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I. The satisfiability problem SAT (1/2)
◮ INPUT: Boolean formula F composed of literals (variables and their

negations) and connectives ∧ (“and”) and ∨ (“or”).

◮ GOAL: Determine if F is satisfiable, i.e. if there is a truth assignment to
the variables that makes F evaluate to true.

◮ E.g. the Boolean formula:

F = (x1∨ x̄2∨ x3)∧ (x̄1∨ x2∨ x̄4)

is satisfied by the truth assignment {x1 = T ,x2 = T ,x3 = F ,x4 = T}, or
briefly x = (1,1,0,1) (and many other truth assignments too).

◮ The SAT problem is in general NP-complete, which means that all
known complete decision algorithms require worst case exponential
running time, in the length of the input formula F (Cook 1971, Levin
1973).
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The satisfiability problem SAT (2/2)
◮ A Boolean formula F is in k -conjunctive normal form (k -cnf) if it is a

conjunction (“and”) of small disjunctions (“or”s), where each factor
disjunction, or clause, contains exactly k literals.

◮ E.g.

F = (x1∨ x̄2∨ x3)∧ (x̄1∨ x2∨ x̄4)

is a 3-cnf formula.

◮ The problem k -SAT is SAT restricted to k -cnf input formulas. In this
formulation one often thinks of the formula as simply a set of clauses,
each of which must be satisfied.

◮ Also k -SAT is NP-complete for all k ≥ 3. 2-SAT has a nice
graph-theoretic polynomial-time decision method (Aspvall, Plass &
Tarjan 1979).
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The DPLL (Davis-Putnam-Logemann-Loveland)
procedure

A backtrack search method for testing satisfiability of a set of clauses Σ on
variable set V . Basic outline:

◮ If Σ is empty, return “satisfiable”.

◮ If Σ contains an empty clause, return “unsatisfiable”.

◮ If Σ contains a unit clause c = x±, assign to x a value which satisfies c,
simplify the remaining clauses correspondingly, and call DPLL
recursively.

◮ Otherwise select an unassigned x ∈ V , assign x ← 1, simplify Σ, and
call DPLL recursively. If this call returns “satisfiable”, then return
“satisfiable”; else assign x ← 0, simplify Σ, and call DPLL recursively
again.
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“Where the Really Hard Problems Are?”
◮ Cheeseman, Kanefsky & Taylor (1991)

◮ Many NP-complete problems, including satisfiability, can in many cases
be solved reasonably well by heuristics or special-case methods.

◮ Where, then, are the (presumably) exponentially hard instances of these
problems located? Could one tell ahead of time whether a given
instance is likely to be hard? Could one learn something fundamental
about the “reasons” for NP-completeness by focusing on the hard
instances?

◮ Early studies: Yu & Anderson (1985), Hubermann & Hogg (1987),
Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque
(1992), Kirkpatrick & Selman (1994).
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Hard instances for 3-SAT (1/3)
◮ Mitchell, Selman & Levesque, AAAI-92

◮ Experiments on the behaviour of the DPLL procedure on randomly
generated 3-cnf Boolean formulas.

◮ Distribution of test formulas:
◮ n = number of variables
◮ m = αn randomly generated clauses of 3 literals, 2≤ α≤ 8

◮ For sets of 500 formulas with n = 20/40/50 and various α, Mitchell et
al. plotted the median number of recursive DPLL calls required for
solution.
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Hard instances for 3-SAT (2/3)

Results:

◮ A distinct peak in median running times at about clauses-to-variables
ratio α≈ 4.5.

◮ Peak gets more pronounced for increasing n⇒ well-defined “delta”
distribution for infinite n?
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Hard instances for 3-SAT (3/3)

◮ The runtime peak seems to be located near the point where 50% of
formulas are satisfiable.

◮ The peak seems to be caused by relatively short unsatisfiable formulas.

Question: Is the connection of the running time peak and the satifiability
threshold a characteristic of the DPLL algorithm, or a (more or less) algorithm
independent “universal” feature?
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The satisfiability transition (1/2)

Mitchell et al. (1992): The “50% satisfiable” point or “satisfiability threshold”
for 3-SAT seems to be located at α≈ 4.25 for large n.
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The satisfiability transition (2/2)

Kirkpatrick & Selman (1994):

◮ Similar experiments as above for k -SAT, k = 2, . . . ,6, 10000 formulas
per data point.

◮ The “satisfiability threshold” αs shifts quickly to larger values of α for
increasing k .
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Statistical mechanics of k -SAT (1/3)

Kirkpatrick & Selman, Science 1994.

A spin glass model of a k -cnf formula:

◮ variables xi ∼ spins with states ±1

◮ clauses c ∼ k -wise interactions between spins

◮ truth assignment σ ∼ state of spin system

◮ Hamiltonian H(σ) ∼ number of clauses unsatisfied by σ
◮ αs ∼ critical connection density for “phase transition” from “satisfiable

phase” to “unsatisfiable phase”
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Statistical mechanics of k -SAT (2/3)

Tabulated estimates of αs for various values of k via an annealing
approximation (Kirkpatrick & Selman 1994), replica-symmetric calculation
(Monasson & Zecchina 1997), and a recent “cavity method 1RSB” calculation
(Mertens, Mézard & Zecchina 2006):

k αann αRS α1RSB

2 2.41 1.00 -
3 5.19 4.60 4.267
4 10.74 ? 9.931
5 21.83 ? 21.117
6 44.01 ? 43.37

Note: The precise value for αs(2) is known to be 1 (Goerdt 1982, Chvátal &
Reed 1982).

The estimate αs(3)≈ 4.267 has also been derived earlier (Braunstein,
Mézard et al. 2002).
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Statistical mechanics of k -SAT (3/3)

Analytically, it is known that:

◮ A sharp satisfiability threshold αs exists for all k ≥ 2 (Friedgut 1999).

◮ For k = 2, αs = 1 (Goerdt 1982, Chvátal & Reed 1982). Note that
2-SAT ∈ P.

◮ For k = 3, 3.145 < αs < 4.506 (lower bound due to Achlioptas 2000,
upper bound to Dubois et al. 1999).

◮ For large k , αs ∼ (ln2) ·2k (Achlioptas & Moore 2002).
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II. Local search

Naive, but surprisingly useful idea for (combinatorial) optimisation. Assume
objective function E = E(s) to be minimised. Then:

◮ Start with some randomly chosen feasible solution s = s0.

◮ If value of E(s) is not “good enough”, search for some “neighbour” s′ of
s that satisfies E(s′) . E(s). If such an s′ is found, set s← s′ and
repeat.

◮ If no improving neighbour is found, then either restart at new random
s = s0 or relax the neighbourhood condition [algorithm-dependent].

Good experiences for 3-SAT in the satisfiable region α < αs: e.g. GSAT
(Selman et al. 1992), WalkSAT (Selman et al. 1996).
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GSAT

Gu 1992; Selman, Levesque & Mitchell 1992.

Denote by E = EF (s) the number of unsatisfied clauses in formula F under
truth assignment s.

function GSAT(F ):
s← initial truth assignment;
while flips < max_flips do

if s satisfies F then return s
else

find a variable x whose flipping in s causes
largest decrease in E(s) (if no decrease is
possible, then smallest increase);

s← (s with variable x flipped)
end while ;
return s.
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NoisyGSAT

Selman, Kautz & Cohen 1994.

Idea: Augment GSAT by a fraction p of random walk moves.

function NoisyGSAT(F ,p):
s← initial truth assignment;
while flips < max_flips do

if s satisfies F then return s
else

with probability p, pick a variable x
uniformly at random;

with probability (1−p), do basic GSAT move:
find a variable x whose flipping causes
largest decrease in c(s) (if no decrease is
possible, then smallest increase);

s← (s with variable x flipped)
end while ;
return s.
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WalkSAT

Selman, Kautz & Cohen 1994/1996.

Idea: NoisyGSAT with the provision that the choice of flipped variables is
always focused to the presently unsatisfied clauses.
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function WalkSAT(F ,p):
s← initial truth assignment;
while flips < max_flips do

if s satisfies F then return s else
choose a random unsatisfied clause C in F ;
if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

with probability p, pick a variable x in C unif. at random;
with probability (1−p), do basic GSAT move:

find a variable x in C whose flipping causes
largest decrease in c(s);

s← (s with variable x flipped)
end while ;
return s.
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WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic) experiments in
Selman et al. (1996), WalkSAT outperforms NoisyGSAT by several orders of
magnitude. Later experimental evidence by other authors corroborates this.
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Dynamics of local search

A WalkSAT run with p = 1 (“focused random walk”) on a randomly generated
3-SAT instance, α = 3, n = 500: evolution in the fraction of unsatisfied
clauses (Semerjian & Monasson 2003).
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Results and conjectures ca. 2005
◮ Barthel, Hartmann & Weigt (2003), Semerjian & Monasson (2003):

WalkSAT with p = 1 has a “dynamical phase transition” at
αdyn ≈ 2.7−2.8. When α < αdyn, satisfying assignments are found in
linear time per variable (i.e. in a total of cN “flips”), when α > αdyn

exponential time is required.

◮ Explanation: for α > αdyn the search equilibrates at a nonzero energy
level, and can only escape to a ground state through a large enough
random fluctuation.

◮ Conjecture: all local search algorithms will have difficulties beyond a
clustering transition of the solution space at αc ≈ 3.92 (Mézard &
Zecchina 2002).

◮ Observation & conjecture: Nevertheless WalkSAT seems to work in
linear time at least up to the “1RSB stability transition” at α≈ 4.15
(Aurell et al. 2004), but maybe not beyond that (Aurell, Montanari et al.)
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Some WalkSAT experiments on (3-SAT)

Seitz, Alava & Orponen (2005)
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Data suggest linear solution times for α≫ αc ≈ 3.92.
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WalkSAT linear scaling
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WalkSAT optimal noise level?
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WalkSAT sensitivity to noise
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Focused Metropolis Search

Arguably the most natural focused local search algorithm. Variable flip
acceptance probabilities determined by a parameter η, 0≤ η≤ 1.

function FMS(F ,η):
s← initial truth assignment;
while flips < max_flips do

if s satisfies F then return s else
choose a random unsatisfied clause C in F ;
choose a variable x in C at random;
let x ′← flip(x), s′← s[x ′/x];
if E(s′)≤ E(s) then flip x , else

flip x with prob. η(E(s′)−E(s)).
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FMS experiments (3-SAT)
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FMS linear scaling
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FMS optimal acceptance ratio?
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FMS optimal acceptance ratio cont’d
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FMS optimal acceptance ratio cont’d
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Whitening (1/2)

Technique introduced by Parisi, Braunstein, Zecchina et al. to determine the
“frozen” variables (spins, degrees of freedom) in a given configuration.

A variable is frozen in truth assignment s to 3-SAT formula F , unless
determined white by the following process:

function WHITENING(F , s):
mark all clauses white except those that

have exactly one true literal;
loop :

mark all variables white except those that
appear as the unique satisfying literals
in non-white clauses;

halt, if all variables are white (full whitening);
halt, if no new variables became white (core found);
mark those clauses white that contain

at least one white variable.
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Whitening (2/2)
The “whiteness” of solutions seems to have many connections to the
behaviour of local search algorithms. Consider e.g. the following plots of
runtimes of one local search algorithm variant (FRRT) vs. the “average
whiteness depth” of the solutions found by it:
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III. More transitions

Recently, the picture of the solution space of k -SAT problems has been
further refined by the introduction of dynamic and condensation transitions
αd , αc . (The basic clustering transition is here denoted αd+ .)

Predicted values for these transitions are as follows (Mertens et al. 2006,
Krzakala et al. 2007):

k αd+ αd αc αs

3 3.927 3.86(?) 3.86(?) 4.267
4 8.297 9.38 9.547 9.931
5 16.12 19.16 20.80 21.117
6 30.50 36.53 43.08 43.37
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FMS vs. transitions
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Cumulative distributions of FMS solution times on random 4-SAT instances at
α = 9.6. Vertical axis indicates the fraction of 1001 random instances solved
within a given running time, measured in flips / N on the horizontal axis. The
“temperature” parameter of FMS is set to η = 0.293.

Inset: Scaling of the algorithm with increasing α at N = 100000.
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The ChainSAT algorithm (1/2)

Local search method that never makes upwards moves in the energy
landscape.

Idea: If the algorithm is not able to find a energy-decreasing (actually
energy-nonincreasing) move, it moves along a critically satisfied
variable-constraint-variable path (each constraint satisfied by a single
variable) until an opportunity to decrease energy is found. (Note similarity to
the whitening process.)
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The ChainSAT algorithm (2/2)

function ChainSAT(F ,p1, p2):
s← initial truth assignment;
chaining ← FALSE;
while s does not satisfy F do

if not chaining then
choose a random unsatisfied clause C in F ;
choose a variable x in C at random;

∆E ← change in number of unsatisfied clauses if x is
flipped in s;

if ∆E = 0 then
flip x in s; chaining ← FALSE;

if ∆E < 0 then with probability p1

flip x in s; chaining ← FALSE;
if ∆E > 0 then with probability 1−p2

choose a random clause C satisfied only by x ;
choose a variable x ′ 6= x in C at random;
x ← x ′;
chaining ← TRUE.
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ChainSAT vs. transitions

60000 70000 80000 90000 100000

t  (flips / N)

0

0.2

0.4

0.6

0.8

1

P
(t)

 (
cu

m
ul

at
iv

e 
di

st
rib

ut
io

n)

N =   25 000
N =   50 000
N = 100 000
N = 200 000
N = 300 000
N = 400 000

0.7 0.8 0.9 1
α / α

sat
(K)

10
4

10
5

t

K = 4
K = 5
K = 6

α
d
(6) α

d
(5) α

d
(4)

Cumulative distributions of ChainSAT solution times on random 4-SAT
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Inset: Scaling of the algorithm for k = 4,5,6 at N = 100000 with increasing
α; the values of α(k) in the horizontal axis have been normalized with αs(k).
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ChainSAT and whitening
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