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Motivation

A complex example for

peptide conformational dynamics:

The cellular prion protein PrP¢ in solution
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Simulation system

« periodic orthorhombic
dodecahedron
(inner radius r = 52A)

« PrPC (125-228)
= molecular mechanics (MM)
force field: CHARMM22

=  M205R mutant obtained by
remodeling the PrPC¢ structure

« ~25800 H,0 molecules
(MM force field: TIP3P)

e ~150 Na* and CI- ions
(165 mM NaCl)

PrPC-structure: Zahn et al., PNAS 97, 145 (2000)
L
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MD methods

MD program EGO-MMI| used for

10 ns simulations at T =300 K, p =1 atm

« time step 1fs

« computer time using six 1.6 GHz processors in parallel: ~ 20 weeks

Niedermeier, C, and P Tavan (1994). J. Chem. Phys. 101: 734-748.
Niedermeier, C, and P Tavan (1996), Mol. Simul. 17: 57-66.
Eichinger, M, H Grubmdller, H Heller, and P Tavan (1997). J. Comp. Chem. 18: 1729-1749.
Mathias, G, B Egwolf, M Nonella, and P Tavan (2003). J. Chem. Phys. 118, 10847-10860.
Mathias, G, and P Tavan (2004). J. Chem. Phys. 120, 4393-4403.
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Trajectories

.TLY"”
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General Problem

How can one gain insight into such processes

beyond showing movies?

complex virtual reality simplified models
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A much more simple example

950 ns backbone dynamics of the

tripeptide Ac-Ser-Ser-Ser-NH, v

fluctuating in water

Is described by a time series
(% |t=1,2,...,5-10" ps} =[0,27["

of six dihedral angles
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Trajectory

X, =0 ¥1:05¥5:03:V3),
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Look at 'Y,

¥, randomly switches between two ranges ~ and f of values

3 ¥ angles = 2°=8 combinations: r= , aap, ..., BBB

= discretization of the configuration space

into 8 disjoint partial volumes V. c [O, 27:[6

‘TEM (o Extracting Markov models of peptide conformational dynamics from simulation data p9



Conformations

The average peptide structures in the volumes V.

(X) =
xteV x,eV

represent coarse-grained meta-stable states, the so-called
peptide conformations r=1, ..., 8

= the x, define a conformational dynamics

of transitions among the volumes V. characterized by

transitions r' —>r

the transfer operator 7 , =
all transitions from r'
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Markov processes

=  System switching randomly —_—
—
between R states within = CAD\
i\

= Transition probabilities 7 . depend only on present state

not on the past

= Time discrete Markov process =

of occupation probabilities p (¢) p, (t+7)= ) Trr,pr (1)
r'=1
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The question

The definition of conformations was natural and trivial for our tripeptide:

Suitable discretization from simple inspection of v, (¢)

Can a suitable discretization be determined
« automatically
e without inspection

 for arbitrary proteins sampled by MD?

s ol
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Naive construction of the transfer operator

Step 1: Grid partition n!'-
Step 2:  Count transitions Fg j ;;1’

between R grid cells

transitions r' >S7r "'..

! o,
rrall tranmsitions from r'

Problem: R ~exp(D) "curse of dimensionality,

bad statistics for many V',
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Alternative discretization

YLT A
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Alternative discretization

of univariate normal distributions (55| ) )

centered at points =~ with identical widths & and weights 1/R.

Maximum likelihood principle parameters { |r=1,...,R}

Algorithms:
Kloppenburg & Tavan (1997). Phys. Rev. E 55, 2089-2092.
Albrecht et al. (2000), Neural Networks 13, 1075-1093.
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Alternative discretization

.-

r

Bayesian association probabilities e
( i?'}‘\\ "f.':‘ .:: ;
1 i 0
— 8| ,0) R e e

P(r|x)=—L— L
PGE W5 0, )

define fuzzy volumes V' discretizing configuration space.

Advantages of this fuzzy partition:
= number of V. independent of D

= |oad balance:

" 1
Yr: <P(r | X, ,wl,...,wR,0)> ~—
R
— same statistics for all V.
'Sl
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Alternative discretization

But otherwise it is still an abritrary discretization

How to construct a ,natural” discretization ?
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Alternative discretization

But otherwise it is still an abritrary discretization

How to construct a ,natural” discretization ?

like this:

|dea:
Construct ,natural“ coarse-grained discretization by
* successive unification of originial fuzzy sets V,

* guided by an analysis of the Markovian dynamics given by the V.
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Transfer operator

Trajectory = R-dim Markovian transfer matrix

E.
— <P(7‘ | )_C;H)P(r' | Xt)> w f ] |

T =
! (P(r'| %))

Choice of R dictated by statistics (R << number of pointsx,)

Criteria for sequentially unifying the 7,

— look at most simple 1-dim example
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1-dim sample data

17 0 O

define a 4-state Markov matrix TEX _ 20 o U %,
0O 3 80 20
0O 0 17 &0

17%
e associate a 1-dim normal distribution to
each state

* generate a 1-dim trajectory x,, 1=1, 2, ...,
In a two-stage stochastic process

< invariant density p, (x) of the process
estimated by R-bin histogram of {x,}
or R-component Gaussian mixture
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Bayesian classification of the data

Model of p,_ (x):

e coarse grained states are obvious

 and are obtained by Bayesian
classification

Counting =

pBaes transitonsn' —>n
all transitions from »n’

28
0

0

24 0 0)

30
3 73 28
0 24 72,
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Bayesian classification of the data

but otherwise coarse
graining is trivial in 1-dim

Tex —

and we get the typical

Bayesian decision errors _
for overlapping classes

(optimal result)

N

0t

0
0

0 0)

0

380 20
0 17 80,
0 0)

0

3 73 28
0 24 72)
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Transfer operator

Original discretization = R-dim Markovian transfer matrix

for 1-dim
example

R GIEMYLGIES)
: (P(r'| %)

Alternative to Bayes:
Sequentially unify the fastest mixing V.

until the four long-lived states remain!
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Unification algorithm

Join sequentially states ,  with fastest transitions

Assume detailed balance: TW.<P(7"|5@)>:T' <P(’”|’? )>

s ol
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Unification algorithm

Join sequentially states ,  with fastest transitions

T T,
Assume detailed balance: rr _ rr
<P(r|?c )> <P(r'|5é )>
4 !
T 1
Lookat D . = Ak and choose , : max D .

(P(r|%,)) ey

Unify partition functions P(n|%)=>Y P(r|%), n=1...,R-1

rel,

and the transfer matrix T .«T

n,n r,r'

V. Schultheis, T. Hirschberger, H. Carstens, P. Tavan (2005) J. Chem. Theory Comput. 1, 515-526.
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Unification algorithm

Unification

T! | eeaa. | [FRee.
ce®

level

D€

\ ZZZ::

i 14
eigenvalues A°,
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Unification algorithm

from smallest eigenvalue A’

get fastest time scale ¢ at each level: T, =

\ 4 and 2 state models are clearly

e distingushed by jumps to slower

N W A

In{t EITR}

/ time scales of dynamics
1 ;

Jhatural® models

o

2 4 6 8 10
level £

BMO
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Unification algorithm

0 O

. . 0
Unified transfer matrix at level ¢ = 4 T=

0 3 71 32

0 0 26 68

0 O

1 3 B F Bayes O
approximtely reconstructs optimal decision: T =

0 3 73 28

0O 0 24 72

and the unified partition functions yield a classification of the data by

X, —»n if n=maxP(n'|X,)

n

s ol
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Application to tripeptide trajectory
Discretize data by 25-component Gaussian mixture

Transfer operator:

(BCIEPEE))
(PG| %))

rr'
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Hierarchy of Markov models

17
i

*
1

17
1

13
1

R =125

p 30

Extracting Markov models of peptide conformational dynamics from simulation data



ierarchy of Markov models
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8-state model

Associated conformations <5€> r=1,..,8




Dimension reduction
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8-state model

classify x(7) to

8 conformational states
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Results

Markov model
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Gibbs free energy

G, =—k,TInP
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Summary

Tools for the analysis of simulation data:

 fuzzy partition = Transfer operator at good statistics and moderate

dimension
» coarse graining = hierarchy of Markov models

» most plausible model selected by certain observables
Simplified models =

insights into the structures and conformational dynamics

of high-dimensional systems
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