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BLUME-EMERY -GRIFFITHS(BEG) MODEL

BEG model(1971): He3-He* mixtures and other physical
systems
Hamiltonian of the model

H =J>'88,+K} 8S +D} 8

Si=-1,0,1

J bilinear and K biquadratic interaction constants
single-ion anisotropy constant
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The model has been studied by different
techniques. Most of these analysis predict that,
the model on three dimension shows a variety of
interesting features:

> single and double re-entrancy region
> ferrimagnetic phases

> including a tricitical point, critical end point or
bicritical end point for certain model
meters




» The model is simulated on a cellular automata by using
improved algorithm(it is improved from Creutz
algorithm)

> The calculations are done on a simple cubic lattice of
the linear dimensions L=12,16,18 and 24 with periodic
boundary conditions.
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updating rule:

» For a site to be updated, its spin is changed to one of
the other two states with 3 probability.

* The change in the Ising energy, dH; is calculated.

+ If this energy is transferable to or from the
momentum variable(H,) associated with this site, this
change is done and the momentum is appropriately
changed. Otherwise, the spin and momentum are not
changed.

* During the updating process, total energy of the
system H=H;+H, is conserved.
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Heating algorithm

> All spins take the F/SQ ordered structure according to the
selected (J,K,D) parameter set.

»Kinetic energy per site is given to the certain percent of the
lattice via second variable.

> This configuration is run during 10000 CA time steps.

> At the end of this step, the configuration at low temperature is
obtained.

> This configuration has been chosen as a starting configuration for
the heating run.

»During the heating cycle, energy is added to the system through
the second variable of each site(Hk) after "t" cellular automaton
steps. This process is realized by increasing of certain values in the
kinetic energy of each site.



Detail of simulations

For estimating the kind of PTs, the temperature
variations of the some quantites are calculated:

J/

<+ order parameters,

<+ susceptibility,

‘= %r:—N(<m > —<m>2)/kT



Detail of simulations

* internal energy,
U=H,/H, H =J) S8, +K>'S’S.* +D) S?

<ij> <ij> i
< specific heat
C = 0H, /8T =N(< U? > — < U >?)/(KT)?

< Binder cumulant

<M* >
< M? >2

g =1-

<+ In addition, finite-size scaling theory is used for
estimating the static critical exponents.



The results of simulations
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The phase diagram in the ground state of model on a simple

cubic lattice
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Stagger quadrupolar
(5Q), two
sublattice(A and B),
randomly, in A
Si=+1 and in B Si=0



At T#0, the variaous phases of the model are defined
according to the order parameters at a selected model
parameter set:



At T#0, the variaous phases of the model are defined
according to the order parameters at a selected model
parameter set:

For F region,

Ferromagnetic phase (F)
mz0, qgz2/3

Quadrupolar phase (Q)
m=0, q#2/3;



At T#0, the variaous phases of the model are defined
according to the order parameters at a selected model
parameter set:

For F region, For SQ region,

: Ferromagnetic phase (F)
Fni%orggg??'c phase (F) mA = mB # O and qA = qB

Quadrupolar phase (Q)
S0 gz Y A= mB =0 and A = gB

Staggered quadrupolar phase

(5Q)
mA = mB = O and qA z B



Phase transition in BEG model
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The obtained results in the F region and
near the F and PZ phase boundary



- Phase diagrams are obtained for certain model parameters
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second-order Q—F
(at certain parameters) Q: m=0, ¢z2/3;
F: mz0, qz2/3
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double re-entrant Q—-F—-Q—F
(at certain parameters)
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double re-entrant
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The obtained results in the SQ region and near the
F and SQ phase boundary



> phase diagrams are obtained for certain model parameters
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Static critical exponents



The infinite lattice critical point(Tc) are obtained from the
intersection of the Binder cumulant curves for different lattice
sizes.

keT/T

for the Q—F PT for the F>QPT



gL

Exponent v:

v can be obtained using the finite size scaling relation for

Binder cumulant, which is defined by g, =g(sL"")
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The scaling data
for the finite-

size lattices lies
on a single curve
near the critical

temperatures
when v=0.64



exponent B m=L""X(eL"™)
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Log(ksTy L")

exponent y @ Ty =L"VY(sL")
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For the all continous Q —F PT, the estimated
values of critical exponents are equal to
universal values (8=0.31, y=1.25, a=0.12,v= 0.64)



Thank you for your attentionl
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