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Overview
• What are optimization problems?
• Example, a spin glass.
• Classical, physics-inspired algorithm: simulated (thermal) 

annealing (SA).
• Introduction to quantum computing:

• Gate model. Uses “quantum parallelism”. Best example, the 
Shor algorithm for factoring integers. Must completely 
eliminate decoherence.

• Quantum Annealing (QA). Uses “quantum tunneling”. Hope is 
is somewhat insensitive to decoherence. (Focus of this talk).

• Experiments on D-Wave machine (~ 1000 qubits on a board)
• Results of computer simulations to see if D-Wave gives a 

quantum speedup.
• Conclusions.
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Optimization Problems
Minimize (or maximize) a function of many variables. We will call this 
“cost function” the energy. There is competition (which we will call 
“frustration”) between different terms in the energy, so no 
configuration of the variables satisfies all the terms. 

There is a complicated 
“energy landscape”, so 
a simple (greedy) 
algorithm goes straight 
downhill in energy to a 
local minimum and is 
then stuck. 
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Examples of Optimization Problems

•Speech recognition (industry)

• Image recognition (industry)

•Finding the equilibrium (folded) configuration of proteins (biology)

•Solving “satisfiability” problems (computer science)

•Finding the ground state of a “spin glass” (see next slide) (physics)

• .....   
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or

Spin Glasses
Spin glasses have been studied by physicists for many years. They 
are magnetic systems with disorder and “frustration”. They are 
convenient systems with which to study optimization algorithms 
because there a simple-to-write-down models which are amenable to 
computer simulation and can be implemented on quantum hardware 
(as we will see). 
The standard model Hamiltonian (Edwards-Anderson, 1975) is

H = �
X

hi,ji
JijSiSj �

X

i

hiSi

where the Si are Ising spins, ± 1, on a lattice, the Jij are the 
“frustrated” interactions (random in sign). We may also include 
random longitudinal fields hi.

Toy example on right. Bottom right spin
can’t decide whether to be up or down.
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Simulated (thermal) annealing (SA)
                      A physics inspired algorithm

Put in a temperature (Kirkpatrick et al, 1983) and simulate with 
Monte Carlo. Some probability of going up in energy to escape a 
local minimum. 
Gradually reduce the temperature, so T(t) → 0 as t → ∞. If T 
decreases sufficiently slowly will reach the ground state.

Useful general-purpose algorithm. Here will use SA as a 
comparison with an analogous quantum algorithm, quantum 
annealing (QA).
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Complexity

•There are some problems which look complicated but for which 
there is a clever algorithm which solves the problem in a time 
proportional to a power of N, i.e. polynomial time. 
e.g. spin glass in two dimensions in zero field (in which the 
interactions form planar graph) (c.f. Hartmann).This is 
complexity class P. 

•There is another set of problems, called complexity class NP 
hard, for which the time is exponential in N for all known 
algorithms, at least for large N and for the hardest instances at 
each size. 
e.g. spin glass in three or higher dimensions, and also two 
dimensions in a field or on a non-planar graph. 
No proof that a polynomial-time algorithm doesn’t exist (unlikely)

How much computer time is needed to solve the problem 
as a function of the size of the problem N?
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Can quantum mechanics help?
A digression on quantum computing.

How is quantum different from classical? For our purposes in two 
ways: quantum parallelism and quantum tunneling. Each of these 
has given rise to a different paradigm for quantum computing. Will 
discuss each in turn. 

Quantum Parallelism
A quantum state is a (coherent) linear superposition of basis 
states: 

For systems with N 2-state qubits, M = 2N. Acting on       with a 
unitary transformation (a gate) acts in parallel on all 2N states. 
Can we gain from this parallelism? Problem is, to get information 
out we need to do a measurement: gives one result not 2N. 

| i =
MX

k=1

ak |ki

| i
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Quantum Parallelism
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Quantum Parallelism
However, for some problems, by clever pre-processing before the 
measurement, answer can be found with a few runs of the algorithm.
Most famous example is Shor’s algorithm for factoring integers, i.e. N 
= p q (with p and q prime). Given N what are p and q?
Potentially important because the difficulty of factoring is at the heart 
of a common method (RSA) of sending encrypted information down 
the internet. Here’s a simplified version of RSA:

Alice wants to send a message M to Bob down a public channel but it 
must be encrypted to M’ so only Bob can read it.
• Bob sends to Alice N (the public key) but keeps p and q (private key) 

to himself.
• Alice uses N to encode message, i.e. M → M’,  and sends M’ to Bob.
• Bob uses his private key, p and q separately, to decode the 

message, i.e. M’ → M. (The message can not be decoded knowing 
only the public key). 
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Shor’s Algorithm
There is a lot of number theory behind Shor’s algorithm. The 
quantum part only comes in finding the period of a certain function. 
This is done by a quantum Fourier transform. 
To factor an n-bit integer Shor’s algorithm requires O(n3) 
operations. The best-known classical algorithm takes of order 
exp(const. n1/3) operations. The polynomial quantum algorithm 
wins heavily for large n.

Problem: depends crucially on coherence. Even a small amount of 
decoherence kills the quantum parallelism. Experimentally, there is 
always noise, i.e. decoherence. Shor’s algorithm has only been 
implemented for a very small number of qubits (~5) and 15 was 
successfully factored.
There are error correcting codes (Shor again, and others) but, still 
needs intrinsic error rate to be low, and requires additional qubits. 

BUT: if the experimental problems could be overcome we know 
that there is a quantum speedup.
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Quantum Tunneling
The second aspect in which quantum is different from classical, 
and which gives rise to a second paradigm of quantum computing, 
is quantum tunneling. (The focus of the rest of the talk)

Rather than being 
thermally activated 
over a barrier a 
quantum particle 
can tunnel through 
it.

Hence try quantum annealing (QA), like simulated annealing 
(SA) but using quantum rather than thermal, fluctuations to 
overcome barriers. 
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Quantum Annealing (QA)
Hope that we still get tunneling, even multi-particle tunneling, even 
if there is some decoherence, i.e. less sensitive to decoherence 
than Shor’s algorithm. As we shall see there are experiments with 
~ 1000 qubits, which certainly do not maintain quantum coherence 
during the evolution of the algorithm but seem to have quantum 
behavior (at least to some extent). 

BUT: unlike Shor’s algorithm we have no guarantee of a quantum 
speedup even on a perfect quantum annealer. Tunneling is likely 
to be better than thermal activation when barriers are high but 
thing (think of the WKB formula). But are real problems like this? 
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Make the model quantum
Before we had Ising spins Si which take values ± 1. Now make 
them quantum operators      (Pauli spin matrices) and work in the 
basis in which these are diagonal (the computational basis) and so 
they also have values ± 1. So far the model is unchanged. 
The simplest way to induce quantum fluctuations is to add a 
transverse field hT involving the       . Our spin glass Hamiltonian is 
therefore 

�z
i

�x

i

Since        and       don’t commute we have quantum fluctuations. hT 
is like temperature, make it large initially and then slowly decrease it 
with time so we end up in the ground state of the spin glass 
Hamiltonian (the first two terms, those  involving the       ). 

�x

i

�z
i

�z
i
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Quantum Adiabatic Algorithm (QAA)
A variation on quantum annealing, also inspired by physics (Farhi 
et al, 2001).  Imagine running QA annealing on a real device with 
programmable couplings (such a device exists as will see in next 
slide). Start with only the transverse field term, and prepare the 
qubits in the ground state, spins along x. Then, in real time, slowly 
decrease the transverse field piece and increase (from zero) the 
spin glass part until, at the end, there is no transverse field term 
(only the spin glass). The adiabatic theorem of quantum 
mechanics tells us that if the evolution is slow enough the system 
stays in its instantaneous ground state , and so we end up in the 
ground state of the spin glass. The problem is solved! 

A company, D-Wave has produced a machine to implement the 
QAA. The latest version has ~1000 qubits (next slide). 

But, how slowly do we have to go as a function of the 
problem size N?
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D-Wave
D-Wave: large number of  
superconducting qubits on 
a board at milliKelvin temp. 
Latest version ~1000 qubits
Runs the QAA.
During the run, phase 
coherence is not 
maintained, hence call this 
a quantum annealer.

Questions:
•D-Wave has noise and 
non-zero T, so is it really 
quantum?

•If it is, then is the D-Wave 
machine more efficient 
than a classical computer?
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Connections of the qubits form a 
(2-d) “chimera” graph, see figure 
for D-Wave 1 (128 qubits, not all 
functional).

 D-Wave
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ground states is known and the computational e↵ort of
all existing classical algorithms scales exponentially with
problem size. NP-hardness refers only to the hardest
problems, but the typical problem in our benchmarks,
where the graph forms a two-dimensional (2D) lattice,
is still hard since for zero local fields (hi = 0) there ex-
ists a spin glass phase at zero temperature. While the
critical temperature Tc = 0 for these 2D spin glasses
makes the problem easier than 3D spin glasses with a
nonzero Tc > 0 [17], solving the typical problem instance
is nevertheless non-trivial and with all known algorithms
a super-polynomial scaling is observed. While quantum
mechanics is not expected to reduce this scaling to poly-
nomial, a quantum algorithm might still scale better with
problem size N than any classical algorithm.

We use simulated annealing (SA) [18], simulated quan-
tum annealing (SQA) [19, 20], and a DW2 device to find
the ground states of the Ising model above (see Methods
for details). The D-Wave devices [21–24] are designed
to be physical realizations of quantum annealing using
superconducting flux qubits and programmable couplers.
Tests on a 108-qubit D-Wave One (DW1) device [25] have
shown that despite decoherence and coupling to a ther-
mal bath, the device correlates well with SQA, which is
consistent with it actually performing quantum anneal-
ing [26, 27]. It also correlates well with the predictions of
a quantum master equation [28], which is consistent with
it being governed by open system quantum dynamics. It
is well understood that the D-Wave devices, just like any
other quantum information processing device, must be
error-corrected in order to overcome the e↵ects of deco-
herence and control errors. While such error correction
has already been demonstrated [29], our study focuses on
the native performance of the device.

All annealing methods mentioned above are heuristic.
They are not guaranteed to find the global optimum in
a single annealing run, but only find it with a certain
instance-dependent success probability s  1. We deter-
mine the true ground state energy using an exact belief
propagation algorithm [30]. We then perform at least
1000 repetitions of the annealing for each instance, count
how often the ground state has been found by comparing
to the exact result, and use this to estimate the success
probability s for each problem instance.

The total annealing time is defined as the time to per-
form R annealing runs, where R is the number of repeti-
tions needed to find the ground state at least once with
probability p:

R =

⇠
log(1� p)

log(1� s)

⇡
(3)

In order to reduce the e↵ect of calibration errors on the
DW2, it is advantageous to repeat the annealing runs
for several di↵erent encodings (“gauges”) of a problem
instance. See Methods for details.

FIG. 1. Scaling of the typical time to find a solution
at constant annealing time. Shown is the typical (me-
dian) time to find a ground state with 99% probability for
spin glasses with ±1 couplings and no local field. A) for SA,
B) for SQA. The envelope of the curves at constant t

a

, shown
in red, corresponds to the minimal time at a given problem
size N and is relevant for discussion of the asymptotic scal-
ing. Annealing times are given in units of Monte Carlo steps
(MCS). One MCS corresponds to one update per spin. Note
in particular that the slope for small N is much flatter at
large annealing time (e.g., MCS = 4000) than that of the
true scaling.

IV. CONSIDERATIONS WHEN COMPUTING
QUANTUM SPEEDUP

Let us first consider the subtleties of estimating the
asymptotic scaling from small problem sizes N , and inef-
ficiencies at small problem sizes that can fake or mask a
speedup. In the context of annealing methods the opti-
mal choice of the annealing time turns out to be crucial
for estimating asymptotic scaling.

Comparison between D-Wave and SA
(Rønnow et al. arXiv:1401.2910, Science 345, 420 (2014).)
Consider a spin glass on the chimera graph (so the problem fits 
naturally on to the D-Wave machine, this version ~500 qubits). 
Do efficient simulated annealing (SA) on a computer, and compare 
with runs on D-Wave, for different sizes N. 

Is there a quantum speedup?
Not so trivial to determine because:
(i) Need to determine optimal annealing schedule
(ii) Runtime depends on the specific instance
(iii) Need to extrapolate to N = ∞.

       Consider (i) 
Figure shows SA.

For D-Wave, minimum 
annealing time (20µs) is
longer than optimal. 
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FIG. 4. Speedup for ratio of quantiles for the DW2
compared to SA. A) For instances with range r = 1. B)
For instances with range r = 7. Shown are curves from the
median (50th quantile) to the 99th quantile. 16 gauges were
used. In these plots we multiplied Eq. (6) by 512 so that
the speedup value at N = 512 directly compares one DW2
processor against one classical CPU.

the DW2 does not exhibit a speedup over SA for this
particular benchmark.

3. Wall-clock time

While not as interesting from a complexity theory
point of view, it is instructive to also compare wall-clock
times for the above benchmarks, as we do in Figure 5. We
observe that the DW2 performs similarly to SA run on a
single classical CPU, for su�ciently large problem sizes
and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.

FIG. 5. Comparing wall-clock times A comparison of the
wall-clock time to find the solution with probability p = 0.99
for SA running on a single CPU (dashed lines) compared to
the DW2 (solid lines) using 16 gauges. A) for range r = 1,
B) for range r = 7. Shown are curves from the median (50th
quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
tary Material.

D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10⇥ faster in pure annealing
time, there are many cases where it is � 100⇥ slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to

Comparison (continued)
Now consider (ii) and (iii) (instance dependence and extrapolation 
to N = ∞). 

Figure is ratio TSA / TDW. If increases at large N, evidence for a 
quantum speedup. The “%” is a percentile, indicating fraction of 
instances that have been solved, so “50%” (green) is the 
median. For black points, all but 1% of the instances have been 
solved. Data does not show evidence for a quantum speedup.

(Rønnow et al.)

Tuesday, October 25, 16



` = cJ(�J)�⇣

` = cT (�T )�⇣

Some more relevant physics (chaos)
As T is lowered in SA the spin glass configuration that that 
minimizes the free energy can change (quite suddenly, a rounded 
“transition”) which is called temperature chaos, or T-chaos for 
short. Spin correlations change at distances greater than l  where 

Similarly, in QA there is chaos with respect to hT.

In addition to T-chaos (in SA) and TF-chaos (in QA), there is 
also sensitivity to small changes in the interactions, called J-
chaos, where the length scale is 

Numerically ζ ≃ 1 in d = 2, 3, 4 for both J-chaos and T-chaos. 
However, the amplitude is much bigger for J-chaos, i.e.  

cJ � cT
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Example of T-chaos on the chimera graph 
In some spin glass samples T-chaos will not occur, in others it may 
occur once, twice etc. Instances where this occurs will be 
particularly hard to solve. Fraction of instances where T-chaos 
occurs is found to increase with increasing size N.

Figure shows a hard 
sample, in which the 
energy shows a 
pronounced change at low-
T due to temperature 
chaos, and an easy sample 
where this does not occur. (From Martin-Mayor and Hen, arXiv:1502.02494)

(Chimera graph is 2ïd)
TTc=0

Possible locations
for T chaos
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Sample-to-sample fluctuations
There is a broad distribution in the values of the time to solution 
𝛕.  Interpretation: samples with small 𝛕 presumably have no T-
chaos, for SA ,or TF-chaos for QA, while those with large 𝛕 
presumably have one or more temperatures where T-chaos 
occurs. 
One finds that T-chaos is rare for small sizes but happens in most 
samples for very large sizes. 
T-chaos is problematic for classical, annealing-type algorithms.

• Is TF-chaos a problem quantum annealers?
• Are instances with T-chaos (in SA) also those with TF-chaos (in 

QA)?
Needs more work to see. 
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Limitations of the D-Wave machine
• The temperature may not be low enough. For instances where 

temperature chaos occurs at a temperature lower than that of 
the chip then the wrong answer will typically be obtained. 

•The strengths of the bonds are not represented exactly in the 
(analog) D-Wave machine (intrinsic control errors, ICE).  
Even small changes in the bond strengths can dramatically 
change the ground state. This is called “J-chaos”. Thus D-
Wave machine might be getting the right ground state to the 
wrong problem (some of the time). Do samples with strong 
T-chaos also have strong J-chaos?  Probably, but more work 
needed to make this precise.

•Non-thermal noise in the superconducting qubits. Needs to 
be understood better. 
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• There are two paradigms for quantum computing
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Conclusions
• There are two paradigms for quantum computing

• Gate model. There are some algorithms (e.g. Shor) where there 
is a provable quantum speedup, but they are very susceptible to 
decoherence so application has been limited to a small number 
of qubits so far. 
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