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Synopsis: Mind the Gap

Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems

Itay Hen and A. P. Young
Phys. Rev. E 84, 061152 (2011)

Published December 29, 2011

Quantum computers promise to accelerate some kinds of calculations in a remarkable manner. But as in present-day classical computing, hardware is
only half the story: efficiency requires development of appropriate algorithms, such as the fast Fourier transform.

To apply a quantum computer to a broad class of problems, general-purpose algorithms are needed. One such method is the quantum adiabatic
algorithm, in which the problem to be solved is coded into a Hamiltonian Z. One prepares the quantum computer in the ground state of a reference
Hamiltonian 4 and then has it evolve under a time-dependent Hamiltonian /A7) that gradually switches from 4 to 4. If the evolution is slow enough
(“adiabatic”) the system ends up in the ground state of 4, which contains information about the desired solution.

In a paper in Physical Review E, Iltay Hen and Peter Young of the University of California, Santa Cruz, show that “slow enough” may be very slow indeed.
The reason is that the time required for adiabatic evolution depends inversely on the gap in energies between the ground and first excited states of A7).
Using computer simulations, Hen and Young show that for three classes of logic problems, the scaling of the gap is such that the computational time can
be expected to grow exponentially with the size of the problem. The authors suggest that it might be possible to optimize the evolution of Az to avoid the
bottleneck associated with a vanishing gap. — Ron Dickman
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What could an eventual qgquantum computer do
better than a classical computer? (Shor and Grover)

Could a quantum computer be of broader utility by
efficiently solving “optimization problems”, of broad
interest in science and engineering (including industry)?

* The Quantum Adiabatic Algorithm (QAA)
* The Quantum Monte Carlo Method (QMC)

* Results for satisfiability (SAT) problems and
comparison with a classical algorithm (WALKSAT)

* Results for a spin glass problem
e Conclusions
Note: the QAA is inspired by physics and QMC is a technique from physics
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N qubits: linear superposition of 2V basis states
Actions on the quantum state act on all 2N basis states

‘ = Quantum Parallelism

BUt: to get the result, need to make a measurement
= Don’t get 2N results. Rather there are 2" probabilities and

one gets one result according to these probabilities.

Seems that quantum mechanics is not useful for computing

Nonetheless, in some cases useful results can be obtained by
doing clever processing before the measurement.

The most famous is Shor’s algorithm for factoring integers
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Let N = p q, where p and g are prime. Let N have n bits.
How hard is it to factor N?

Classical, ~ exp(n'? (log n)??) (exponential)

l.e hard. | This is the basis of RSA encryption method

Quantum (Shor), ~ n? (polynomial)

Shor uses a “Quantum Fourier Transform”

Needs 3n qubits plus 7?7?77 for error correction.
Need coherence during the running of the algorithm.
n ~ 1000 would be useful

= We are very far from having a useful quantum computer

Still: interesting to investigate what could be done with a

quantum computer if and when one will eventually be built.




RSA Encryption

Alice wants to send a message to Bob down a public channel.

Bob sends to Alice a “public key” N, a product of 2 large random
primes p and g, i.e. N = p g, and an encoding integer e which has
no factors in common with (p-1)(g-1) (e.g. N has 1024 bits)

Alice’'s message m is a binary string (m < N). She forms the
encoded message m' from

‘ m’' = m® mod N‘ N and e are the public key

Alice sends m’ to Bob down the public channel.
Bob knows his “private key” d, the decoding integer, which is

determined by ‘d e = 1 mod (p-1)(q-1)‘
which is easily found (generalized Euclid) if one knows p and q
Bob computes (m’)? mod N which, is Alice’s message:

‘ m = (m’')d mod N‘ N and d are the private key




Optimization problems

Shor’s algorithm (and Grover’s, searching an unstructured
data base of size N with ~\N operations rather than ~ N/2)
IS rather specialized.

Would a quantum computer also be useful for more general
problems, such as optimization problems, i.e. minimizing a
function of N variables with constraints?

Of interest in many fields in science and engineering.

Here we will take “Problem Hamiltonians™ (i.e. the function
to be minimized) which involve binary variables, O or 1, (or
equivalently Ising spins 0% = +1).

How could we try to solve such optimization problems on a
quantum computer?

An idea from physics ....



Quantum Adiabatic Algorithm

Proposed by Farhi et.al (2001) to solve hard optimization
problems on a quantum computer.

H(t) = [1 — s(D)Hp + s(t)Hp
Hp (g.s.) adiabatic? H p(gs.?)

0 1 S
Hp is the problem Hamiltonian, depends on the o

Hp is the driver Hamiltonian = —h Z o=
0 <s(t) <1, s(0) = 0, s(7) =
7 is the running time

The quantum computer simulates H(t).

System starts in ground state of driver Hamiltonian. If process
is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
and problem is solved. Minimum 7 is the “complexity”.
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Quantum Adiabatic Algorithm

Proposed by Farhi et.al (2001) to solve hard optimization
problems on a quantum computer.

H(t) =1 —s(t)|Hp + s(t)Hp
Hp (g.s.) adiabatic? H p(gs.?)
0 1 S

‘Hp is the problem Hamiltonian, depends on the o
Hp is the driver Hamiltonian = —h ) o7
0 <s(t) <1, s(0) = 0, s(T) =

7 is the running time

The quantum computer simulates H(t).
System starts in ground state of driver Hamiltonian. If process

is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
and problem is solved. Minimum 7 is the “complexity”

Is 7 exponential or polynomial in the problem size N?



Early Numerics

Early numerics, Farhi et al. for very small sizes N < 20, on a
particular problem found the time varied only as N2, i.e.
polynomial!

But possible “crossover” to exponential at larger sizes”?

To explore large sizes, need techniques from statistical physics,
Quantum Monte Carlo.
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:
To stay in the ground

AE i state the time needed
is proportional to A E 2

min

S
Using QMC, we compute A E for different s: — AEmin



Quantum Monte Carlo

We do a sampling of the 2" states (so statistical errors). Use analogy
between time evolution operator in quantum mechanics, exp(-i t H),

and the Boltzmann operator in equilibrium statmech, exp(- H).

Study equilibrium properties of a quantum system by

simulating a classical model with an extra dimension,
imaginary time, T, where g < + « 1/T.

‘Not perfect, but the only numerical method available for large N.

We use the “stochastic series expansion” method for
Quantum Monte Carlo simulations which was pioneered

by Anders Sandvik. oo "
Tr (—OGH
7 =Tre o =y AT
— n!

Stochastically sum the terms in the series.



Examples of results with the SSE code

Time dependent correlation functions decay with T as a sum of exponentials

(A(T)A(0)) — (A)> = > [(0|A|n)|? exp[—(En — Eo)7]
nF#0

For large T only first excited state contributes, — pure exponential decay

10 g 1 | | | | E
"\ QMC fit, AE = 0.090 =-----=- .
Al -
/\Q_ 1
T 0.1 E
V n
A ' 5
=) 0.1 O
> E
T 0.01 k
S i :
T 001 L
V S E I
- B =64, symmetric levels 0.001 L
0.001 11 1 -
0O 5 10 15 20 25 30 o 10 20 30 40 50
T T
Small size, N= 24, excellent agreement with Large size, N = 128, good quality

diagonalization. data, slope of straight line — gap.
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‘Mind this gap‘

Results for the dependence
of the gap to the first
excited state, AE, with s, for
one instance of 1-in-3 SAT
with N = 64.

The gap has a minimum for
s about 0.66 which is the
bottleneck for the QAA.

We compute the minimum
gap for many (50) instances
for each size N and look how
the median minimum gap
varies with size.



Satisfiability Problems I

In satisfiability problems (SAT) we ask whether there is an

assignment of N bits which satisfies all of M logical conditions
(“clauses”). We assign an energy to each clause such that it is
zero If the clause is satisfied and a positive value if not satisfied.

We take the ratio of M/N to be at the satisfiability threshold, and

study instances with a “unique satisfying assignment” (USA).
(so gap to 1st excited state has a minimum whose value indicates the complexity.)

These SAT problems are "NP-complete”, a category of hard
problems for which the time is exponential with classical
algorithms, at least in the worst case.



Satisfiability Problems II
e “Locked” 1-in-3 SAT
The clause is formed from 3 bits picked at random. The
clause is satisfied (has energy 0) if one is 1 and the other two
are O (in terms of spins one is -1 (green) and the other two
are +1 (red ). Otherwise |t IS not satisfied the energy is 1).

VANVANVAN

Satisfied Unsatlsfled Unsatlsfled

Example of a satisfying

assignment with N=7, M = 5.
(V. Choi)

Hp= Y <0f+a§2+a§—1>2

clauses




Locked 1-In-3

Plots of the median minimum gap (average over 50 instances)
Ol 1T T 717 711

R I I - 's\\\ 1 1 1 1 1 1 1 1 I
§ A\‘ . 0.1 | A -
N , ] : L ¥> / ndf = 18.73 ]
A x~/ndf = 1.35 - i Q = 3.82e-12
\\\ A Q=0.26 7 - \\é
E L \\\ - E B \\\ A
LL| . -
% 0.01 -4 s
- : — - C .
S : . 1 S 001} { -
D - - D - ]
£ .. 1 E ' S
{‘t i 151 |
0.16 exp(-0.042 N) --------- . [ 56N ?
0.001 I I I I I I I I ] ] ] ] ] ] ] ] I
10 20 30 40 50 60 70 80 90 100 10 100
N N
Exponential fit Power law fit

Clearly the behavior of the minimum gap is exponential




Comparison with a classical algorithm,
WalkSAT: I

WalkSAT iIs a classical, heuristic, local search algorithm. It is a
reasonable classical algorithm to compare with QAA.

We have compared the running time of the QAA for the three
SAT problems studied with that of WalkSAT.

For QAA, Landau-Zener theory states that the time is

proportional to 1/(AEmin)? (neglecting N dependence of matrix
elements).

For WalkSAT the running time is proportional to number of “bit
flips”.
We write the running time as proportional to ‘ exp(M N).‘

We will compare the values of y among the different
models and between QAA and WalkSAT.




Comparison with a classical algorithm,
WalkSAT: 11

QAA WalkSAT
L I I I I I I I 109 rrrrrrrrrrrrrrrr | ] el I
" A
01 »rd AN - 8 : : 4 ’
A S, ] 10 R L e N O
R
. ey S D
E ?I:\{I} (é)_ 106 ,','///A/ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
% ‘s? o v’ ‘¢’
(e S .
\s ~“~~\ (v} 5 S HP A S S SRR
S 0.01 | ‘Ii\ . 5 10 &
© - \\ Sso - ()] 4 V'//
2 \ E10° F 4 4 A A o
1-in-3, 0.16 exp(-0.042 N) - _‘f~~~§; 103 - ©¢ 3-XORSAT, 158 exp(0.120 N)
2-in-4, 0.32 exp(-0.063 N) -------- - 102 é 2-in-4, 96 exp(0.086 N) ---------
| 3-XORSAT, 0.22 exp(-0.080 N) _ 1-in-3, 496 exp(0.050 N) --------
0.001 E | | | | | | | | 101 | | | | |
10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 300
N N

Exponential behavior for both QAA and WalkSAT

The trend is the same in both QAA and WalkSAT.
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.




Comparison with a classical algorithm,

WalkSAT: 111
Exponential
| Model |QAA WalkSAT | Ratio complexity in
both cases.

1-in-3  |0.084(3)| 0.0505(5) | 1.66 QAA not better
than WalkSAT.

-1n- 0.126(7)| 0.085 1.47
2-in-4 (7) 558(8) Values of |

(where time ~
3-XORSAT |0.159(2)| 0.1198(4) 1.32 exp[u NJ).

These results used the simplest implementation of the QAA
for instances with a USA.




A “spin glass” on a random graph:

For simplicity we put the spins a regular random graph, each
site having exactly three neighbor (3-regular). Spins prefer to
be antiparallel, an antiferromagnet (but see next slide)

The problem Hamiltonian is
1

Hp = B Z (1—|—0'ichgz.)

(2,7)

Note the symmetry under

Z . Z .
o; — —0;, V1

“Replica” theory indicates that
these 2-SAT-like problems are
different from K-SAT problems
for K> 2. (Hence we study it here.)

Note: theré are large loops



Spin Glass on a random graph: 11

Cannot form an “up-down” antiferromagnet because of loops
of odd length. In fact, it is a "spin glass”, a system with
disorder and “frustration”.

Adding the driver Hamiltonian there is a quantum phase
transition at s = s” above which the symmetry is
spontaneously broken.

Did “cavity” calculations (Gosset, Zamponi), semi-analytical
approach in which the thermodynamic limit has been taken,
but needs approximations in the spin glass phase for s > s’.
These calculations find s'=0.36

Also investigated the problem by QMC near s™ (s < 0.5).

(Just considered instances with a “unique satisfying
assignment’, apart from the degenerate state related by
flipping all the spins. These are exponentially rare.)



AE,

Spin glass on a random graph : Il (Gap)

T T For larger sizes, a fraction of instances have two
03 minima, one fairly close to s (= 0.36) and other

0.25 at larger s in the spin glass phase.
0.2 &= Figure shows an example for N = 128.
0.1 Hence did 2 analyses
0.1 (i) Global minimum in range (up to s=0.5)
0.05 S (i) If two minima, just take the local minimum
) P N R R I nears"
0.35 0.4 0.45 0.5
S
I I I I I I I I AI | | | | | | |
03 2 - 03 = minimum gap near s=0.36
A &
0.2 |- e 0.29 6xp(10.014 N) ~—--rn . {:Global 0.2 _\\q\ 0.26 exp(-0.011 N) ------- i
[exponential
i B _ e B
0.1 (main figure) o1} -
P ow preferred overy 4o a0 M s 100 ‘}
< T ok power-law (inset)] | = " " o5 i
e o2 l} * A 7 02
SO Local= e
A o 005 [power-law best | ,7oy07 e
531 N0 —oemee. ‘I; (inset)] | | | | }T 0.05 : :
| | | | l l | | 20 40 60 80 100 120 140 160 180
20 40 60 80 100 120 140 160 180 N

N



Spin Glass: IV (Summary)

For this spin glass the QAA succeeds at the quantum critical
point (polynomial gap).
However, it appears not to succeed at larger values of s in

the spin glass phase (exponential fit preferred over power-law
for large sizes). But:

*This depends crucially
on the last point (N = 160)

| I I I I
03 | —

~N
~
~
NN
~

*A stretched exponential L
exp(-c N¥) (x < 1) also T

works pretty well, e.g. x =  go1f -
1/2 (figure). If thisisthe = | ™
correct answer we would .
say that the QAA does t

succeed. s 6 8 10 12
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