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1. How to model
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Power Grids?
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Power Grid DAynamics
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Power Grid DAynamics
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Estimation of Basin Stability
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Estimation of Basin Stability

20

bistable system:
final state depends on IC

B ={x e 5|P,(x) = I}
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Avoid Dead Ends
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2. Random Network Model
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Random Network Model: Key Ideas

* Model wide range of observed network properties
> degree distribution, sparsety, connectivity, aspl, ...

* Create realisticly appearing power grids with spatial embedding
> supports random as well as given node locations

* Low computational complexity allows for extensive simulations

* Plausible construction mechanism using only few assumptions

* Two stages: initialisation and growth
> tunable trade-off: cost minimisation vs. redundancy

Ref.: Rosas-Casals, Topological Complexity of the

o Ve Electricity Transmission Network., UPC (2009)
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Model Implermentation

* |nitialisation with minimum spanning trees
> minimise overall edge weight (i.e. length)

Ref.: Borlivka 1926, Kruskal 1956, Prim 1957

* Transmission lines might be split if a new power plant
appears closeby

* Trade-off between redundancy and costs

(new redundant lines)”

maximise f = , ,
spatial distance
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Minimurn Spanning Tree MIST

* Invented to design Moravia (Mahren) Power Grid
Ref.: Borlivka (1926), Kruskal (1956), Prim (1957)
* Draws connected graph (i.e. a tree) with N-1 edges
between a set of nodes that minimises a given edge
weight > spatial distance, resistance, general cost
function

* Unique if all edge weights are mutually distinct
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Growth Algorithm

attachment rule: /

G2
p~>G3
qg-> G4
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Growth Algorithm

attachment rule: /
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Growth Algorithm

attachment rule: ]
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Growth Algorithm

attachment rule:

p> G3 | \
qg-> G4
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Growth Algorithm
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Growth Algorithm

attachment rule:

G2
p~>G3
qg-> G4

Ref.: Schultz et al., EPJ ST, 2014
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3. Ensemble Analysis
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Power Grid Ensemble
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Effective Resistances

vs. network distance

* resistance of a single edge,
virtually replacing all paths
between s and t in an
equivalent circuit

* replace path-based
observables currnt i
N

EXp. ERCCZ — 1/<ERZ]>]

current out

ER;j=(b;—b;) L7' (b —bj) = L' — L} — L' + L7

Ref.: Klein&Randic 1993, Dorfler&Bullo 2010

|
|

D
D
i

Paul Schultz - Basin Stability: Large Perturbations in Power Grids

b
A~

44



Newman's Current Flow Betweenness

vs. shortest path betweenness

current in

e Based on virtual current \
through node i according to
Kirchhoff's laws ’

* Generalised for arbitrary cument ou
admittance

)
VOFB; = It .f
n(n —1) ;

s 1
[ =32 YulVi = Vil
J

Ref.: Newman, Social Networks (27), 2005

D
P
:':lD

|
‘ :.’".)
|

Paul Schultz - Basin Stability: Large Perturbations in Power Grids 45



Nodes on Detours
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* Indicates fair to high basin stability
* |dentified using VCFB

Ref.: Newman, Social Networks (27), 2005
Ref.: Schultz et. al., NJP 16, 125001 (2014)
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Nodes on Detours
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Ref.: Newman, Social Networks (27), 2005
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~ Predicting Poor Stability from the Topology

ERCCZ' not poor

prediction of poor
basin stability
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Receiver Operating Characteristic
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Take Home Messages

Random topology model capable to create realistic
power grid networks

Spatial information to estimate model parameters, surrogate
networks for hypothesis testing, ensemble analysis etc.

Effective resistances and current-flow betweenness
reveal additional information for electrical networks

It is possible to predict the weak points using
only structural information

Dead ends diminish while detour motifs enhance
network resilience
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New Journal of Physics 16 (2014) 125001
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A Random Growth Model for Power Grids and Other Spatially Embedded

Infrastructure Networks
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