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⇒ Don’t get 2N results. Rather there are 2N  probabilities and 
one gets one result according to these probabilities.
Seems that quantum mechanics is not useful for computing
Nonetheless, in some cases useful results can be obtained by 
doing clever processing before the measurement.
The most famous is Shor’s algorithm for factoring integers
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⇒ We are very far from having a useful quantum computer
Still: interesting to investigate what could be done with a 
quantum computer if and when one will eventually be built. 
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RSA Encryption
Alice wants to send a message to Bob down a public channel.

Bob sends to Alice a “public key” N, a product of 2 large random 
primes p and q, i.e. N = p q, and an encoding integer e which has 
no factors in common with (p-1)(q-1) (e.g. N has 1024 bits) 

Alice’s message m is a binary string (m < N). She forms the 
encoded message m′ from

              

Alice sends m’ to Bob down the public channel.
Bob knows his “private key” d, the decoding integer, which is 
determined by

which is easily found (generalized Euclid) if one knows p and q 
Bob computes (m′)d mod N which, is Alice’s message:

m′ = me mod N

d e = 1 mod (p-1)(q-1)

m = (m′)d mod N

N and e are the public key

N and d are the private key



Optimization problems
Shor’s algorithm (and Grover’s, searching an unstructured 
data base of size N with ~√N operations rather than ~ N/2) 
is rather specialized.
Would a quantum computer also be useful for more general 
problems, such as optimization problems, i.e. minimizing a 
function of N variables with constraints?
Of interest in many fields in science and engineering. 
Here we will take “Problem Hamiltonians” (i.e. the function 
to be minimized) which involve binary variables, 0 or 1, (or 
equivalently Ising spins σz = ±1). 
How could we try to solve such optimization problems on a 
quantum computer?

An idea from physics .... 
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Quantum Adiabatic Algorithm
Proposed by Farhi et. al (2001) to solve hard optimization 
problems on a quantum computer.

0 1
HD HP(g.s.) (g.s.?)adiabatic?

The quantum computer simulates H(t). 
System starts in ground state of driver Hamiltonian. If process 
is adiabatic (and T → 0), it ends in g.s. of problem Hamiltonian, 
and problem is solved. Minimum    is the “complexity”.T

T is the running time

HP is the problem Hamiltonian, depends on the �z
i

Is    exponential or polynomial in the problem size N?T

HD is the driver Hamiltonian = �h
�
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Early Numerics
Early numerics, Farhi et al. for very small sizes N ≤ 20, on a 
particular problem found the time varied only as N2 , i.e. 
polynomial!

But possible “crossover” to exponential at larger sizes?

To explore large sizes, need techniques from statistical physics, 
Quantum Monte Carlo.
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Quantum Monte Carlo
We do a sampling of the 2N states (so statistical errors). Use analogy 
between time evolution operator in quantum mechanics,  exp(-i t H), 
and the Boltzmann operator in equilibrium statmech, exp(-β H).

Study equilibrium properties of a quantum system by 
simulating a classical model with an extra dimension, 
imaginary time, τ, where 0 � � < 1/T.

Not perfect, but the only numerical method available for large N.

We use the “stochastic series expansion” method for 
Quantum Monte Carlo simulations which was pioneered 
by Anders Sandvik.  

Z � Tre��H =
��

n=0

Tr (��H)n

n!

Stochastically sum the terms in the series.
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Examples of results with the SSE code
Time dependent correlation functions decay with τ as a sum of exponentials

For large τ only first excited state contributes, → pure exponential decay

Small size, N= 24, excellent agreement with 
diagonalization.

Text

Large size, N = 128, good quality 
data, slope of straight line → gap.

Text
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Results for the dependence 
of the gap to the first 
excited state, ΔE, with s, for 
one instance of 1-in-3 SAT 
with N = 64.
The gap has a minimum for 
s about 0.66 which is the 
bottleneck for the QAA.

Mind this gap
↑

We compute the minimum 
gap for many (50) instances 
for each size N and look how 
the median minimum gap 
varies with size.



Satisfiability Problems I 
In satisfiability problems (SAT) we ask whether there is an 
assignment of N bits which satisfies all of M logical conditions 
(“clauses”). We assign an energy to each clause such that it is 
zero if the clause is satisfied and a positive value if not satisfied.

i.e. We need to determine if the ground state energy is 0.

We take the ratio of M/N to be at the satisfiability threshold, and 
study instances with a “unique satisfying assignment” (USA). 
(so gap to 1st excited state has a minimum whose value indicates the complexity.)

These SAT problems are “NP-complete”, a category of hard 
problems for which the time is exponential with classical 
algorithms, at least in the worst case.



HP =
X

clauses

✓
�z
1 + �z

2 + �z
3 � 1
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Satisfiability Problems II  
•  “Locked” 1-in-3 SAT
The clause is formed from 3 bits picked at random. The 
clause is satisfied (has energy 0) if one is 1 and the other two 
are 0 (in terms of spins one is -1 (green) and the other two 
are +1 (red)). Otherwise it is not satisfied (the energy is 1).

Unsatisfied
ï1 1 1ï11

ï11

UnsatisfiedSatisfied

1

1

The Exact Cover Problem II
Satisfiability transition at (Smelyanskiy et al., Zdeborova et al.)

                  (M/N)c ≅ 0.626     (N ➝ ∞)

For finite N, work close to the “transition”, i.e. point where 
number of satisfying assignments (SA) drops to 0.

Reasons:
(i) Problem is hard near the transition (Kirkpatrick et al)

(ii) Convenient to study instances with a “unique satisfying 
assignment” (USA).
(For finite N, the “transition”, and hence the greatest probability of a USA, occurs at M/N a little 
above the infinite-N critical value)

Example of a USA with 
N=7, M = 5 (V. Choi)

Example of a satisfying
assignment with N=7, M = 5.
(V. Choi)
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Clearly the behavior of the minimum gap is exponential

Exponential fit Power law fit

Plots of the median minimum gap (average over 50 instances)



Comparison with a classical algorithm, 
WalkSAT: I

WalkSAT is a classical, heuristic, local search algorithm. It is a 
reasonable classical algorithm to compare with QAA.
We have compared the running time of the QAA for the three 
SAT problems studied with that of WalkSAT.
For QAA, Landau-Zener theory states that the time is 
proportional to 1/(ΔEmin)2 (neglecting N dependence of matrix 
elements).
For WalkSAT the running time is proportional to number of “bit 
flips”.
We write the running time as proportional to  
We will compare the values of µ among the different 
models and between QAA and WalkSAT. 

exp(µ N).
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Comparison with a classical algorithm, 
WalkSAT: II

The trend is the same in both QAA and WalkSAT. 
3-XORSAT is the hardest, and locked 1-in-3 SAT the easiest.

Exponential behavior for both QAA and WalkSAT



Comparison with a classical algorithm, 
WalkSAT: III

Values of µ  
(where time ~ 
exp[µ N]).

Model QAA WalkSAT Ratio

1-in-3 0.084(3) 0.0505(5) 1.66

2-in-4 0.126(7) 0.0858(8) 1.47

3-XORSAT 0.159(2) 0.1198(4) 1.32

These results used the simplest implementation of the QAA 
for instances with a USA.  

Exponential 
complexity in 
both cases.
QAA not better 
than WalkSAT.
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A “spin glass” on a random graph: 
For simplicity we put the spins a regular random graph, each 
site having exactly three neighbor (3-regular). Spins prefer to 
be antiparallel, an antiferromagnet (but see next slide)

“Replica” theory indicates that 
these 2-SAT-like problems are 
different from K-SAT problems 
for K > 2. (Hence we study it here.)

Note: there are large loops

HP =
1
2

�

�i,j�

�
1 + �z

i �z
j

�
The problem Hamiltonian is

�z
i � ��z

i , �i
Note the symmetry under  



Spin Glass on a random graph: II
Cannot form an “up-down” antiferromagnet because of loops 
of odd length. In fact, it is a “spin glass”, a system with 
disorder and “frustration”.

Adding the driver Hamiltonian there is a quantum phase 
transition at s = s* above which the symmetry is 
spontaneously broken.
Did “cavity” calculations (Gosset, Zamponi), semi-analytical 
approach in which the thermodynamic limit has been taken, 
but needs approximations in the spin glass phase for s > s*. 
These calculations find s*≅0.36
Also investigated the problem by QMC near s* (s ≤ 0.5). 
(Just considered instances with a “unique satisfying 
assignment”, apart from the degenerate state related by 
flipping all the spins. These are exponentially rare.) 
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Spin glass on a random graph : III (Gap)
For larger sizes, a fraction of instances have two 
minima, one fairly close to s* (≃ 0.36) and other 
at larger s in the spin glass phase. 
Figure shows an example for N = 128. 
Hence did 2 analyses
(i) Global minimum in range (up to s=0.5)
(ii) If two minima, just take the local minimum 
near s*.

⇐Global 
[exponential 
(main figure)
preferred over 
power-law (inset)]

Local⇒
[power-law best 
(inset)]

⇐
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Spin Glass: IV (Summary)
For this spin glass the QAA succeeds at the quantum critical 
point (polynomial gap).
However, it appears not to succeed at larger values of s in 
the spin glass phase (exponential fit preferred over power-law 
for large sizes). But:

•This depends crucially 
on the last point (N = 160) 

•A stretched exponential 
exp(-c Nx) (x < 1) also 
works pretty well, e.g. x = 
1/2 (figure). If this is the 
correct answer we would 
say that the QAA does 
succeed. 
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