Magnetic monopoles in spin ice
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Fundamental questions

What are building blocks and interactions of matter?

= high energy + particle physics

What is the origin of variety and complexity
= many-body theory:
e understand individual phenomena
= ‘applications’
e understand variety as such

= ‘organising principles’




QOutline

Spin ice
> history and material
» frustration and degeneracy
Emergent gauge field
» emergence from constraint
» magnetic monopoles and ‘Dirac strings’
> visualisation in experiment
Strings as degrees of freedom
» statistics and Monte Carlo simulations
Cubic RVB liquid
> representation as loop gas
» coexistence of bond criticality and spin order
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Spin ice compounds Dy/Ho,Ti,O7
» local [111] crystal field ~ 200 K
= Ising spins 0 = £1

» large classical spins (15/2 and 8)

» large magnetic moment |fi| =~ 10 ug




Frustration leads to (classical) degeneracy

(exchange-+dipolar) interactions minimised by
2-in, 2-out ice rules = local constraint
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Spin Entropy (RIn2)
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Siddharthan-+Shastry 1999, Gingras et al. 2000"

Dy.Ti,O

2 277

I Pauling’s Ice Entropy
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six ground states “per
tetrahedron” = degeneracy
nonzero residual entropy
Sp = In2—f;:(C/T)dT

Anderson 1956; Ramirez et al. 1999



Mapping from ice to spin ice

> In ice, water molecules retain their identity

» Hydrogen near oxygen < spin pointing in

Mg \ﬁ,/

"two-in, two-out"
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Conventional order and disorder

Gas-crystal (e.g. rock salt):

In between: critical points

Anything else?7?



IS spin ice Ordered Or nOt? Henley; Huse et al.; Hermele et al.

No order as in ferromagnet

> extensive degeneracy
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Is spin ice ordered or NOt? teney: Huse et al; Hermele et al.

No order as in ferromagnet
> extensive degeneracy
Not disordered like a paramagnet

> ice rules = conservation law

Magnetic moments /i; < (lattice) ‘flux’
> lcerules V- f=0 = f=VxA

> Local constraint
= emergent gauge structure
— algebraic spin correlations
— ‘bow-tie’ structure factor

Effective action: S = (K/2) [ d®r|V x AJ]?




Disorder vs. spin ice vs. order in neutron scattering

PMN at T=200K




Pinch points in neutron scattering

Isakov, RM, Sondhi 2004

Tom Fennell
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Fennell+Bramwell et al. 2009



‘Dirac strings’ and emergent magnetic monopoles
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» deconfined monopoles ’

[monopoles in H, not B]
flipped spins =
(observable) ‘Dirac string’
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‘Dirac strings’ and emergent magnetic monopoles
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‘Dirac strings’ and emergent magnetic monopoles

interaction
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magnetic Coulomb {/ \\\§
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» deconfined monopoles ’
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Monopole charge from inverting dipole string

LR 1 i
V = — /. — = (d4m —
= V= =\ =

Potential due to a string of dipoles
» same as charges at ends of string

» charge g, = |/i]/a = moment per unit
length of string

> reversing string of dipoles creates
(tunable irrational) charges

» fractionalisation/deconfinement




Emergent versus intrinsic gauge charge

Emergence of qualitatively new degrees of freedom
is common phenomenon

> low-energy d.o.f. # high energy d.o.f.
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Emergent versus intrinsic gauge charge

Emergence of qualitatively new degrees of freedom
is common phenomenon
> low-energy d.o.f. # high energy d.o.f.
Here: emergent d.o.f. is gauge field
> bow-ties in neutron scattering

But: we also have high-energy gauge structure
» magnetic dipole moment of spins

> ‘intrinsic’ magnetic charge of monopole

Emergent and intrinsic gauge charges are

» distinct but mathematically identical
» (partially) independent




Dimensional reduction of emergent gauge theory

[111] field pins spins in triangular layer
Effective action in d =2 vs. d = 3:

3d : S =(K/2) [ d3|V x A]?
2d : S = (K/2) [ d?r|V x h|? + Acos(2mh)

=kagome ice

[111]

Kadowaki et al. 2009 Fennell et al. 2009
Additional terms permitted in 2d rm-+sondhi 2003
= additional peaks in structure factor
magnetic interaction remains 3d




Single monopole search: Stanford experiment cueras 195

Monopole passes through superconducting ring

= magnetic flux through ring changes

= e.m.f. induced in the ring = countercurrent x g, is set up

Superconducting coil

spin—ice slab

Superconducting coil
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» ‘Works' for both fundamental cosmic and spin ice monopoles

» signal-noise ratio a problem



Imagining ‘Dirac strings’

Strings not uniquely defined but
» applying [100] field enforces reference configuration
» motion of monopoles generates strings
> strings execute random walk transverse to field . chalker
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Imagining ‘Dirac strings’

Strings not uniquely defined but
» applying [100] field enforces reference configuration
» motion of monopoles generates strings
> strings execute random walk transverse to field . chalker
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Imaging ‘Dirac strings’
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Dirac strings in neutron scattering Morris et al. 2009

Neutrons in flelds Of Order 1T HZB-Tennant group

» compared to random-walk model




Dirac strings in neutron scattering Morris et al. 2009

Neutrons in flelds Of Order ].T HZB-Tennant group
» compared to random-walk model

> tilted field: biased random walk




Intuitive picture for monopoles

Simplest picture does not work: disconnect monopoles
N I S == N [— . S

Next best thing: no string tension between monopoles:

NS . Nmm N

Two monopoles form a dipole:
» connected by tensionless ‘Dirac string’
» Dirac string is observable

= gm ~ gp/8000 not in conflict with quantisation of e



Loops and strings/worms in the ice model

Corner-sharing square/tetrahedra
» Ising spins as basic d.o.f.
Each square/tetrahedral unit
> two up/two down spins

> realises six-vertex model

Two red and two blue sites each
» strings = alternating red/blue
» emergent gauge flux = spins
» adjacent red (blue) spins form
red (blue) loops

» fully-packed two-color loop
model Kondev-+Henley



StatiStiCS Of StringS in Spin ice Jacobsen 90s; Jaubert, Haque, RM 2011

Algebraic length distribution, finite average length (24 vs. 227)
> 2d kondev vs. 3d are different: two populations in 3d cf. random walk

Different effective descriptions
» 2d critical percolation; 3d Brownian motion
» topological phase!

10
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Use for numerical SimU|ati0nS Newman+Barkema; Gingras et al; Isakov et al; . . .

Algorithm flips worms — weighted by length of worm

> in d = 3, each MC move flips finite fraction of sample
> can simulate unconventional phase transition very accurately
> log-corrections at upper critical dim. of Kasteleyn transition
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Néel and dipOlal' Correlations in RVB Albuquerque, Alet, Damle, R.M.

Resonating valence bond wavefunctions

;

» parent of superconducting state?ewa <

> singlet-dominated phase h —

Encodes magnetic correlations

» on square lattice, long(short)-range
RVB have (no) Néel order tiang etal Va

Nature of bond (energy) correlations?
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> proximity to valence-bond solid in <
2D

» what happens on 3D cubic lattice?
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C> Rokhsar+Kivelson
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Correlations from RVB wavefunctions sunedand: seach, sandvik

(Si-8j) = NP Y2, 4(dlSi - Sjle)

Wl Bond correlators
» contribution if i,j on same loop

» contributions more

= properties of loop soup? complex
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Results for cubic n.n. RVB

Loop soup has two populations: long loops give rise to Neel order
» Bond correlators have algebraic dipolar form
> different power law from conventional Néel state
Field theory: two emergent gauge fields
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Collective behaviour: magnetic Coulomb liquid

Debye-Hiickel theory for low temperatures cms 2008
> sparse charges without strings
» screening of Coulomb interaction
‘Magnetolyte’ chemistry 4+ ‘magnetricity’ gramwell et al. 2000
> Wien effect: nonequilibrium response to changing field
> transient magnetic currents in response to field steps
[111] magnetic field = chemical potential cus 2008
> liquid gas transition

» dimensional reduction to 2d



Specific heat of magnetic Coulomb liquid

» Debye-Hiickel ° —
theory of monopole
gas (blue) z
£
(no free parameters!) 2 //,;E
' 5" =i
» Bethe lattice $ s
calculation (red) Ei
0.0 4
(tuning Jeg to fit the data) 02 04 Té’.fpe.'f,.ﬁre Kl

expt by Grigera/Tennant groups 2009



Interacting Coulomb liquid

point-like charged excitations + magnetic Coulomb interaction

(i) interaction strength I oc (g2,/(r))/ T ~ exp[-A/T]/T
vanishes at high and low T

(ii) [111] magnetic field acts as chemical potential
= can tune (r) and T separately

— U




Liquid-gas transition in a [111] field cws 2008

» first-order transition with critical endpoint Fisher et al.

12

» observed experiment {Aoki et al.)
experimentally

Sakakibara+Maeno =
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The Wien effect in a ‘magnetolyte’  sramwel et al. 2009

Double equilibrium: vacuum < bound monopoles <+ free monopoles

» applied magnetic field alters bound <> free reaction constant onsager
K(B) _, Q@B

K(0) 8rk3 T?
» buffering: vacuum < bound equilibrium unchanged

= free charges increase in field in universal fashion
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fractionalisation
(non-Abelian)
anyons

(topological)
quantum
computing
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Gauge fields and strings in spin ice

Emergent gauge field, fractionalisation
» topological physics in d =3
» deconfined magnetic monopoles

Neutron scattering
» emergent gauge field: pinch points — -

» dimensional reduction in a field

‘Dirac string': emergent gauge flux

> tensionless; MC simulations; . ..

Loops in RVB physics
» long-range magnetic order independent of

dipolar bond order —



