Understanding Search Trees Via Statistical Physics

Satya N. MAJUMDAR

CNRS, Orsay and Toulouse, FRANCE

Collaborators: E. Ben-Naim (Los Alamos, USA), D.S. Dean (Toulouse, FRANCE) and P.L. Krapivsky (Boston, USA)

#### Sorting and Search

The Goal: Store data efficiently so that the search time is minimum Ex: A random sequence of N = 10 integers:  $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$ 

Linear Sorting: Store the data sequentially onto a linear table

[6, 4, 5, 8, 9, 1, 2, 10, 3, 7]

Search for 7: Search proceeds sequentially by comparison

 $t_{\text{search}} = 10 \sim O(N) \rightarrow \text{BAD}$ 

Free Sorting: of  $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$ 



Figure 1: Binary Search Tree with N = 10 Elements.

 $t_{\text{search}} = \text{Depth} = D$ . Roughly  $2^D \sim N$  implying:  $t_{\text{search}} \sim O(\log N) \rightarrow \text{BETTER}$ 

• HEIGHT H = 5: Distance of the farthest node from the root= Maximum possible time to search an element  $\rightarrow$  WORST CASE SCENARIO

• BALANCED HEIGHT h = 3: Depth up to which the tree is balanced

#### Generalization to *m*-ary Search Trees

 $n = 2 \rightarrow \text{Binary Tree}$ 

Random Sequence:  $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$ 

Each node can contain atmost (m-1) elements.



Figure 2: m = 3-ary Search Tree with N = 10 Elements

H = 3 is the HEIGHT. h = 2 is the BALANCED HEIGHT.

No. of NON-EMPTY nodes:  $n = 7 \rightarrow$  No. of nodes required to store the data

Random m-ary Search Tree Model: ] RmST

N = 10 data elements:  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ 

Each permutation  $\rightarrow$  an *m*-ary tree.

 $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$   $\{8, 6, 9, 2, 1, 5, 3, 4, 7, 10\}$  (4, 6) (1, 2) (5, 8, 9) (1, 2) (7) (1, 2) (7) (1, 2) (7) (1, 2) (7) (1, 2) (7) (9, 10) (3, 5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)

In the RmST model: All N! permuations are equally likely  $\rightarrow$  RANDOM DATA. Q: Statistics of HEIGHT  $H_N$ , BALANCED HEIGHT  $h_N$  and the no. of NON-EMPTY NODES  $n_N$  for RANDOM data of size N? Asymptotic Results for RmST: for large data size N

(1) Height  $H_N$ :

- $\langle H_N \rangle \approx a_m \log(N) + b_m \log(\log(N))$  (??) +...
- $\operatorname{Var}(H_N) \approx O(1)$

(2) Balanced Height  $h_N$ : Depth upto which the tree is balanced.

- $\langle h_N \rangle \approx c_m \log(N) + d_m \log(\log(N))$  (??) +...
- $\operatorname{Var}(h_N) \approx O(1)$

Binary Tree (m = 2):  $a_2 = 4.31107...$  and  $c_2 = 0.3733...$  (Devroye, 87). The correction terms  $\rightarrow$  conjectured by Hattori and Ochiai (simulations, 2001). Other results by Robson (2001), Reed (2001), Drmota (2001-2003). Asymptotic Results for RmST: for large data size N...continued

(3) No. of NON-EMPTY Nodes  $n_N$ : No. of nodes required to store the data of size N.

 $\langle n_N \rangle \approx \alpha_m N + \dots$ 

A striking PHASE TRANSITION occurs for the Variance:  $\nu_N = \langle (n_N - \langle n_N \rangle)^2 \rangle$ .  $\nu_N \sim N \qquad \text{for } m \leq 26$  $\sim N^{2\theta(m)} \quad \text{for } m > 26 \text{ (Chern \& Hwang, 2001).}$ 

**Q**: Why 26? What is the mechanism of this Phase Transition and how generic is t? Can one calculate  $\theta(m)$  exactly ?

# Our Results:

# • Mapping to a FRAGMENTATION Process $\rightarrow$ Dynamical Process

• Analysis of the FRAGMENTATION process using a variety of statistical physics techniques such as the Travelling Front method (for HEIGHTS and BALANCED HEIGHTS) and a Backward Fokker-Planck approach (for the no. of NON-EMPTY Nodes).

### $\rightarrow$ A number of asymptotically **EXACT** results.

Ex: we calculate the constants  $a_m$ ,  $b_m$ ,  $c_m$ ,  $d_m$  EXACTLY for all m as roots of transcendental equations. Scaling Relation between  $a_m$  and  $b_m$ :  $b_2 = -3a_2/[2(a_2 - 1)].$ 

We show that  $m_c = 26.0461...$ : Find  $\lambda(m)$  from  $m(m-1)B(\lambda+1,m-1) = 1$ . The critical value  $m_c$  is obtained by setting,  $Re[\lambda(m) = 1/2]$ . For  $m > m_c = 26.0461...$ ,  $\theta(m) = \lambda(m)$ . (D. Dean and S.M., 2002).

Various other generalizations: Vector Data

### The Mapping to a Fragmentation Process

Construction of the Tree  $\rightarrow$  Dynamical Fragmention Process: Split an interval into (m-1) pieces with the break points chosen randomly. An interval can split iff it contains atleast one point.

Ex: Consider the data:  $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$ 



#### NOTE:

No. of NONEMPTY nodes n=7= No. of SPLITTING EVENTS



- 1. Start with a stick of length N.
- 2. Choose (m-1) break points randomly and split the stick into m pieces.
- 3. Examine each piece and if its length  $> N_0 = 1$ , again split it randomly into further *m* pieces. Stop splitting if length < 1.
- 4. Repeat the process till all pieces have length < 1 and then STOP.

DICTIONARY Between the Search Tree and the Fragmentation Process:

Height  $H_N$ :

•  $\operatorname{Prob}[H_N < n] = \operatorname{Prob}[l_1 < 1, l_2 < 1, \dots \text{ after } n \text{ steps}]$ 

Balanced Height  $h_N$ :

•  $\operatorname{Prob}[h_N > n] = \operatorname{Prob}[l_1 > 1, l_2 > 1, \dots \text{ after } n \text{ steps}]$ 

Number of Nonempty Nodes  $n_N$  (m > 2):

•  $\operatorname{Prob}[n_N = n] = \operatorname{Prob}[\text{there are } n \text{ SPILLITING EVENTS till the end of the Fragmentation process}].$ 

Analysis of HEIGHT  $H_N$ 

 $P(n,N) = \operatorname{Prob}[H_N < n] = \operatorname{Prob}[l_1 < 1, l_2 < 1, \dots \text{ after } n \text{ steps}]$ 



Recursion:  $P(n,N) = \int_0^1 P(n-1,rN) P(n-1,(1-r)N) dr$  starting with  $P(n,1) = \theta(n-1).$ 



Travelling Front in Fisher Equation

 $\partial_t \phi(x,t) = \partial_x^2 \phi(x,t) + \phi - \phi^2.$ 

 $\phi(x) = 1 \rightarrow \text{STABLE}$  Fixed point.  $\phi(x) = 0 \rightarrow \text{UNSTABLE}$  Fixed point.



Fravelling Front:  $\phi(x,t) = f(x - x_f(t))$  for large t, where the front position  $x_f(t) \sim v t + \dots$ 

Q: How to determine the Front Velocity v?

Kolmogorov's Velocity Selection Principle:



Linearize near the tail 
$$\rightarrow \phi(x,t) \sim \exp[-\lambda(x-vt)]$$

DISPERSION RELATION:  $v(\lambda) = \lambda + \frac{1}{\lambda}$ 

 $\rightarrow$  minimum at  $\lambda^* = 1$ . For sharp initial condition,  $v = v(\lambda^*) = 2$ .

More generally,

 $v_f(t) \approx v(\lambda^*)t - \frac{3}{2\lambda^*}\log t + \dots$  (Bramson, Brunet & Derrida, van Saarloos, ....)

Travelling Front Solution to Search Tree Height:

 $P(n,N) = Prob[H_N < n] \approx f[n - n_f(N)]$  asymptotically.  $t \equiv \log N \rightarrow \text{correct}$ variable.

Linearize near the tail:  $P(n, N) \approx 1 - \exp[-\lambda (n - v(\lambda)) \log N]$  $\rightarrow \text{DISPERSION RELATION:} \quad v(\lambda) = \frac{2e^{\lambda} - 1}{\lambda} \text{ for } m = 2.$ 

Minimize  $v(\lambda) \to \lambda^* = 0.76804...$ 

 $\langle H_N \rangle \approx n_f(N) \approx v(\lambda^*) \log(N) - \frac{3}{2\lambda^*} \log(\log(N)) + \dots$ 

 $\rightarrow a_2 = v(\lambda^*) = 4.31107... \text{ and } b_2 = -\frac{3}{2\lambda^*} = -1.95303...$ 

Similarly one gets  $a_m$  and  $b_m$  for all m. Same strategy holds for the Balanced Height  $h_N$ . No of Non-Empty Nodes:



 $r_1 + r_2 + r_3 + \dots + r_m = 1$ 

No. of Non-empty nodes n(N) in the tree  $\equiv$  Total no. of Splitting Events in the fragmentation process till the end, starting with the initial length N

Recursion:

$$n(N) \equiv n(r_1N) + n(r_2N) + n(r_3N) + \dots + n(r_mN) + 1; \qquad \sum_{i=1}^{n} r_i = 1$$

The marginal distribution of any fragment:  $\eta(r) = (m-1)(1-r)^{m-2}$ 

Integral Equations for Average and Variance:

Average:  $\mu(N) = \langle n(N) \rangle$  satisfies an integral equation:  $\mu(n) = m \int_{1/N}^{1} \mu(rN)\eta(r)dr + 1$ 

Variance:  $\nu(N) = \langle (n(N) - \mu(N))^2 \rangle$  satisfies another integral equation:  $\nu(n) = m \int_{1/N}^1 \nu(rN)\eta(r)dr + \langle (S - \langle S \rangle)^2 \rangle$ 

where the Source Function  $S = \sum_{i=1}^{n} \mu(r_i N)$ .

These integral equations can be solved analytically: for large N,

$$u_N \sim N \qquad ext{for } m \leq m_c \ \sim N^{2 heta(m)} \quad ext{for } m > m_c$$

where  $m_c$  is determined as:

Find  $\lambda(m)$  from  $m(m-1)B(\lambda+1, m-1) = 1$ . The critical value  $m_c$  is obtained by setting,  $Re[\lambda(m) = 1/2]$ . For  $m > m_c = 26.0461..., \ \theta(m) = \lambda(m)$ . (D. Dean and S.M., 2002).

Generalization to Vector Data:

- Scalar Sequence:  $\{6, 4, 5, 8, 9, 1, 2, 10, 3, 7\}$
- Vector Sequence:  $\{(6, 4), (4, 3), (5, 2), (8, 7) \dots\} \rightarrow D = 2$  vector.

Mapping to the Fragmentation Process:



**Q**: What are the statistics of Height  $H_N$ , Balanced Height  $h_N$  and the no. of Non-empty nodes  $n_N$  for a given vector data of N *D*-tuples?

is there a PHASE TRANSITION in the variance of  $n_N$ ?

Exact Results for Vector Data of N D-tuples for Large N:

Height  $H_N$ :

•  $\langle H_N \rangle \approx 4.31107... \log(N) - \frac{1.95303...}{D} \log(D \log(N)) + ...$ 

Balanced Height  $h_N$ :

•  $\langle h_N \rangle \approx 0.37336 \dots \log(N) + \frac{0.89374\dots}{D} \log(D \log(N)) + \dots$ 

No. of Non-empty Nodes  $n_N$ :  $\langle n_N \rangle \approx \frac{2}{D} V$  where  $V = N^D$ . Variance  $\nu_N$  has a Phase Transition

 $\nu_N \sim V \quad \text{for } D \leq D_c$   $\sim V^{2\theta(D)} \quad \text{for } D > D_c$ 

 $D_c = \frac{\pi}{\arcsin\left(\frac{1}{\sqrt{8}}\right)} = 8.69362...$  $\theta(D) = 2\cos\left(\frac{2\pi}{D}\right) - 1 \rightarrow \text{ increases continuously with } D$ 

for  $D > D_c$ 



 $P[n_V] \rightarrow \text{GAUSSIAN for } D < D_c = 8.69362...$  $P[n_V] \rightarrow \text{NON-GAUSSIAN for } D > D_c = 8.69362...$ 



### Summary and Conclusion:

• Analysis of m-ary search trees via techniques of statistical physics  $\rightarrow Exact$  asymptotic results.

• Going beyond Random *m*-ary search trees...Digital Search Trees.. interesting connections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also to the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

- Application of the Travelling Front technique in computer science problem.
- A simple mechanism for the peculiar Phase Transition in the fluctuation of the number of non-empty nodes
- $\rightarrow$  A rather Generic phase transition  $\rightarrow$  New Exact Results for Vector Data.

The same mechanism is also responsible for the phase transition in a Growing Tree Model of Aldous & Shields (1988)...Explicit Results (S.M. and D.S. Dean, 2004).

Perspectives: Lots of beautiful open problems in Sorting and Search that may be possible to handle by using statistical physics techniques.

#### References:

Collaborators: E. Ben-Naim, D.S. Dean and P.L. Krapivsky

- PRL, 85, 5492 (2000)
- PRE, 62, 7735 (2000)
- PRE, 63, 045101 (R) (2001)
- PRE, 64, 046121 (2001)
- PRE, 64, 035101 (R) (2001)
- PRE, 65, 036127 (2002)
- J-Phys A: Math-Gen, 35, L501 (2002)
- PRE, 68, 026103 (2003)

For a short Review see: S.N.M. and P.L. Krapivsky, Proceedings of the STATPHYS-KOLKATA IV (2002), published in Physica A 318, 161 (2003).