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My background

● trained particle theorist (1997-2002) 

● switch to liquid state theory, i.e.
statistical physics of strongly interacting many-body systems
 

● associated experimental community: Soft Matter, the Colloidal Domain  
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The Tübingen Nanoscience Project: New paths for an interdisciplinary  
                                                           BSc / MSc 

The team

Biology Chemistry Physics

Klaus Harter
Microbiology of plants:
signalling,  transcription,
bioinformatics

Erik Schäffer
Molecular machines,
mechanics of bio-
molecules

Reiner Anwander
Organometallic
chemistry, nanostruc-
tured materials

Andreas Schnepf
Metal-like nano-
clusters

Frank Schreiber
Soft matter,
physics of proteins,
organic semiconduct.

Martin Oettel
Soft matter:
colloids, interfaces 

Biology, chemistry and physics are taught on equal footing...



  

Content

Particles (colloids) at interfaces -a rich field for statistical physics

● Capillary interactions as pseudogravitational interactions
      (pictures, movies, etc. ... something to relax)

● Partial confinement and its impact on hydrodynamic interactions
Anomalously fast  diffusion
      (this is the actual theory part...need some equations to explain the effect!)
On the way:
Marangoni effect
Some basics on hydrodynamic interactions



  

Fluid interfaces: Capillarity

The Cheerio effect.

http://www.youtube.com/watch?v=OhjiDxfxVLQ


  

Fluid interfaces: Capillarity

The Cheerio effect.

http://www.youtube.com/watch?v=OhjiDxfxVLQ


  

Fluid interfaces: Capillarity

Cheerio effect with superhydrophobic particles.

http://www.youtube.com/watch?v=KS6VZH7PTjs


  

Fluid interfaces: Capillarity

Cheerio effect with superhydrophobic particles.

Comment by a user:
“... and that, boys and girls, is how planets are created”

Really?

http://www.youtube.com/watch?v=KS6VZH7PTjs


  

Fluid interfaces: Capillarity

A single drawing pin floating on water illustrating the balance between 
surface tension and the weight of the floating object. This picture was 
described as the `phenomenal anti-intuitively floating-upside-down thumbtack' 
by the blog of the Annals of Improbable Research. (Dominic Vella's page)



  

Fluid interfaces: Capillarity

γ

surface tension

Free energy = surface energy + gravity + particle boundary energy

F ≈
γ

2∫dx dy ([∇ z( x , y)]2+
z (x , y)2

λ2 ) + boundary energy

λ = √
γ

g (ρ1−ρ2)
 capillary length ≈ 3  mm

Minimization

z (r)
∝ ln λ

r
∝ exp(−r / λ)

'superhydrophobic' particle

λ

“long-ranged” deformation ...
up to λ

f = mg



  

Fluid interfaces: Capillarity

Interaction between two particles:

d

z (d )

f = mg
second particle “falls” into dimple of
the first one:

U cap = f z (d ) ∝
f 2

γ ln
d
λ

(d < λ)

Well, that is indeed gravitational attraction ... 

● but in 2 dimensions

● with a cutoff

● with an extra dimension around where solvent can flow

  

λ ∼ mm



  

Fluid interfaces: Capillarity as pseudogravity

Now we have to go to microscales:

2 RR ∼ μm →
f 2

γ ∼ kT U cap ∝
f 2

γ ln
d
λ

(d < λ)

A system with Brownian motion acting against pseudogravitational attraction 

If                            and                   :

Cold collapse (reference model for cosmologists):
“A spherical patch of dust collapses uniformly to a point with infinite mass density.” 

f 2

γ ≫ kT λ → ∞



  

Fluid interfaces: Capillarity as pseudogravity

Brownian dynamics simulations with μm particles, room temperature  

large λ : like cold collapse medium λ : shock waves at rim

(Simulations J. Bleibel)

L

λ
L
= 1.5 λ

L
= 0.25

L

'realistic' parameters:

particle radius: R = 10μm , water-air surface tension

→ maximum capillary pair attraction energy : ∼ 1 kBT

patch size : L = 1.8 mm



  

Fluid interfaces: Capillarity as pseudogravity

Brownian dynamics simulations with μm particles, room temperature  

large λ : like cold collapse medium λ : shock waves at rim

(Simulations J. Bleibel)

λ
L
= 1.5 λ

L
= 0.25

'realistic' parameters:

particle radius: R = 10μm , water-air surface tension

→ maximum capillary pair attraction energy : ∼ 1 kBT

patch size : L = 1.8 mm



  

λ → ∞  :gravitation λ → 0  :short range attraction

dilute gas

finite box
(linear dimension L)

collapse
phase
separation

(depending on
boundary cond.)

?

● all densities

● (almost) all temperatures

● densities in coexistence region

● T < T
c

Fluid interfaces: Capillarity as pseudogravity



  

Fluid interfaces: Capillarity as pseudogravity

Dynamical phase diagram: interpolating between 'normal' fluids
        and 'gravitational' fluids

J. Bleibel,  S. Dietrich, A. Dominguez, and M. Oettel,
Shock waves in capillary collapse of colloids: a model system for two--dimensional screened gravity,
Phys. Rev. Lett.  107, 128302 (2011).

J. Bleibel, A. Dominguez , M. Oettel and S. Dietrich,
Capillary attraction induced collapse of colloidal monolayers at fluid interfaces,
Soft Matter 10, 4091 (2014).

„effective“ T:

k BT

uatt

per particle



  

Fluid interfaces: Capillarity as pseudogravity

Gravitational attraction ... 

● but in 2 dimensions

● with a cutoff
    
         tunable → interesting, interpolating fluid

● with an extra dimension around 
where solvent can flow

  anomalously fast diffusion 
         due to extra dimension

  

λ ∼ mm

particle movements in 2D

hydrodynamic flow in 3D

Summary of this part

but ...



  

Partial confinement: Anomalous diffusion

Appetizer: Again the capillary (pseudogravitational) system

Brownian dynamics
with hydrodynamics:
Stokesian dynamics (2-particle interactions)
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generic setup:

primary example: colloids trapped at a fluid interface
but also ... soap at water interface

Partial confinement: Anomalous diffusion

Partially confined motion



  

Partial confinement: Anomalous diffusion

The Marangoni effect is partially confined motion



  

Partial confinement: Anomalous diffusion

The Marangoni effect: Gradients of surface tension set fluid in motion

γ(x1) γ(x2)>

Marangoni flow

concentration diffusion +
drag by Marangoni flow

∇ γ●              is an aerial force density (N/m2) which pulls on the fluid elements

● fluid flow (Marangoni flow) drags along the soap molecules and 
enhances their concentration diffusion

● analogy to colloidal system: thermal motion and mutual capillary force
pulls on fluid elements 
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●  Overdamped dynamics – appropriate for microparticles

●  Include hydrodynamic interactions perturbatively
  on the two-particle level

On the individual particle level:

v i = Γ ijF j
ext
+ noise

Γij (r1 , ... , rN ) ≈ Γ0 I δij+Γ
(2)(r ij=r i−r j)

Γ
(2)
(r1 , ... , rN ) = Γ0 [δij∑l≠i ω11(r il)+(1−δij)ω12(r ij)]

General diffusion tensor  

Include only pair terms

Self interaction term
Distinct interaction term 

particle velocity = mobility  x  force   +   random kicks

Partial confinement: Anomalous diffusion

Partially confined motion
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Velocity of particle i instantaneously reacts to forces on particle j 

η∇
2u−∇ p=0
u∂Bi
=v i

F i ,hydro=∫
∂B i

Πd A

Full diffusion tensor: solution
of Stokes equation for velocity
field  u ( r ) 

Boundary condition

Force on particle i
by integration of 
stress tensor

Systematic 1/r expansion for
two particles

(bulk)

ω11(r ) = O (r−4) ≈ 0

ω12(r ) =
3σH

8
1
r
( I+ r̂ r̂)
⏟

Oseen tensor

+
1

16

σH
3

r3
( I−3 r̂ r̂ )

⏟
Rotne-Prager tensor

Partial confinement: Anomalous diffusion

Partially confined motion

long-ranged!
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Partial confinement: Anomalous diffusion

Partially confined motion: A diffusion equation
∂ρ

∂ t
= −∇⋅j = −∇⋅(ρv )

particle
velocity
field

continuity
equation

j (r , t ) = −D0∇ρ(r , t) − D0ρ(r , t )∫ d r ' ω12(r−r ' )∇ ' ρ(r ' , t )⏟

Fick's law Marangoni flow field:
drags along the particles

This equation is nonlinear. Linearize for small density fluctuations
                                      and take Fourier transformρ(r , t)=ρ0+δρ(r , t)

∂δρ̃(k , t)
∂ t

=−D0 k
2
(1 + ρ0 k̂⋅ω̃12(k )⋅k̂ )δρ̃(k , t )

D(k ) = D0(1+ρ0 k̂⋅ω̃12(k)⋅k̂ )

wavelength-dependent diffusion coefficient
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Colloids quasi-2d
Solvent  quasi-2d

Colloids 3d
Solvent  3d

Colloids quasi-2d
Solvent  3d

ω12(r) ∝ ( I log L
r
+ r̂ r̂ ) →

k̂⋅ω̃12⋅k̂ = 0

ω12(r) =
1
r
( I+ r̂ r̂ ) →

k̂⋅ω̃12⋅k̂ = 0

ω12(r) ∝
1
r
( I + r̂ r̂ ) + O (r−3

) →

k̂⋅ω̃12⋅k̂ ∝
1
k
+O (k 0

)+...

FT in 2d

FT in 3d

FT in 2d

Interpretation: The solvent flow is not incompressible on the colloidal plane!

Partial confinement: Anomalous diffusion

The “hidden” dimension:
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∂δρ̃(k , t )
∂ t

=−D0 k
2 (1 +

1
k Lhydro

)δρ̃(k , t )
The (2d-3d) diffusion equation becomes:

Lhydro =
4

3πρ0σH

new characteristic length, above which
there should be deviations from normal
diffusive behavior

Green's function for this diffusion equation

G̃2d-3d(k , t) = exp (−k 2 D(k )t ) ,

Fourier back transform not easy! For  long times                       we obtain 

t hydro =
Lhydro

2

D0

associated time scale over which the
„normally diffusing“ system reaches 

t ≫ t hydro

G2d-3d(r , t) =
t hydro

2πD0 t
2 [1+( r

Lhydro
)
2

( t hydro

t )
2

]
−

3
2
∝

1

r3
 for any fixed t

Lhydro

D(k ) = D0 (1+ 1
k Lhydro

) singularity in the 
diffusion coefficient!

Partial confinement: Anomalous diffusion
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Simulations (Johannes Bleibel)

δρ(r ,0)

ρ0

initial profile - top-hat

● quasi-2D truncated Stokesian dynamics simulations
(Brownian dynamics + 2-particle HI up to 1/r3)

● allow for random kicks out of plane → confine particles to plane
with a (strong) potential

● difficult because of statistics, therefore:  
    „polymeric“ particles with hydrodynamic radius but no direct interactions

hydrodynamic packing fraction ηhydro = π ahydro
2 ρ

ηhydro = 1.9

ηhydro,0 = 0.07

2 R

physical model parameters:

ahydro = 10 μm

R = 100 μm
Lbox = 1000 μm

N 0 = 212 (background particles)

δ N = 188 (additional particles)

periodic boundary conditions

Partial confinement: Anomalous diffusion
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Simulations (Johannes Bleibel) - Results for the decay of a top-hat profile

All features of                 are present !G2d-3d

linearized theory:
δρ(r , t) = δρ(r ,0) ∗ G2d-3d(r , t)

∝
1

r3

initial profile

Partial confinement: Anomalous diffusion



  

Partial confinement: Anomalous diffusion

Solution for the capillary (pseudogravitational) system

Brownian dynamics
with hydrodynamics:
Stokesian dynamics (2-particle interactions)

Long-ranged diffusion fields
“suck” in the particles toward the center

∝ r−3
J. Bleibel, A. Dominguez, F. Günther, J. Harting and M. Oettel
Hydrodynamic interactions induce anomalous diffusion under partial confinement
Soft Matter 10, 2945 (2014).

J. Bleibel, A. Dominguez  and M. Oettel
3D hydrodynamic interactions lead to divergences in 2D diffusion
Proceedings of Liquids 2014 (JPCM 2015) 



  

Partial confinement: Anomalous diffusion

Experiment? An old one needs to be reinterpreted...(Lin,Rice, Weitz 1995)

So, it is a perfect 2d-3d setup but the analysis was done for 2d...



  

Partial confinement: Anomalous diffusion

Experiment? An old one needs to be reinterpreted...(Lin,Rice, Weitz 1995)

250  nm

800  nm

10 nm
These are „soft disks“ with
hopefully large hydrodynamic radius !

Measurement: Static Light Scattering: structure factor
(SLS)

S (k )

Dynamic Light Scattering: collective diffusion 
(DLS)                                    coefficient

         interpretation

              with „hydrodynamic function“ 

D(k )

D(k ) = D0

H (k )
S (k )

H (k )

In our 2d-3d system:  H (k ) = 1 +
1

k Lhydro



  

Partial confinement: Anomalous diffusion

Experiment? Lin,Rice, Weitz 1995 and reanalysis 2013

∝
1

k Lhydro

2π
k

  [nm]

6301260 315corresponding
lengthscale
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Summary of this part

● „normal“ fluids: power series of

→  exponential decay of Green's function
 → „normal“ diffusion

● partially confined systems: singularity in

 →  power-law decay of Green's function
 →  anomalously fast diffusion

● corroboration by simulation (tSD)
reinterpretation of an older experiment

● generic effect:
particle confinement (1d,2d) + solvent flow (3d)

                  anomalous diffusion 

D(k ) = D0(1+β2k
2+...)

〈r2〉 ∝ t

D(k ) = D0 (1+ 1
k Lhydro

)

Partial confinement: Anomalous diffusion

〈r2
〉 infinite



  

THANK YOU!
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