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Introduction: Spin glass theory and its applications
.
Spin glass theory
..

......

Study for diluted magnets.
Statistical mechanics for
random systems,
a system with random
interactions/fields
e.g.
H =

∑
i,j Jijσiσj,

Jij ∼ P (Jij)

.
Various applications
..

......

Glasses

Biological physics

Theoretical computer science
▶ Error correcting codes
▶ Image restoration
▶ Beysian inference
▶ Constrainted satisfaction

problems and
Optimization problems
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Optimization problems and statistical mechanics
Optimization problems

Minimize f(x⃗) (Cost function),

Subject to g⃗(x⃗) ≥ 0, x⃗ ∈ χN (Constraints)

Instance →（using an algorithm）→ solution
O.p. with discrete variables = Combinatorial Optimization Problem (COP)
.
Question
..
...... Can we estimate typical optimal values of randomized COPs?

.
Typical analyses by stat. mech.
..

......

Randomized optimization problem

Transform to randomized
statistical-mechanical model.

Estimate typical optimal value
（averaged over random instances).

M. Weigt and A. K. Hartmann, Phys. Rev. Lett. 84, 6118 (2000).
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Today’s goal

.
Approximation algorithms
..

......

COPs are generally NP-hard.
→ Takes exp. time to solve COPs rigorously.

Solve COPs in poly. time.
→ Use approx. algorithms!

In some cases, approx. algorithms perform well;
they estimate optimal values with high accuracy.

How well do they work typically? → typical performance

.
Our goal
..

......

Analyze typical behavior of approximation algorithms for COPs
by using statistical-mechanics for random systems.
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Graph theory

Undirected (unweighted) graph G = (V,E)

V : Vertex set, |V | = N
e.g. V = {1, · · · , 6}
E ⊂ V 2: Edge set
e.g. E = {(1, 2), (2, 3), · · · }
Degree: # of edges connecting to a vertex
e.g. Vertex 1 has degree 1

Average degree c: Average degree over vertices

Cycle: a closed path
e.g. there is a cycle with length 4
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Minimum Vertex Cover problem (min-VC)

Instance: Undirected graph G = (V,E)

Cover or uncover each vertex.

Cover all edges by covering vertices.

An edge is covered if at least one connected
vertex is covered.

Minimize # of covered vertices.

A type of COPs

Belongs to a class of NP-hard

Application：Seeking a file on HDD,
improving a group testing
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Integer Programming problem (IP)

Formalization of min-VC:

Assign a variable xi = {0, 1} to a vertex
i = {1, · · · , N}.
xi = 1 ⇔ i is covered,
xi = 0 ⇔ i is uncovered.

Minimize # of covered vertices.
−→ Minimize x1 + x2 + x3.

Constraints: Cover all edges
x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1,
0 ≤ xi ≤ 1, xi ∈ Z (i = 1, 2, 3)

COP with linear functions = Integer programming problem

Optimial value: 2,
Optimal solutions:(x1, x2, x3) = (1, 1, 0), (1, 0, 1), (0, 1, 1)
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Relaxation to Linear Programming problem (LP)

IP: (generally) NP-hard
→ Solve IP in poly. time (but approximately)

.
LP relaxation
..

......

Integer constraints of IP xi ∈ Z

Relax to real constraints ⇓ xi ∈ R

Linear Programming problem (LP)

⃝ Belongs to a class of P (solvable in poly. time).

△ LP optimal solutions differ from original IP.
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Back to example

LP relaxation of min-VC:
Minimize x1 + x2 + x3

Subject to
x1 + x2 ≥ 1, x2 + x3 ≥ 1, x3 + x1 ≥ 1,
0 ≤ xi ≤ 1, xi ∈ R (i = 1, 2, 3)

LP optimal value: 3/2,
LP optimal solution:
(x1, x2, x3) = (1/2, 1/2, 1/2)

.
Questions
..

......

Is there a case where IP and its LP relaxed problem
have the same optimal solutions?
What is the condition?
Otherwise, how do they differ?
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Hoffman-Kruskal’s theorem

Mathematically rigorous result about IP and LP optimal solutions
.
Hoffman-Kruskal’s theorem
..

......

A. J. Hoffman and J. B. Kruskal:
in “Linear Inequalities and Related Systems”, pp. 223-246 (1956)

“Suppose an unweighted graph G,
G has no cycles with odd length.

⇒ IP and LP on G have same optimal solutions.”

.
Other questions
..

......

What is a case where IP and LP have similarly the same optimal solutions
in the order of N?
Otherwise, how do they differ?
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IP and LP for min-VC
Instance: G = (V,E)
Normalize cost function.
.
Integer programming (IP)
..

......

Minimize
N−1

∑
i xi,

Subject to
xi + xj ≥ 1 (if (i, j) ∈ E)
0 ≤ xi ≤ 1, xi ∈ Z.

.
Linear programming (LP)
..

......

Minimize
N−1

∑
i xi,

Subject to
xi + xj ≥ 1 (if (i, j) ∈ E)
0 ≤ xi ≤ 1, xi ∈ R.
Algorithm: Simplex method
(Danzig, 1947)

.
Difference between IP and LP
..

......

LP optimal solutions contain only 0, 1/2, 1
(half-integrality; Nemhauser and Trotter, 1974).
IP and LP optimal solutions are coincident
iff LP solution has no half-integer (1/2).
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Typical analysis and random graphs
.
Definition of “similarly the same”
..

......

G: graph ensemble with N(≫ 1) vertices.

xIP
c : IP optimal value averaged over G

xLP
c : LP optimal value averaged over G

If

xIP
c = xLP

c and

o(N) half-integers in an LP optimal solution,

IP and LP have “similarly the same” optimal solutions
.
Erdös-Rényi random graph
..

......

One of basic graph ensembles.
...1 Give a vertex set V .
...2 Set edges with prob. p to each pair of vertices.
...3 Parameter: average degree c = 2pNC2/N ∼ pN

Suppose a graph is sparse; c = O(N0).
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Typical analysis from H.K. theorem

From percolation theory of E.R.
random graphs,
IP and LP have similarly the same
optimal solutions if c < 1.
(Caution: sufficient condition)

⇓

From numerical result they typically
coincide up to
c ∼ 2.71 ≃ e
T. Dewenter and A. K. Hartmann,
Phys. Rev. E 86, 041128 (2012)
.
Conjecture
..

......

IP and its LP relaxation for min-VC have similarily the same optimal
solutions beyond percolation threshold c = 1.
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Lattice gas model for min-VC

M. Weigt and A. K. Hartmann, Phys. Rev. Lett. 84, 6118 (2000)

Transformation: σi = 2xi − 1

2-state model: σ = {σi} = {−1, 1}N (σi = 1 ⇔ covered)

Hamiltonian:
H(σ) =

∑
i
σi

Grand canonical partition function:

Ξ =
∑

σ
exp(−µH(σ))

∏
(i,j)∈E

θ(σi + σj)

IP optimal solutions = ground states

Average optimal value xc as N → ∞,

xc = lim
µ→∞

lim
N→∞

1

N
E
⟨∑

i
σi

⟩
µ

▶ E: Average over random graphs
▶ ⟨ · ⟩µ: Grand canonical ensemble average
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Lattice gas model for LP with half-integrality

Transformation: σi = 2xi − 1, xi = {0, 1/2, 1}
3-state model: σ = {σi} = {−1, 0, 1}N (σi = 1 ⇔ covered)

Hamiltonian

Hr(σ) =
∑

i
σi + µr−1

∑
i
(1 − σ2

i )

Second term: penalty term for xi = 1/2
parameter: r ∈ R

Grand canonical partition function:

Ξ =
∑

σ
exp(−µHr(σ))

∏
(i,j)∈E

θ(σi + σj)

Average optimal value xc and average fraction of half-integers ph

as N → ∞
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Replica method

Random-averaged thermodynamic function µJ = − limN→∞ E[ln Ξ]
is difficult to calcurate...
.
Replica method
..

......

Replica trick

E[ln Ξ] = lim
n→0

E[Ξn] − 1

n

System σ is copied to n replicas σn.

N spins to n spins: replicated vector
ξ⃗i = (σ1

i , · · · , σn
i ) (i = 1, · · · , N)

System is represented by {ξ⃗}.
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Replica Symmetry (RS)
.
Order parameter and RS ansatz
..

......

Order parameters: frequency dist. of ξ⃗: c(ξ⃗) = N−1
∑

i δξ⃗,ξ⃗i

Replica Symmetric (RS) ansatz:
order parameter c(ξ⃗) is a function of ξ ≡

∑n
a=1 ξ

a and

ξ̃ ≡
∑n

a=1(ξ
a)2.

Laplace’s transformation of c(ξ⃗)

c(ξ⃗)
RS
= c(ξ, ξ̃) ≡

∫
dP (h1, h2)Z

−n exp(µh1ξ + µh2ξ̃),

Z = 1 + 2eµh2 cosh(µh1)

h1: conjugate to ξ, h2: conjugate to ξ̃

Estimate E[Ξn] by saddle-point method under RS ansatz.
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Saddle-point equations

Self-consistent equation of P (h1, h2):

P (h1, h2) =
∞∑
k=0

e−c c
k

k!

∫ k∏
i=1

dP (h
(i)
1 , h

(i)
2 )

× δ

(
h1 + 1 +

∑
i

u2(h
(i)
1 , h

(i)
2 ;µ)

)

× δ

(
h2 − µr−1 +

∑
i

[u1(h
(i)
1 , h

(i)
2 ;µ) − u2(h

(i)
1 , h

(i)
2 ;µ)]

)
,

u1(h1, h2;µ) =
1

µ
ln[(1 + exp(µ(h1 + h2)))/Z],

u2(h1, h2;µ) =
1

2µ
ln[exp(µ(h1 + h2))/Z],

Z = 1 + 2eµh2 cosh(µh1)
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3 large-µ limits with r

To analyze ground state, µ → ∞
Gibbs factor: exp[µ

∑
i σi + µr

∑
i(1 − σ2

i )]

r > 1 IP-limit
σi takes only ±1 corresponding to IP optimal solution.

0 < r < 1 LP-limit
obtain LP optimal solution with minimum half-integers.

r ≤ 0 3-state limit
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IP-limit (r > 1)

P (h1,∞) =

∞∑
k=0

e−c c
k

k!

∫ k∏
i=1

dP (h
(i)
1 ,∞)δ(h1+1+

∑
i

max(h1, 0))

h2 → ∞ (µ → ∞) ⇔ ground states without σi = 0 (xi = 1/2)

.
RS solution of IP-limit
..

......

xIP
c (c) = 1 −

W (c)2 + 2W (c)

2c
, ph(c) = 0

Lambert’s W function: W (x) exp(W (x)) = x

RS: c < e, RSB (replica symmetry breaking): c > e
(e: Napier’s number)

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 20 / 30



LP-limit (0 < r < 1)

.

......

xLP
c (c) = 1 −

A + B + AB

2c
, ph(c) =

(B − A)(1 − A)

c
,

where A and B(≥ A) obey AeB = BeA = c.
RS solution is stable for any c.

.
The case of c < e
..

......

IP and LP have similarly the
same solutions.

Solution:A = B

xLP
c (c) = xIP

c (c)

ph(c) = 0

.
The case of c > e
..

......

IP and LP have no common
solutions.

Solution: A < B

xLP
c (c) < xIP

c (c)

ph(c) > 0
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Numeral results
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Estimate xIP
c : replica Exchange Monte Carlo method (EMC)

Estimate xLP
c : lp solve (simplex algorithm)
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Relation to other studies 1

.
Leaf Removal (LR) 1
..

......

A type of graph-removal algorithm:

Repeat removing a leaf and connecting edges
until there is no leaf.

▶ Leaf: a pair of vertices {v, w} where (v, w) ∈ E and deg(v) = 1.

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 23 / 30



Relation to other studies 1

.
Leaf Removal (LR) 1
..

......

A type of graph-removal algorithm:

Repeat removing a leaf and connecting edges
until there is no leaf.

▶ Leaf: a pair of vertices {v, w} where (v, w) ∈ E and deg(v) = 1.

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 23 / 30



Relation to other studies 1

.
Leaf Removal (LR) 1
..

......

A type of graph-removal algorithm:

Repeat removing a leaf and connecting edges
until there is no leaf.

▶ Leaf: a pair of vertices {v, w} where (v, w) ∈ E and deg(v) = 1.

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 23 / 30



Relation to other studies 2
.
Leaf Removal (LR) 2
..

......

When LR stops,

removed part: correctly assigned optimal variables

core: connected components without leaves

If there is O(N) core, LR cannot estimate optimal value xc.
Otherwise, LR can estimate optimal value xc correctly.

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 24 / 30



Relation to other studies 2
.
Leaf Removal (LR) 2
..

......

When LR stops,

removed part: correctly assigned optimal variables

core: connected components without leaves

If there is O(N) core, LR cannot estimate optimal value xc.
Otherwise, LR can estimate optimal value xc correctly.

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 24 / 30



Relation to other studies 3

.
LP and LR core
..

......

Average fraction of half-integers ph of LP
= average LR core ratio (N → ∞)
LR core: M. Bauer and O. Golinelli, Eur. Phys. J. B 24, 339 (2001)

.
LR core makes min-VC difficult?
..

......

c < e: no huge (O(N)) core → IP=LP=LR
(good performance of approx. algorithms)

c > e: huge core by LR
▶ IP: splitting solution space (Barthel and Hartmann, 2004)

→ RSB (clustering)?
▶ LP: assign variables to half-integers.

→ RS (one cluster)
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Summary

Statistical-mechanical analysis of typical behavior of LP for min-VC.
▶ 3-state model reproducing IP and LP optimal solutions.
▶ show a condition IP and LP have similarly the same

optimal solutions as N → ∞.
▶ its threshold c = e coincides with RS/RSB threshold of IP

and is above percolation threshold (c = 1).
▶ Typical performance is related to other property

(RS/RSB and LR core).
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TRUE?

Statistical-mechanical analysis of typical behavior of LP for min-VC.
▶ 3-state model reproducing IP and LP optimal solutions.
▶ show a condition IP and LP have similarly the same

optimal solutions as N → ∞.
▶ its threshold c = e coincides with RS/RSB threshold of IP

and is above percolation threshold (c = 1).
▶ Typical performance is related to other property

(RS/RSB and LR core) @03/2014
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Thank you for your attention!

S. Takabe (Univ.Tokyo) Seminar September 28, 2015 28 / 30



Algorithms for LP

.
Simplex method
..

......

Search extreme points of
polytope.

Worst case: takes exp. time

Typical case: rapid

.
Interior method
..

......

Search interior points of
polytope

Worst case: takes poly. time

Typical case: sometimes
more slowly than simplex
method
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Why do we need a penalty term?
.
Trivial ground states
..

......

Consider a simple example:
Minimize x1 + x2

Subject to x1 + x2 ≥ 1, 0 ≤ xi ≤ 1, xi ∈ R (i = 1, 2)
Optimal solutions (or ground states)

LP: (x1, x2) = (1, 0), (0, 1) (see below)

3-state model without penalty term:
(x1, x2) = (1, 0), (1/2, 1/2), (0, 1)

Simple 3-state model has trivial ground states (not LP optimal solutions).
→ penalty term for xi = 1/2
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