations are accepted with probabiltiy

 $\propto e^{-\beta \left[U + \mu N \right]}$

Umbrella Sampling Technique

• Introduce weight function

$$W(S_2) = e^{-\beta [k(S_2 - S_{20})^2]}$$

• Sample with probability

 $\propto e^{-eta \left[U + \mu N
ight]} imes W \left(S_2
ight)$

Histogram Reweighting

• Reweight the obtained distribution

 $P_{real}(S_2) = P_{biased}(S_2) / W(S_2)$ $\Omega_{real}(S_2) = \Omega_{biased}(S_2) - \beta \left[k \left(S_2 - S_{20} \right)^2 \right]$

• Slopes match up to a constant

Input Needed for this Method:

- An estimate for the coexistance chemical potential μ_{coex} \rightarrow We measured the transition curves $\rho(\mu)$
- An estimate of the interfacial width
 → We measured the density- and order-parameter profiles in an elongated
 system in coexistence

The Transition Curves $\rho(\mu)$ and $S_2(\mu)$

Simulation Setup

- Aspect ratios L/D = 15, 20, 25, 30
- Cubic boxes with sides $\sim 3.3 L/D$
- Acceptance rate is only ~ 0.006%!

 → we need a large number (~10⁷ per particle) of Monte Carlo steps
 → short rods (<15) are very expensiv to compute

Result for L/D = 15

 $\rho *_{trans}$ and μ_{trans} for Different Aspect Ratios

*[Peter Bolhuis, PHD-Thesis, Chapter 5 (1996)]

Density- and Order-Parameter Profiles

- Preparation of systems with 2 isotropic-nematic interfaces
 - Particles alined parallel to the plane of the interface
 - Box dimensions: $\sim 3.3 L \times 3.3 L \times 20 L$
 - $\rho = \frac{1}{2} \left(\rho_i + \rho_n \right)$
 - Monte Carlo simulation in NVT-ensemble
 - \rightarrow Fixed number of particles
 - \rightarrow Positions and orientations are varied

- Profile $\frac{L}{D} = 15$, in plane
- Centers are shifted by $\Delta = 0.334L$
- In agreement with other simulation and theoretical investigations ^{a b}

^a[K.Shundyak, PhD Thesis (2004)]
 ^b[Muatz S. Al-Barwani, Michael Allen, Phys. Rev.E 62, 6706 (2000)]

The IN-Interfacial Tension

Simulation Setup

- Grand canonical Monte Carlo simulation with umbrella sampling
- Chemical potential near the coexistence value
- Aspect ratio L/D = 15
- Elongated boxes with dimensions $\sim 3.3L \times 3.3L \times 10L$

Results

• An estimate for the interfacial tension and μ_{coex}

IN-Interfacial Tension of Soft-Spherocylinders

- A modified model of soft spherocylinders [‡]
- Pair potential:

$$V(\vec{r_1}, \vec{v_1}, \vec{r_2}, \vec{v_2}) = \begin{cases} \epsilon & \text{particles overlap} \\ 0 & \text{else} \end{cases}$$

- Advantage: acceptance rate $\sim 6\%$
- same phase diagram, shifted densities
- ullet

$$\gamma_{soft} = 0.089 \frac{k_B T}{LD}$$

[‡][Richard Vink, Tanja Schilling accepted by Phys.Rev.E, 2005]

Conclusion and Outlook

- We measured the transition curves $\rho(\mu)$ and $S_2(\mu)$ near μ_{coex} and profiles
- Profiles of the IN-Interface show agreements with theoretical predictions: We found a shift of $\frac{1}{3}L$ between the profiles
- The IN-Tension could be estimated by grand canonical monte-carlo. It is lower than theoretical estimates
- How does the IN-Tension depend on the tilt angle between director and interfacial plane?
- How one can adapt finite size scaling algorithms for isotropic systems to anisotropic systems ?

References and Acknowledgment

- Paul van der Schoot
- Renè van Roij
- Patrick Pfleiderer
- Kurt Binder
- Financial support from DFG (Emmy Noether program)