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'Sorting and Search)

['he Goal: Store data efficiently so that the search time is minimum

“x: A random sequence of N = 10 integers: {6, 4, 5, 8,9, 1, 2, 10, 3, 7}

Store the data sequentially onto a linear table
6,4,5,8,9,1, 2,10, 3, 7]

Search for 7: Search proceeds sequentially by comparison

lsearch = 10 ~ O(N> — BAD
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of {6,4,5,8,9, 1,2, 10,3, 7}

|

h=3 BALANCED HEIGHT

HEIGHT

Figure 1: Binary Search Tree with N = 10 Elements.

search = Depth = D. Roughly 2P ~ N implying: tsearen ~ O(log N) — BETTER

» HEIGHT H = 5: Distance of the farthest node from the root= Maximum
bossible time to search an element — WORST CASE SCENARIO

» BALANCED HEIGHT h = 3 : Depth upto which the tree is balanced
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Generalization to m-ary Search Trees)

n = 2 — Binary Tree
Random Sequence: {6, 4, 5, 8,9, 1, 2, 10, 3, 7}

“ach node can contain atmost (m — 1) elements.

4,6
h=2

1,2/ (5 | [8,9

3/ (7 (10

no. of occupied nodes: N=7

H=3

Figure 2: m = 3-ary Search Tree with NV = 10 Elements

H = 3 is the HEIGHT. h = 2 is the BALANCED HEIGHT.
No. of NON-EMPTY nodes: n =7 — No. of nodes required to store the data
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Random m-ary Search Tree Model:) RmST

V = 10 data elements: {1,2,3,4,5,6,7,8,9,10}

wach permutation — an m-ary tree.

{6,4,5,8,91,210,3,7} {8,6,9,2,1,5,3,4,7, 10}

4,6 6,8
1,2 (5] (8,9 1,2 (7] (910
3 ) (7 ] (10 3,5
H=3, h=2, n=7 H=4, h=2, n=6

n the RmST model: All N! permuations are equally likely — RANDOM DATA.

J: Statistics of HEIGHT Hjpy, BALANCED HEIGHT hp and the no. of
NON-EMPTY NODES ny for RANDOM data of size N7
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bAsymptotic Results for RmST: for large data size N )

:1) HNI
» (Hy) &~ a., 1og(N) + by, log(log(N)) (77) +...
» Var(Hy ) ~ O(1)

2) hn: Depth upto which the tree is balanced.
» (hy) = ¢, log(N) + d, log(log(NV)) (77) +. ..
» Var(hy) =~ O(1)

3inary Tree (m = 2): as = 4.31107... and cs = 0.3733... (Devroye, 87). The
orrection terms — conjectured by Hattori and Ochiai (simulations, 2001).

Other results by Robson (2001), Reed (2001), Drmota (2001-2003).
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VAsymptotic Results for RmST: for large data size N ...continued)

3) No. of ny: No. of nodes required to store the data of
ize N .

(nn) ~ amN +....

A striking PHASE TRANSITION occurs for the Variance: vy = ((ny — (n N>)2> :
vy ~ N for m < 26

~ N290m) for m > 26 (Chern & Hwang, 2001).

J: Why 267 What is the mechanism of this Phase Transition and how generic is
t? Can one calculate 6(m) exactly ?
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:Our Results:
» Mapping to a FRAGMENTATION Process — Dynamical Process

» Analysis of the FRAGMENTATION process using a variety of statistical physics
echniques such as the Travelling Front method (for HEIGHTS and BALANCED
HEIGHTS) and a Backward Fokker-Planck approach (for the no. of NON-EMPTY
Nodes).

— A number of asymptotically EXACT results.

x: we calculate the constants a,,, b,,, ¢, d,,, EXACTLY for all m as roots of
ranscendental equations. Scaling Relation between a,, and b,,:

52 = —3a2/[2(a2 — 1)]
We show that m. = 26.0461...: Find A(m) from m(m — 1)B(A+1,m — 1) = 1. The

ritical value m, is obtained by setting, Re[A(m) = 1/2]|. For m > m. = 26.0461...,
)(m) = A(m). (D. Dean and S.M., 2002).

Various other generalizations: Vector Data
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The Mapping to a Fragmentation Process)

Construction of the Tree — Dynamical Fragmention Process: Split an interval into
m — 1) pieces with the break points chosen randomly. An interval can split iff it
ontains atleast one point.

ox: Consider the data: {6,4,5,8,9,1,2,10,3,7}

TREE CONSTRUCTION FRAGMENTION PROCESS
1 2 3 4 5 6 7 8 9 10

1 2 3 ' 5 1 78 9 10
—o o9 e e e e o —
1 2 3 T 7 8 9 10
e e e e e e e
1 2 3 iTTlo
btos 7 10
—e— —e— —o—
3 7 T
—o— —o—
T e

NOTE:
No. of NONEMPTY nodes n=7= No. of SPLITTING EVENTS
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'Fragmentation Process:)

1. Start with a stick of length V.
2. Choose (m — 1) break points randomly and split the stick into m pieces.

3. Examine each piece and if its length > Ny = 1, again split it randomly into
further m pieces. Stop splitting if length < 1.

4. Repeat the process till all pieces have length < 1 and then STOP.

10
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DICTIONARY Between the Search Tree and the Fragmentation Process:]

Jeight Hy:
» Prob[Hy < n]=Prob[l; <1,y <1, ... after n steps]

Balanced Height hy:
» Problhy > n|=Prob[ [y > 1,1, > 1, ... after n steps]

Number of Nonempty Nodes ny (m > 2):

» Prob[ny = n]= Prob[there are n SPILLITING EVENTS till the end of the
“ragmentation process].

11
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Analysis of HEIGHT Hy )

°(n,N)= Prob[Hy < n]= Prob[l; <1,y <1, ... after n steps]

N

N

rN (1-r)N

|

Recursion: P(n, N) = fl Pn—1,rN)P(n—1,(1—7r)N

P(n,1) =60(n—1). :

P(n,N)

) dr starting with

~ - INCREASING log(N)
TRAVELLING FRONT

12
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VTravelling Front in Fisher Equation]

hp(@,t) = O(x,t) + ¢ — ¢°.
p(x) =1 — STABLE Fixed point. ¢(x) =0 — UNSTABLE Fixed point.

=

—~ INCREASING t

@ (x.)

[ravelling Front: ¢(z,t) = f (v —x¢(t)) for large ¢, where the front position

rp(t) ~vit ...

(QQ: How to determine the Front Velocity v?

13
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VKolmogorov’s Velocity Selection Principle:)

=

—~ INCREASING t

@ (x.)

Linearize near the tail — ¢(xz,t) ~ exp|—\(z — vt)]

DISPERSION RELATION: v(A) = A+ %

— minimum at \* = 1. For sharp initial condition, v = v(A\*) = 2.

More generally,

0 ¢ (t) =~ v(A*)t — 55+ logt + ... (Bramson, Brunet & Derrida, van Saarloos, ...

2)\*

)

14
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yTravelling Front Solution to Search Tree Height:)

P(n,N) = Prob|Hn < n|~ fln —ns(N)| asymptotically. ¢ =log N — correct
rariable.
_inearize near the tail: P(n, N)~ 1 —exp|[—X (n —v(\))log V]

—+ DISPERSION RELATION: o()\) = 26=L for m = 2,

Minimize v(\) — A\* = 0.76804 . . ..

(Hy) = ng(N)~ v(A*) log(N) - 55:1og (log(N)) + ...

— as = v(\*) = 4.31107... and by = — >

23 = -1.95303...

Similarly one gets a,, and b, for all m.

Same strategy holds for the Balanced Height h .

15
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No of Non-Empty Nodes: )

N N N Im-IN~ m N

No. of Non-empty nodes n(/V) in the tree = Total no. of Splitting Events in the
ragmentation process till the end, starting with the initial length N

Recursion:

n(N)=n(riN) +n(reN) +n(rsN) + - + n(r,N) + 1; Sty =1

(/

The marginal distribution of any fragment: n(r) = (m — 1)(1 — r)™ 2
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bIntegral Equations for Average and Variance:)

u(N) = (n(NN)) satisfies an integral equation:
1
p(n) =m [i  w(rN)n(r)dr +1

V(N) = ((n(N) — u(N))?) satisfies another integral equation:
v(n) =m [}, vrN)n(r)dr + (S = (S))?)

vhere the S=>" 1 ulriN).
['hese integral equations can be solved analytically: for large IV,
vy ~ N for m < m,
~ N20(m)  for m > m,
vhere m,. is determined as:

“ind A(m) from m(m — 1)B(A+ 1,m — 1) = 1. The critical value m.. is obtained by
setting, Re[A\(m) = 1/2]. For m > m. = 26.0461..., 6(m) = A(m). (D. Dean and
.M., 2002).
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iGeneralization to Vector Data:
: {6,4,5,8,9,1,2,10,3,7}
: {(6,4),(4,3),(5,2),(8,7)...} = D = 2 vector.

Mapping to the Fragmentation Process:

* —|— —e gplitting due to (6, 4)
ZN
_:,_ _e splitting due to (4, 3)
7
6
5 (6, 4)
4 T — & QUAD-TREE
3 === —=
9 4,3)!
|
1 i
i
12345617 N1 —e

J: What are the statistics of Height H,, Balanced Height A and the no. of
Non-empty nodes n for a given vector data of N D-tuples?

s there a PHASE TRANSITION in the variance of npy?
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Exact Results for Vector Data of N D-tuples for Large N :J

Height H:
» (Hy) ~ 4.31107 ... log(N) -1:22203== log (D1og(N)) +. ..

3alanced Height hjy:
» (hy) ~ 0.37336... log(N) + 2822 10g (Dlog(N)) + ...

No. of Non-empty Nodes ny: (ny) & %V where V = NP,
Variance v has a Phase Transition
vy ~V for D < D,
~ V(D) for D > D,

5)

D, = 8.69362. ..

arcsin (

6(D) = 2 cos

|

/\

or D > D,

3”) — 1 — increases continuously with D

19
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VProbability Distribution of the no. of Non-Empty Nodes nV:J

Plny] — GAUSSIAN for D < D, = 8.69362....
P[ny] — NON-GAUSSIAN for D > D, = 8.69362. ..
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bSummary and Conclusion:)

» Analysis of m-ary search trees via techniques of statistical physics — Exact
symptotic results.

» Going beyond Random m-ary search trees...Digital Search Trees.. interesting
-onnections to Diffusion Limited Aggregation (DLA) on the Bethe lattice and also
0 the Lempel-Ziv Data Compression Algorithm (S.M., 2003).

» Application of the Travelling Front technique in computer science problem.

» A simple mechanism for the peculiar Phase Transition in the fluctuation of the

wmber of non-empty nodes
— A rather Generic phase transition — New Exact Results for Vector Data.

['he same mechanism is also responsible for the phase transition in a Growing Tree
Viodel of Aldous & Shields (1988)...Explicit Results (S.M. and D.S. Dean, 2004).

Yerspectives: Lots of beautiful open problems in Sorting and Search that may be
bossible to handle by using statistical physics techniques.
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