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Disorder in condensed matter

Consider magnetic systems: in the form of non-magnetic sites,
lattice defects, random anisotropies etc. are omnipresent in laboratory samples.
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Disorder in condensed matter

Consider magnetic systems: in the form of non-magnetic sites,
lattice defects, random anisotropies etc. are omnipresent in laboratory samples.

Effects on phase transitions: zoology

> Weak disorder: long-range order is not destroyed and the nature of the
ordered phase is unchanged
> Disorder acting on the energy density (couplings): dilution, random bonds;
relevance predicted by the Harris criterion
» Disorder coupling to the order parameter (magnetization):
> Strong disorder: no long-range order, new phases of matter; typically
encompasses the presence of frustration —
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What is a spin glass?
Classical example of spin glass: noble metals weakly diluted with transition
metal ions, interacting via the RKKY interaction,

cos(2kp R + ¢o)

J(R) = Jo Er R
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BN
What is a spin glass?
Classical example of spin glass: noble metals weakly diluted with transition
metal ions, interacting via the RKKY interaction,

cos(2krpR + ¢o)

J(R) = Jo Er R

» no long-range order
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The Edwards-Anderson model

Simplify to the essential properties, and I
to yield the Edwards-Anderson (EA) model, ? —_— 4
1
H:—§Zjijsi'3j, SZ'EO(TL) | |
'L,]

where J;; are quenched, random variables. * _\/\_ A
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where J;; are quenched, random variables. * _\/\_ 4

Coupling distributions

PU,) PU,)

Gaussian bimodal
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The Edwards-Anderson model

Simplify to the essential properties, and I
to yield the Edwards-Anderson (EA) model, ? —_— 4

1
H=—§ZJijsi-sj, SZ'EO(TL) | |

,J

where J;; are quenched, random variables. * _\/\_ A

Has been investigated for = 30 years, however no agreement on general case.

Mean-field model with
3

VN’
known as Sherrington-Kirkpatrick (SK) model can be solved in the framework of
“replica-symmetry breaking” (RSB) (parisi et a1., 1979/80).

Jij =
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Giorgio Parisi

Nobel Prize 2021
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BN
The Edwards-Anderson model

Simplify to the essential properties, and I
to yield the Edwards-Anderson (EA) model, ? — 4
1
H:—§ZJijSi-Sj, siEO(n) | |
2,7

where J;; are quenched, random variables. * _\/\_ 4
Applications

System has applications in a range of fields:
» possible role in high-T.. superconductors

» model of associative memory (Hopfield model), machine learning
> gene expression networks
» realized in D-Wave quantum computer
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Ground-state calculations

At low temperatures, there are several (many) competing, states,
leading to very slow dynamics.
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Spin-glasses and random-field systems have non-trivial states even T' = 0.
Hence much can be understood looking at ground states.
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Ground-state calculations

At low temperatures, there are several (many) competing, states,
leading to very slow dynamics.

E

Eo.

"Configuration"

Spin-glasses and random-field systems have non-trivial states even T' = 0.
Hence much can be understood looking at ground states.

Finding them, however, can be difficult. In some cases it is
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Ising ground states as perfect matchings
System energy equals total weight of pairing frustrated
p|aquetteS (Toulouse, 1977),

E=- Z |.Ji;| + const.
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Ising spin glass in 2D

Complex energy landscape leads to : sizes restricted to L ~ 128 (MC).
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Fractal dimension

Fractal dimension of domain wall.

107 . . : .
106 L O1F l 1 i © ]
5 0 Tl
0 ¥11 1 |
~ 104 __0.1 -}If 1 1 1 1 |- -
SN 20 40 60 80 100120
10 di = 1.27319(9) 7
102 ]
10! Gauss
PFBC
100 L " A \
10! 102 108 104
L
_ Cy Dy
(0)7(L) = AgL%(1+ BiL™) + = + —2 ...

L L2

M. Weigel (Chemnitz) Random-field models uoL 17/57



Results

Perform calculations for periodic-free and periodic-periodic boundary
conditions.

PFBC PPBC
o 1.3147876(7) | 1.314788(3)
0 -0.2793(3) | -0.2788(11)
dy 1.27319(9) | 1.2732(5)

Results are fully consistent with each other.

Based on SLE and further assumptions, Amoruso et al. (2006) proposed

3
4(3+0)

de =1+

df = 1.27319(9) would imply § = —0.2546(9) which is with the
direct estimate.
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Random-field Ising model

How does the behavior of the Ising model change in the presence of quenched,
random fields?
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(i,4) @

M. Weigel (Chemnitz) Random-field models uoL 19/57



Random-field Ising model

How does the behavior of the Ising model change in the presence of quenched,
random fields?

H= —JZ SiSj — Zhlsl
(i,5) @
h; quenched random variables drawn, e.g., from a Gaussian,
hi ~ N(0,h)
or a bimodal distribution,

1 1
P(hz) == 55}”,_1 + 55}“,4_1.
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Imry and Ma argument
Is the FM phase stable?
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Imry and Ma argument
Is the FM phase stable?

Following Imry and Ma (1975), consider a cluster of spins of (linear) size R. Overturning
it will cost a surface energy of
Ej ~ JR¥!

but potentially yield a gain in random-field energy of

Err ~ hRY?
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Imry and Ma argument (cont'd)

leading to a balance of
AE(R) ~ JR*™* — hRY/?,
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Imry and Ma argument (cont'd)

leading to a balance of
AE(R) ~ JR*™* — hRY/?,

For large R, AE > 0ford > 2and AE < 0 for d < 2. Hence,
» FM order is stable ind > 3.
» FM order is destroyed by random fields ind = 1.
» d = 2is marginal.
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Imry and Ma argument (cont'd)

leading to a balance of
AE(R) ~ JR*™* — hRY/?,

For large R, AE > 0ford > 2and AE < 0 for d < 2. Hence,
» FM order is stable ind > 3.
» FM order is destroyed by random fields ind = 1.
» d = 2is marginal.

Aizenman and Wehr (1989) proved unique Gibbs state for d < 2, so no long-range order
in 2D.
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Domain-wall roughness

Binder (1983) considered the energy balance for a domain-wall, comparing the
interface energy 2J L and the gain in field energy, AU.

JyLin? Taking the interface roughness into
' account, he finds

AU ~ —(h?/J)LIn L/ Inn,
where n denotes the scale of resolution
for the interface.

U = 2JL — AU changes sign at length
scale
Ly, ~ explc(J/h)?].

|
\
|
|
|
[
L
!
\
|
|
|
|
‘ Ly is known as

= o !
wLh wilinh) o h
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Renormalization group

J S

H/J

M. Weigel (Chemnitz) Random-field models uoL 23/57



Renormalization group

The critical behavior of the RFIM can be studied at T' = 0, i.e., from ground
states!
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Renormalization group

H/J

The critical behavior of the RFIM can be studied at T' = 0, i.e., from ground
states!

Renormalization group flow equation for w = h/J (Bray and Moore, 1985),
dw/dl = —(¢/2)w + Aw®.
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Break-up length
Sample ground-state configurations for L = 512.
ki
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Break-up length (cont'd)

o n m— 10° T
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Break-up length (cont'd)

= - T r ’
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Define L, as system size such that 50% of disorder samples at given h are FM
(Seppaéla et al., 1998).
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BN
Break-up length (cont'd)

- T r ’
17,. q\=3 G-OL=32 10 |
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Define L, as system size such that 50% of disorder samples at given h are FM
(Seppaéla et al., 1998).

What is the correct form?

Ly ~exp(A/h) or exp(A/h?)
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Break-up length (cont'd)
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What is the correct form?
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Seppala et al., 1998
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Break-up length (cont'd)

10°F @ 1 10*F® Y
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Shrivastav et al. 2014

What is the correct form?
Ly ~ exp(A/h?) or exp(A/h)
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[
Maximum flows and graph cuts

Split up Ising model Hamiltonian,

“H = Jiysisi=WF+ W™ —W* =K —2W*, )
(i)

where K =3, Ji;, and

W+ = Z Jij, W= = Z Jij; Wi = Z Jij (2)

(ij) (ig) (ig)
si=s;==41 s;=s8;=—1 SiF#S;
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Maximum flows and graph cuts

Split up Ising model Hamiltonian,

—HZZJijsisj:W++W_—Wi=K—2Wi, )

where K =3, Ji;, and

Z]l

W+ = Z Jij, W= = Z ng; Wi Z ng (2)

(ij) (ig) (ij)
s;=s;=+1 si=s;=—1 SiF#S;

Then, a ground state is given by a
configuration with W+,
which divides the spins between the
“up” and “down” states.
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Maximum flows and graph cuts (2)
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
» all up spins are connected to the source, all down spins are connected to the sink

> a separates the two classes of sites, the energy of the configuration
corresponds to the weight of the cut
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> due to the max-flow—min-cut theorem, the ground-state (min-cut) configuration
occurs for maximum flow through the network
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
» all up spins are connected to the source, all down spins are connected to the sink

> a separates the two classes of sites, the energy of the configuration
corresponds to the weight of the cut

> due to the max-flow—min-cut theorem, the ground-state (min-cut) configuration
occurs for maximum flow through the network

» there are efficient ( ) algorithms to solve maximum flow exactly
(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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Numerical study

We use ground-state algorithms to study the breakup length ¢, and the
¢ and ¢9% for 10° samples and lattice sizes L = 128, 256,
512, 1024, and 2048.

M. Weigel (Chemnitz) Random-field models



Numerical study

We use ground-state algorithms to study the breakup length ¢, and the
¢ and ¢9% for 10° samples and lattice sizes L = 128, 256,
512, 1024, and 2048.
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Numerical study

We use ground-state algorithms to study the breakup length ¢, and the
¢ and ¢9% for 10° samples and lattice sizes L = 128, 256,
512, 1024, and 2048.

2048 |- ‘ ‘ | A
(b)
. lo24 x?/d.of. =72.38 )
=512t 1
wr
256 | 2 1
d.o.f. = 4.68
128 ) ) | . X / I 1
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=512 1
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128 | ‘ ‘ ‘ ‘ ‘ ‘ x/ ‘ ‘ ]
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Correlation length: triangular lattice

Strong evidence for £ ~ exp(A/h?) form on the square lattice.
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Correlation length: triangular lattice
Strong evidence for £ ~ exp(A/h?) form on the square lattice.

Hayden, Raju and Sethna, 2019: since w «+» —w on non-bipartite lattices, the RG
equation should take the form

dw/dl = —(¢/2)w + Bw? + Aw® + ...,

implying a leading divergence ¢ ~ exp(A/h) for the lattice.
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BN
Correlation length: triangular lattice

Strong evidence for £ ~ exp(A/h?) form on the square lattice.

Hayden, Raju and Sethna, 2019: since w «+» —w on non-bipartite lattices, the RG
equation should take the form

dw/dl = —(¢/2)w + Bw? + Aw® + ...,

implying a leading divergence ¢ ~ exp(A/h) for the lattice.
Is this supported by the data?
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[
Correlation length: comparison

We find clear evidence for ¢ ~ exp(A/h?) for the connected and disconnected
correlation lengths in the square and triangular lattices.

3 T T T T

9 | square disconnected i
square connected

1L triangular disconnected ~—=— |

triangular connected —s—

effective exponent
| I
no =
T
=
(. '
% 3
! I

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

hmax
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Random-field Potts model
Very little work to date:

g=2 (Ising)

Blankschtein, Shapir, Aharony, 1984
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Random-field Potts model
Very little work to date:

HRF a
< \/ ¢=3
)3 \\':: qpan
> ¢=2(Ising)
(a) p T

Goldschmidt and Xu, 1985/86
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Very little work to date:
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Random-field Potts model
Very little work to date:

number of states q
>

Esing

dimension d

Goldschmidt and Xu, 1985/86

Most recent study by Eichhorn and Binder (1995/96): possible 2nd order
transition for 3D ¢ = 3 model.
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Maximum flows and graph cuts (2)

The RFIM can be mapped onto a maximum flow problem (Picard & Ratliff, 1975) where
» all up spins are connected to the source, all down spins are connected to the sink

> a separates the two classes of sites, the energy of the configuration
corresponds to the weight of the cut

> due to the max-flow—min-cut theorem, the ground-state (min-cut) configuration
occurs for maximum flow through the network

» there are efficient ( ) algorithms to solve maximum flow exactly
(Ford-Fulkerson, Edmonds-Karp, push relabel, ...)
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BN
Graph cuts and the Potts model

We consider the Hamiltonian

—1
H = 7]255,;,5]‘ - Zqzhgési»m

(i) i a=0
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BN
Graph cuts and the Potts model

We consider the Hamiltonian
q—1
H= =T oy = DD hibsia
(ij) i a=0

The g = 2 case is equivalent to the RFIM,

J _ _
H——5<)azaj+1 22[11+ hi)oi+ (b + ki),
ij
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L
Graph cuts and the Potts model
We consider the Hamiltonian
q—1
H == 7<]Z§s,;,s]' - Zzh(z‘lési,ay
(i5) i a=0

The g = 2 case is equivalent to the RFIM,

J _ _
’H——5<_)aza]+1 22[11+ hi)oi+ (b + ki),
ij

The ground-state problem for ¢ > 2 corresponds to a multi-terminal flow problem that is
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Graph cuts and the Potts model

We consider the Hamiltonian
q—1
H= =T oy = DD hibsia
(ij) i a=0

The g = 2 case is equivalent to the RFIM,

J _ _
’H——5<_)aza]+1 22[11+ hi)oi+ (b + ki),
ij

The ground-state problem for ¢ > 2 corresponds to a multi-terminal flow problem that is

We need to revert to
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BN
Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) = ZVij(Sivsj) + ZDi(Si)-
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BN
Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
BE({s:}) =Y Vis(siys3) + Y Di(sa).
i,j i

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
{Sz Z‘/z] Si, Sj +ZD 51

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.

> «-/3-swap move
picks two labels « # 3 € {0,1,...,¢q — 1} and freeze all labels apart from « and 8

ﬁﬁ
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:

E({si}) ZV” Siy 8 —l—ZD i)

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.

»> « expansion move
pick and freeze a label o; either keep or flip remaining pixels into « state

E-
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Approximate graph cuts

Boykov, Veksler and Zabih (2001) propose a method for problems in computer vision:
{Sz Z‘/z] Si, Sj +ZD 31

It is based on solving an effective two-terminal (Ising) problem by freezing some
degrees of freedom.

»> « expansion move
pick and freeze a label o; either keep or flip remaining pixels into « state

ll"E ¥ '

Works well in (paper has 10,000 citations!). How about the RFPM?
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Results: 3D ¢ = 3 RFPM — initial conditions

Use repeated runs to increase success probabilities.

0.6
1 os4
5052

05

0.48

L=64,A=17

-2.61
2,615
-2.62
S -2.625
2,631

-2.635—

-2.64 —

60 80

100 0
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Results: 3D ¢ = 3 RFPM — initial conditions

Use repeated runs to increase success probabilities.

L=64, A=1.7
261
™ DT
D _|
0.52 0561 |
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1 054 e
5052 262545
05 2630 .
s ]
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048 L ]
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Results: 3D ¢ = 3 RFPM — magnetization

Sample thermodynamic quantities either for n = 100 or extrapolate.

:—,.» | T | T | L | L | L
(a) |SSL=1eH
L=24|
0'8_ &< L=32]]
206— AAL =40
*, 041 H
g | |
021 . -
O—I [ IR T .. |
1.6 1.7 1.8 19 2 21 22

A

M. Weigel (Chemnitz) Random-field models uoL 51/57



[
Results: 3D ¢ = 3 RFPM — magnetization

Sample thermodynamic quantities either for n = 100 or extrapolate.

:—,.» | T | T | L | L | L
(a) |SSL=1eH
L=24|
0'8_ &< L=32]]
206— AAL =40
*, 041 H
g | |
021 . -
O—I [ IR T .. |
1.6 1.7 1.8 19 2 21 22

A

Scaling form of the magnetization:

m*(A, L) = L/" M [(A ALY,
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Results: 3D ¢ = 3 RFPM — magnetization

Sample thermodynamic quantities either for n = 100 or extrapolate.

o] " T " T ]
TN (@) -
0.8} %5 -
z  foL=24"% 1
=06 L=32| % .
*E BEA L=40 % )
04H L=48] & .
H - L =64 5
0.2~ L=280 k%%f 7]
|- L=96 Ses
| L | L | L
1T 2 3
(A—AC)LIN

Scaling form of the magnetization:

m*(A, L) = L/" M [(A ALY,
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[
Results: 3D ¢ = 3 RFPM — magnetization

Sample thermodynamic quantities either for n = 100 or extrapolate.

n A, 1/v B/v y/v S1 So

1 1.636(2) 0.837(9) 0.0460(9) 2.9084(14) 2.30 2.38
5 1.626(3) 0.812(6) 0.0403(8) 2.9220(15) 1.82 1.69
10 1.623(5) 0.828(15) 0.0387(7) 2.9230(15) 1.28 1.58
50 1.617(4) 0.797(4) 0.0340(8) 2.9323(16) 1.25 1.38
100 1.616(1) 0.774(6) 0.0330(10) 2.9337(15) 120 1.36
oo 1.606(3) 0.723(4) 0.0306(23) 2.9402(30) 0.82 0.87

Table: A summary of exponents from the FSS of the m(L, A, n) for finite as well as
infinite n. The numbers in the parenthesis denote the error bars in the last significant
digit.

Scaling form of the magnetization:

m (A, L) = LA M (A - AL
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Results: 3D ¢ = 3 RFPM — specific heat

No direct access to fluctuations in ground states. Hence consider

Oles(A)]

CA) ="
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Results: 3D ¢ = 3 RFPM — specific heat

No direct access to fluctuations in ground states. Hence consider

_ 0les(A)]
c(a) = L0
1 8 7' “ I T I I ]
1.76}F -
) =5
£ 1721 = 1007~
1.68- RS R
legb—t 1 . 1.
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Results: 3D ¢ = 3 RFPM — specific heat

No direct access to fluctuations in ground states. Hence consider

_ e (A)]
cA) = A
3.2
~~~ 3‘
) I
§ 28f
O
[ A7 On=
2.6 nZ
i <A]n_=
249 l l .*ﬁz
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Results: 3D ¢ = 3 RFPM — specific heat

No direct access to fluctuations in ground states. Hence consider

des(A)]
C(A) = A
n A, 1/v afv w Q1 Q-
1 1.644(6) 0.850(70) 0.023(12) 2.67(87) 0.74 0.71
5 1.626(3) 0.774(32) —0.002(11) 2.62(68) 0.32 0.70
10  1.621(3) 0.767(25) —0.019(13) 2.39(61) 0.14 0.52
50 1.620(2) 0.776(21) —0.046(20) 1.87(53) 0.12 0.50
100 1.620(2) 0.780(21) —0.049(20) 1.86(52) 0.15 0.49
oo 1.611(4) 0.733(28) —0.059(20) 2.52(73) 0.14 0.93

Table: A summary of exponents from the fits of the peak positions A”*(L, n) and the
heights of the specific heat C™**(L, n). Q1 is the quality of the fit for the data of
AP*(L,n), and Q- is the quality of the fit for the data of C™**(L,n). The numbers in the
parenthesis denote the error bars in the last significant digits.

O™ (L) = Oy + aL®" (1 + bL™%).
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BN
Results: 3D ¢ = 3 RFPM — susceptibility

We cannot make use of a fluctuation-dissipation relation as the ground state is
unique (for continuous fields). Hence we could rely on

() - | 2D
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BN
Results: 3D ¢ = 3 RFPM — susceptibility

We cannot make use of a fluctuation-dissipation relation as the ground state is
unique (for continuous fields). Hence we could rely on

() - | 2D

This requires ground-state calculations at a number of different field strengths
(numerical differentiation). It does not work for non-exact methods.
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Results: 3D ¢ = 3 RFPM — susceptibility

We cannot make use of a fluctuation-dissipation relation as the ground state is
unique (for continuous fields). Hence we could rely on

() - | 2D

This requires ground-state calculations at a number of different field strengths
(numerical differentiation). It does not work for non-exact methods.

Instead, explicitly integrate the effect of the shift in the coupling distribution
(Schwartz and Soffer, 1985), leading to

.1 [o(MP) 1
5 _ 1 N RIS Y
X' = lim = [ SH7 LV A3 [<m >;h11 ,

av
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BN
Results: 3D ¢ = 3 RFPM — susceptibility

We cannot make use of a fluctuation-dissipation relation as the ground state is
unique (for continuous fields). Hence we could rely on

() - | 2D

This requires ground-state calculations at a number of different field strengths
(numerical differentiation). It does not work for non-exact methods.

Instead, explicitly integrate the effect of the shift in the coupling distribution
(Schwartz and Soffer, 1985), leading to

.1 [o(MP) 1
5 _ 1 N RIS Y
X' = lim = [ SH7 LV A3 [<m >;h11 ,

av

Without explicitly breaking the symmetry, however, there is no peak in this x.
Scaling arguments imply that one should use a field H ~ L3/2.
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BN
Results: 3D ¢ = 3 RFPM — susceptibility

Use repeated runs to increase success probabilities.
2

T ToL=16
OoL=20
A L=24
v L=32
=)
)
x
10'F
1.6
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Results: 3D ¢ = 3 RFPM — susceptibility

Use repeated runs to increase success probabilities.

Xmax (L)

Consider the scaling form

10°f

10'F

10 100

X(L,A) = LVv5 [(A ALY
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Results: 3D ¢ = 3 RFPM — exponents

In summary, we have the following estimates:
RFIM ¢ =3 RFPM

v 1.38(10) 1.383(8)
o -0.16(35)  -0.082(28)
B 0.019(4) 0.0423(32)
v 2.05(15) 2.089(84)
n 0.5139(9) 0.49(6)
i 1.028(2) 1.060(3)
0 1.487(1) 1.43(6)
a+28+~  2.00(31) 2.08(9)
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Results: 3D ¢ = 3 RFPM — exponents

In summary, we have the following estimates:
RFIM ¢ =3 RFPM

v 1.38(10) 1.383(8)
o -0.16(35)  -0.082(28)
B 0.019(4) 0.0423(32)
v 2.05(15) 2.089(84)
n 0.5139(9) 0.49(6)
i 1.028(2) 1.060(3)
0 1.487(1) 1.43(6)
a+28+~  2.00(31) 2.08(9)

Consider Rushbrooke’s law:
a+28+y=2.
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Results: 3D ¢ = 3 RFPM — exponents

In summary, we have the following estimates:
RFIM ¢ =3 RFPM

v 1.38(10) 1.383(8)
o -0.16(35)  -0.082(28)
B 0.019(4) 0.0423(32)
v 2.05(15) 2.089(84)
n 0.5139(9) 0.49(6)
i 1.028(2) 1.060(3)
0 1.487(1) 1.43(6)
a+28+~  2.00(31) 2.08(9)

Consider Rushbrooke’s law:
a+28+y=2.

RFIM:
a+ 28+ = 2.00(31).
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Results: 3D ¢ = 3 RFPM — exponents

In summary, we have the following estimates:
RFIM ¢ =3 RFPM

v 1.38(10) 1.383(8)
o -0.16(35)  -0.082(28)
B 0.019(4) 0.0423(32)
v 2.05(15) 2.089(84)
n 0.5139(9) 0.49(6)
i 1.028(2) 1.060(3)
0 1.487(1) 1.43(6)
a+28+~  2.00(31) 2.08(9)

Consider Rushbrooke’s law:
a+28+y=2.
RFIM:
o+ 28+ = 2.00(31).
RFPM:
o+ 28+ = 2.08(9).
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Conclusions

> hard optimization problems are ubiquitous in statistical mechanics
problems

> for the hardest problems, general-purpose techniques are not sufficient
> use results from combinatorial problems for non-combinatorial ones
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Conclusions

> hard optimization problems are ubiquitous in statistical mechanics
problems

> for the hardest problems, general-purpose techniques are not sufficient
> use results from combinatorial problems for non-combinatorial ones

2D spin glass:
> new mapping allows to treat huge systems up to 10000 x 10000 spins
» strong scaling corrections in frustrated systems
> connection to stochastic Loewner evolution
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Conclusions

> hard optimization problems are ubiquitous in statistical mechanics
problems

> for the hardest problems, general-purpose techniques are not sufficient
> use results from combinatorial problems for non-combinatorial ones

2D RFIM:
> clear evidence for ~ exp(A/h?) scaling predicted by Binder
» no violation of universality for different lattice structures
» complete lack of self-averaging of the correlation length
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Conclusions

>

>
>

hard optimization problems are ubiquitous in statistical mechanics
problems

for the hardest problems, general-purpose techniques are not sufficient
use results from combinatorial problems for non-combinatorial ones

3D ¢ = 3 RFPM:

>

>
>
>
>

approximate ground states from graph cuts and « expansion
systematic extrapolation to n — co

critical exponents close to, but potentially different from 3D RFIM
two-exponent scaling, 7/v = 2.904(30) ~ 2v/v = 3.02(12)
hyperscaling violation, (d — §)v = 2.17(8) ~ 2 — o = 2.08(10) with
0 =1.43(6)
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